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ABSTRACT. The present study examined the reasoning strategies and arguments given 
by pre-service school teachers as they solved two problems regarding fractions in different 
symbolic representations. In the first problem, the pre-service school teachers were asked 
to compare between two different fractions having the same numerical representation, 
and in the second problem, they were asked to compare between different notational 
representations of the same fraction. Numeration systems in bases other than ten were 
used to generate various representations of fractions. All students were asked to provide 
justifications to their responses. Strategies and arguments relative to pre-service teachers' 
concepts of fractions and place value were identified and analyzed based on results of 38 
individual clinical interviews, and written responses of 124 students. It was found that the 
majority of students believe that fractions change their numerical value under different 
symbolic representations. 

. 

What  is a fraction? There are different ways to introduce the concept  
and to think about it. Initially, Freudenthal (1983) sees fractional number  
knowledge as organizing lived situations which involve fractioning. Later 
on, such situations need to be varied, and need to be experienced at different 
levels of  abstraction for a more integrated rational number knowledge 
building. Most  researchers agree that the part-whole, the quotient and the 
ratio concepts  are central to understanding fractions. However,  Behr  et al. 

(1992) pointed out the need to examine students' concepts of  fractions as 
mathematical  entities and not only as processes of  partitioning or division. 

According to Piaget et al. (1960), fractions take on a dual character, 

"... they are parts of  the original whole - within a nested system - ,  and 
they are also wholes in their own fight, and as such they too can be 
subdivided further... Invariance of  a whole is an essential condition of  
operational subdivision, and applies with equal force to qualitative and 
quantitative subdivision.. ." (pp. 310-311).  Thus, it is not only essential 
to regard a fraction as a mathematical entity, it is equally necessary to 
realize that this entity remains invafiant under different transformations 
including notational or symbolic representations. Further, the invariance 
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of fractions is also considered necessary for the conceptual understanding 
of fraction operations. Are pre-service school teachers, who seem to operate 
successfully with fractions at the symbolic level, aware that fractions do 
not change their values as a function of symbolic representation? 

In his book, "Why Johnny can't add?", Morris Kline wrote: "Symbolism 
can serve three purposes. It can communicate ideas effectively, it can 
conceal ideas, and it can conceal the absence of ideas" (p. 86). Markovits 
and Sowder (1991 ) observed that "using different symbols to represent the 
same idea and similar-looking symbols to represent different ideas" (p. 5) 
can be quite complex to some learners. Do pre-service school teachers 
experience such a complexity? 

The goal of the present study was to examine the reasoning strate- 
gies and arguments given by pre-service school teachers, as they solved 
problems on fractions under non-standard and unfamiliar symbolic rep- 
resentations. Numeration systems in bases other than ten were used to 
generate various representations of fractions. 

2. METHOD 

2.1. Subjects 

A group of 124 college students in their junior and senior years, that 
consisted of 100 pre-service elementary school teachers majoring in ele- 
mentary education and 24 pre-service secondary school teachers majoring 
in mathematical sciences, participated in the study. The students had pre- 
vious experience with whole number representations in different bases, 
however, the idea of non-integer rational number representation in bases 
other than ten was unfamiliar to them prior to the administration of the 
assessment instrument. 

2.2. Assessment of Students' Concepts 

The assessment was conducted in two parts: written assessment, and clin- 
ical interviews. The following are the two items which were administered 
to investigate the pre-service school teachers' concepts of fractions under 
different notation representations: 

Item 1: Is (0.2)three equal to (0.2)five? 

Item 2: Is the number "one-half" in base three equal to the number "one- 
half" in base five? 

For each of the above items, students were asked to explain their deci- 
sion, and in case of inequality, to choose the larger number. In Item 1, the 
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symbolic representation, that is 0.2, was similar in both cases, although 
the numerical values were different because the different bases of repre- 
sentation assigned different place values to the digit symbols. Whereas in 
Item 2, the numerical value (one-half) was the same in both cases, but 
the referents were representations in different bases. In order to avoid pre- 
assigning symbols to the fraction one-half, the word "one-half" was used, 
and not any of the possible common symbolic representations, like .5, 0.5, 
1/2 or 1, to this number in the statement of Item 2. Although, this question 
may be interpreted in more than one way, we kept the ambiguity to find 
out what interpretation to "the number one half" would be chosen by the 
students. 

An unfamiliar mathematical domain was chosen for the assessment 
problems to avoid the possible direct application of any specific pre- 
existing algorithmic knowledge students may have. Numeration systems 
in bases other than ten were specifically used as a research tool and not as 
a topic for instruction. 

For the first part of the study, 124 pre-service teachers were asked to 
respond in writing to the above two problems and to show their compu- 
tational work, if any, as well as to provide written explanations for their 
reasoning. The students' computational work and justifications were ana- 
lyzed, arguments and reasoning strategies were identified. 

For the second part of the study, a subset of 38 elementary pre-service 
teachers, that represented roughly equally various strategies identified in 
the first part, were asked to discuss the assessment items in an individ- 
ual clinical interview setting. All interviews were audiotaped, and later 
transcribed. The students' protocols were then analyzed in order to vali- 
date the reasoning strategies identified in the first part of the study, and to 
describe the pre-service teachers' conceptual understanding and explana- 
tions behind their use of the specific reasoning strategies. 

3. RESULTS AND INTERPRETATIONS 

For the purposes of this study, the analysis focused on the identification 
of the most common explanation arguments or reasoning strategies used. 
As presented in Table I, the frequencies of correct performance on the first 
item were: 63 out of 100 elementary education majors, and 24 out of 24 
mathematics education majors, while on the second item, only 26 out of 
100 elementary education majors, and only four out of 24 mathematics 
education majors performed correctly. 
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TABLE I 

Frequencies and percentages of correct/incorrect arguments used by 
pre-service teachers on items 1 and 2 

School n Item 1 Item 2 

level of Correct Incorrect Correct Incorrect 

pre-service Fre- % Fre- % Fre- % Fre- % 

teacher quency quency quency quency 

Elementary 100 63 63 37 37 26 26 74 74 

Secondary 24 24 100 - - 4 17 20 83 

Tot~ 124 87 70 37 30 30 24 94 76 

3.1. Strategies on Item 1: "Is 0.2three Equal to 0.2fi~e ?'" 

Most of the strategies used on this item were of computational nature. The 
students converted each of the number representations to a decimal fraction 
or to a common fraction and then compared both numbers. No student 
claimed that the numbers 0.2three and 0.2five were equal. Some students 
made their initial decisions about the inequality of these numbers based 
on the observation that "the bases are different, so the numbers can't be 
equal" and then proceeded to perform conversion. Although the performed 
conversion revealed at times students' incomplete understanding of base- 
systems and place value. 

3.2. Conventional Algorithmic Conversion 

All 24 secondary education majors and 63 out of 100 elementary education 
majors applied conventional algorithmic conversion. As an example of 
conventional conversion, the student may have written the following: 

(0.2)three = 2 X 1/3 = 2/3; (0.2)five = 2 X 1/5 = 2 / 5 ,  

t hen ,  0.2thre e > 0.2five, because 2/3 > 2 / 5 .  

Most of the students claimed first that the two numbers were not equal, 
and then they resorted to the above algorithmic approach to validate their 
initial response. In most cases, they drew place-value charts before they 
applied the algorithm. During the interviews a common response to justify 
their initial decision was: 
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S: From the beginning I knew that they couldn't be equal because 
they are in different bases ... and they are the same numbers ..... 
I mean digits... [she drew a place value chart]... ' two times one- 
third' would be two-thirds, and now I have to compare it to 'two 
times one-fifth' which would be equal to two-fifths. So, 0.2 in 
base three is greater than 0.2 in base five. 

An inadequate concept of place value surfaced during the interviews, 
although the students had applied a correct algorithmic conversion. An 
excerpt of a student's protocol follows: 

I: What about if 0.2 is in base 3? 

S: ..... [drawing a column chart, and trying to figure out]... Well, 
like in base 10 ..... but I just have a hard time thinking of it 
in base 3, because, first of all, I don't really know what the 
columns are called; and so I can't really say that this is 'two- 
tenths' anymore ...... maybe I have to say it's 'two-thirds'... 

I: Okay, and what makes you think of it as 'two-thirds'. 

S: Wait, this column may be called the 'three' column, and then, 
this one is called the 'thirtieth', ... and the next one is called the 
'three hundredth'. Well, if I use this same philosophy that I 've 
just used for base 3, then I would have to say - 'one-fifth' ... 
'one-fiftieth' ... 'one-five hundredth'.... 

Such students were trying to form an analogy with the place values 
in base ten. The sequence 1/5, 1/50, 1/500... was generated, probably in 
analogy to 1/10, 1/100, 1/1000... (Zazkis and Khoury, 1993). Nevertheless, 
this interpretation of place values didn't effect students' performance on 
Item 1, where only one digit in the fractional part of the number had to be 
considered. 

3.3. Non-conventional Conversion Strategies 

On the written assessment, 37 students responded by claiming that the 
two numbers were not equal, but either didn't succeed to perform the 
conversion or were not able to justify their decision. The most frequent 
strategies are discussed below. 

1/3 or 0.3 Confusion. It was a popular error in assigning the place values 
to the digits to use the following reasoning: 

0 . 2 t h r e e  = 2 x 0.3 = 0.6; 0.2nve = 2 x 0.5 = 1, 
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therefore, 0.2three < 0.2tire, since 0.6 < 1. 

Interpreting the value 1/3 of the first place to the right of the "decimal" 
point (in base 3) as 0.3, and respectively 1/5 (in base 5) as 0.5 may be 
explained as a confusion between similar-looking symbols (Markovits and 
Sowder, 1991). Since the symbols 1/10 and 0.1 are interchangeable, the 
implicit assumption of students applying the conversion above might have 
been that the symbols 1/3 and 0.3 are interchangeable as well. 

Base as the Unit Whole Argument. Students using this argument assumed 
that the value of the base of the number system describes the size of the 
unit whole, and since 0.2 denotes a fraction, then (0.2)three meant to them 
a fractional part out of the unit whole and was treated as "two out of three" 
or "0.2 out of three". Excerpts of students' protocols, who used the above 
strategy are given: 

Sl: The way I would approach this would be 'two out of three' and 
'two out of  f ive ' .  .... and 'two out of three' is bigger than 'two 
out of five' . .... you would rather have 'two parts out of three' 
than 'two parts out of five'... 

$2: I 'm so used to base ten that understanding a different number 
concept.., like if you use a square as your 'one' unit and you 
think of where 0.2 would be on there with a base 3 or a base 5... 
like you 've  got a different sized unit and so 0.2 might be more... 
it might be larger in base 3 than it would be in base 5... or vice 
versa. 

I: So what does 0.2 in base 3 mean to you? 

$2: This would be 0.2 of 3 and this one is 0.2 of 5. That's because 
that's how I would understand it if it were in base 10. I 'm trying 
to relate it back to something that I understand, and 0.2 in base 
10 is so much of 10, and that's how I would go about it ... 

Even though this strategy may "work", that is, lead students to a "correct 
answer" on Item 1, it uncovers a misconception. The place value base- 
systems are based on different regrouping rules, and not "different sized 
unit". 
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TABLE II 

Frequency distribution of correct arguments used by pre-service teachers on 
item 2 

School level n Invariance of fraction strategies Total 

of pre-service Division Column Qualitative 

teacher chart invariance 

Elementary 100 1 1 24 26 

Secondary 24 1 2 1 4 

Total 124 2 3 25 30 

Strategies on Item 2: "Is the number 'one-half' in base three equal to 
the number 'one-half' in base five ? " 

Students' responses on this item were classified as either: invariance 
of fraction strategies, or non-invariance of fraction strategies. We use the 
term "invariance" in a non-traditional way: Invariance here denotes that 
fractions do not change their values as a function of symbolic representa- 
tion. 

Computational arguments were less frequent on Item 2 due, mostly, 
to the nature of the task. Representing "one-half" in odd bases isn't a 
trivial mathematical task. It requires knowledge of repeating decimal frac- 
tions and geometric sequences. The reference to the odd bases was chosen 
in order to avoid conversion and to focus on the nature of the numbers 
discussed. But the tendency of some students to perform conversion and 
represent "one half" in various bases was very strong, that we suggested 
to some of those interviewed to consider one-half in bases 4 and 6. Stu- 
dents' responses to this suggestion are discussed further in the "analogical 
arguments" section. 

3.4. Invariance of  Fraction Strategies 

As shown in Table II, only 26% of the elementary pre-service teachers 
and 17% of the secondary pre-service teachers claimed that the numbers 
"one-half" in base three and "one-half" in base five were equal. Three 
different invariance of fraction strategies were identified. 
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1. Division Strategy. The Division Strategy was a computational strategy 
used by two students. The strategy was used as follows: 

(onehalf)three = (1/2)three = lthree/2three = 1/2 

(onehalf)fiv e = (1/2)five = lfive/2five = 1/2, 

therefore, the numbers are equal. 

The explicit assumption in this strategy is that a fraction is a result of a 
division process, in specific, that "one half" is a result of dividing one by 
two. The implicit assumption in using this strategy is that the symbols 1 
and 2 have the same value in bases three, five and ten, which means, for 
example, that lthree =l ten.  

2. Column Chart Strategy. The Column Chart Strategy was another infre- 
quent (n = 3) algorithmic strategy used for Item 2. Students first drew 
the place-value column chart for each base, and then they placed 1/2 in 
the "ones" column in the place-value chart, and concluded that one-half 
in base three was equal to one-half in base five. An excerpt of a student's 
protocol using this strategy follows: 

81: Isn't that funny? I 'm thinking of how this relates to base ten. So, 
how does 1/2 relate to base 10? Well, it's half of  a one, and my 
ones are still the same in base 3 or base 5, they are still in this 
same column. So, why wouldn't 1/2 of one be the same in both 
bases? So, I'll say they are the same. 

3. Qualitative Invariance Strategy. The Qualitative Invariance Strategy 
was the most frequent correct strategy used for Item 2. Students responded 
as such: "One-half in base three is equal to one-half in base five, because 
one-half is a half of  a whole regardless of the different bases used." Of 
the invariance of fraction strategies, this strategy was the most frequently 
used, however, it was used by only 25 pre-service teachers out of a total 
of 124. The reasoning involved in this strategy is qualitative, rather than 
algorithmic or computational. 

Examples of students' justifications are given below: 
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TABLE III 

Frequency distribution of incorrect arguments used by pre-service teachers 
on Item 2 

School n Non-invariance of fraction strategies Total 
level of Over- Base as Qualitative Analogical 
pre-service symboliza- unit-whole n o n -  arguments 
teacher tion invariance 

Elementary 100 17 13 39 5 74 
Secondary 24 15 2 - 3 20 

Total 124 32 15 39 8 94 

S 1" .... Y e s ,  one-half in base three and one-half in base five are equal; 
because you're just asking is one-half equal to one-half, and to 
me that's dealing with the concept of one-half of a whole, and 
not with the way you count it or write the number one-half. ..... 
I tried but I don't remember the way to write one-half in base 
three .... 

$2: ...... it seems to me they should be the same regardless of the 
base, because they are one-half of one whole unit. 

We observed that during the interviews, many of the pre-service ele- 
mentary school teachers who had initially attempted various numerical 
manipulations to conclude inequality, tended to change their decisions, 
when the interviewer probed their reasoning further, and tended to use 
qualitative arguments to justify the equality. Students seemed to change 
their non-invariance strategies to a qualitative invariance strategy after the 
interviewer had asked them to compare the number 'one in base three' to 
the number 'one in base five'. 

3.5. Non-invariance of Fraction Strategies 

The majority of students (76%) claimed that the numbers "one-half" in 
base three "one-half" in base five were not equal. Four different non- 
invariance of fraction strategies were identified. 

1. Overgeneralized Symbolization Strategy. The Overgeneralized Sym- 
bolization was an algorithmic strategy caused by representing the number 
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"one-half,' as the familiar decimal representation "0.5" regardless of the 
base, as follows: 

( o n e h a l f ) ~  = (0.5)three = 5 x 1/3 = 5/3, and 

(onehalf)fiv e = (0.5)fiw = 5 x 1/5 = 5/5 = 1, 

therefore (one-half)three > (onehalf)~v e. 

An excerpt of  a student's protocol is given: 

s: Oh boy!... So the question is: Is one-half in base three equal to 
one-half in base five? I changed one-half into a decimal. So, is 
.5 in base three equal to .5 in base five? I guess they're different. 

I: Why?... Please explain what you're doing. 

S: I wrote 5 times 1/3, for one-half in base three, but I don't really 
know what that means; and I did the same with 5 times 1/5, for 
one-half in base five. 

Seventeen elementary education majors (17%, n = 100), and 15 math- 
ematics education majors (63%, n = 24) used the above reasoning. This 
was the most frequent strategy used by the mathematics education majors. 

The fact that the digit-symbol 5 is not used neither in base five nor 
in base three was ignored. The fact that later on, when performing the 
computational conversions, the numerical value of the fraction "one-half,' 
appeared to be either one or greater than one, didn't seem to bother this 
group of pre-service teachers and didn't prevent them from completing 
the comparison. It seems that the link between the number "one-half,' 
and its representation as a decimal fraction (0.5) was reflexive. This link 
didn't include an understanding of the representation system, and created 
an assumption that the same symbols will represent one-half in other bases 
as well. An excerpt of a student's protocol explains this choice: 

I: Where did you get the .5 from? 

S: Well it's from a half. I changed a half into a decimal, so it's .5 
base 3. 

I: Why? 

S: Because it's on this side of the decimal. 

I: How did you know that .5 is one-half in base 3? 

S: Oh, I don't, but I don't. I guess, I 'm just uh, I don't. I made an 
assumption. 
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2. Base as the Unit Whole Strategy. Similarly to the "base as unit whole" 
reasoning used on Item 1, the value of the base was also considered as the 
unit whole by some students in responding to Item 2. This led to inter- 
preting "one half in base three" as "one half of three". Recording such an 
interpretation as 1/2 x 3, a student claimed that "because 5 is greater than 
3, then 5 halves is more than 3 halves". 

The Base as Unit Whole Strategy was also combined by some pre- 
service teachers with the Overgeneralized Symbolization. Such students 
first overgeneralized and symbolized "one-half" as "0.5" regardless of the 
base, and then they multiplied 0.5 by the value of the base, in the following 
way: 

(onehalf)thre e = (0.5)three = 0.5 of 3 = 0.5 X 3 = 1.5, and 

(onehalf)~v e = (0.5)nve = 0.5 of 5 = 0.5 x 5 = 2.5, 

therefore (one-half)three < (onehalf)nve. 

In the following excerpt a student explains this strategy: 

s: ..... [S restated the I's question as follows...] Is .5 in base three 
equal to .5 in base five? I 'm using .5 in base three to visualize 
what one-half in base three would look like. Just looking at them, 
this one-half in base three would be bigger than one-half in base 
five. 

I: What do you mean? 

S: Well, judging from... [figuring out] what we just looked at, it's 
not going to be the same, because when you think of 'one-half' 
you have to think of it as 'one-half of three' and that is, [S writes 
down] '.5 x 3'. Also 'one-half of five' is '.5 x 5', and 1.5 is less 
than 2.5 !... 

There are different possibilities to explain the misconception that leads 
students to consider the base as the unit whole which is being operated on 
by the fraction one-half. Students may be considering the fraction one-half 
as an operator, and as such it needs to operate on an operand quantity. Since 
the name of the base is expressed subsequent to the name of the fraction, as 
in 'one-half in base three', this may be leading students to assume that the 
fraction is operating on the value of  the base which in turn is considered 
as a unit whole. In any case, students seem to focus on the base of the 
numeration system as an operand quantity, and they seem to disregard the 
relation between the base of the numeration system and the assigned place 
values. 
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3. Qualitative Non-invariance Strategy. Students using the Qualitative 
Non-invariance Strategy claimed that the number one-half in base three 
had a different value than the number one-half in base five, and mostly they 
based their decision on the assumption that since the bases are different then 
the numbers should be different. This was the most frequent argument used 
by elementary education majors, however, this argument was not given by 
any of the mathematics education majors. 

In the following excerpt a student explains her reasoning: 

s: One-half in base three is less than one-half in base five, because 
the bases are different. Because in base three you have less 
numbers, so your one-half is going to be a different answer than 
in base five that has more numbers ..... ! 

I: Do you mean by 'answer' the quantity one-half, or the way you 
write it in base three? 

S: .... they're the same .... now, I 'm confused .... 

4. AnalogicalArguments. The analogical reasoning was applied in sever- 
al ways. Some students based their reasoning on the previous item of the 
assessment. Therefore, whatever they concluded on Item 1, they applied 
for Item 2, providing the explanation "same as above". Other students 
attempted to derive a general rule, such as "5 > 3, therefore X in base 
five is greater than X in base 3". Other students based their conclusions on 
drawing an incorrect analogy with self-generated examples, illustrating it 
in the following way: 

21three = 2 X 3 + 1 = 7; 21five = 2 X 5 + 1 = 11 

21three is smaller than 21ave, therefore one-half in base three 
should be smaller than one-half in base five. 

The use of analogical reasoning was identified by Piaget, Inhelder and 
Szeminska (1960) as one of the early phases of the conceptual development 
of fractions by children. It seems that when young adults are faced with a 
cognitive conflict they, at times, fall back into forming analogies as a mode 
of thought. But actually in the interview setting, the reasoning of forming 
analogies led some students to confident decisions. Jennifer, for example, 
had difficulty to compare "one-half in base 3" and "one-half in base 5" 
since she wanted to represent the number "one-half" in different bases. 
The interviewer then suggested to her to compare "one-half" in base 4 and 
"one-half in base 6". Following the conclusion of the numerical manipula- 
tions on bases 4 and 6, she was able to conclude about bases 3 and 5 as such: 



FRACTONS AND NON-STANDARD REPRESENTATIONS 203 

Jennifer: Okay, 1/2 in base 4 would be over 4, 1/2 in base 6 should 
be over 6, 2 over 4, they're; both halves [Here the student 
wrote 2/4 and 3/6]. But in base 10, um if a unit's a unit is a 
unit but 1/2 of base 3 and 1/2 of base 5 is 1/2 of a unit, it's 
got to be the same thing. Simple as that, it's the same. 

4. SUMMARY AND CONCLUSION 

The present study investigated pre-service school teachers' concepts of 
invariance of fractional number under different symbolic representations. 
The focus of the study was on identifying and describing the arguments 
students use and the reasoning they provide regarding the invariance of 
fractions under numeration systems in different bases. An unfamiliar math- 
ematical domain was chosen to avoid the possible direct application of any 
specific pre-existing algorithmic knowledge students may have. 

The surprising finding in this study was that while all the mathematics 
education majors performed correctly on the first item, their percentage of 
correct performance on the second item was low (see Table I), and even 
lower than the percentage of correct performance of the elementary educa- 
tion majors. It seems like a belief in an algorithmic approach of conversion 
and hurrying up with applying computational skills was dominant among 
the mathematics education majors. It is possible that this tendency among 
the pre-service secondary school mathematics teachers to deal with math- 
ematical issues and problems at an algorithmic level was strong enough to 
divert their attention from a detailed look on the nature of the questions 
asked and their respective responses. 

The analysis of the strategies indicates that pre-service teachers' knowl- 
edge of place value and rational numbers is more syntactical than concep- 
tual. Research studies reported about the possible effects of number size on 
the performance of students and their reasoning in multiplicative-structured 
situations (Bell et al., 1984; Noelting, 1980). However, the multiplicative 
relationships of twice as much, that is doubling, and of half as much, that 
is halving, are known to be easier concepts for most students to grasp than 
other multiplicative relationships of an integer other than two or a fraction 
other than 1/2 (Hart, 1981). The fact that the "simplest possible" fraction 
(one-half) was used in the present study emphasizes further the main find- 
ings which indicate that high percentages of pre-service school teachers 
have a disconnected knowledge of place value, decimals, and fractions, 
and that the majority of them use non-invariance ot  fraction strategies in 
unfamiliar problem-solving situations. 
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5. EPILOGUE 

Af t e r  c o m p l e t i o n  o f  the interview,  one  o f  the s tudents  a p p r o a c h e d  the 

i n t e r v i e w e r  and  asked:  "Now,  p lease  tell m e  the truth, do these  n u m b e r s  

w e  w e r e  ta lk ing  abou t  really exist?" 
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