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Abstract. The computing environment in most medium-sized and large enterprises involves old main-frame 
based (legacy) applications and systems as well as new workstation-based distributed computing systems. The 
objective of the METEOR project is to support multi-system workflow applications that automate enterprise 
operations. This paper deals with the modeling and specification of workflows in such applications. Tasks in 
our heterogeneous environment can be submitted through different types of interfaces on different processing 
entities. We first present a computational model for workflows that captures the behavior of both transactional 
and non-transactional tasks of different types. We then develop two languages for specifying a workflow 
at different levels of abstraction: the Workflow Specification Language (WFSL) is a declarative rule-based 
language used to express the application-level interactions between multiple tasks, while the Task Specification 
Language (TSL) focuses on the issues related to individual tasks. These languages are designed to address 
the important issues of inter-task dependencies, data formatting, data exchange, error handling, and recovery. 
The paper also presents an architecture for the workflow management system that supports the model and the 
languages. 
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1. Introduct ion 

The need to improve  productivi ty and cut costs has resulted in the need to signifi- 

cantly reengineer  and automate enterprise operations or activities. The object ive of  the 
M E T E O R  (Managing  End-To-End  OpeRations)  project 1 is to support  and enable  flexible 
automated solut ions for enterprise-wide operations (workflows). In  this paper, we present  

a model  and the languages for specifying mul t i -sys tem workflows in M E T E O R ,  as well  
as a discussion of  execution support. 

A workflow in an enterprise typically involves  performing multiple,  related tasks, which  

can be heterogeneous and performed on or by heterogeneous processing entities. The size 
and complexi ty  of  several existing processing entities and the fact that they main ta in  a 
real- t ime inventory  implies  that they cannot  be easily migrated over or modified to enable  

a more  manageab le  and homogeneous  envi ronment .  Thus, in METEOR,  our approach to 
automat ing workflows is necessari ly a bot tom-up one: we wish (and need) to support  the 
current  execut ion env i ronments  as well  as evolving ones, Other approaches in the litera- 
ture to workflow automat ion have taken one of distributed transaction processing,  office 
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(document or e-mail workflow) automation, or multidatabase transaction perspectives. 
We wish to support an amalgamation of all of these - both in modeling/specification and 
implementation. We also attempt to integrate and extend the results of several relevant 
research efforts in the literature (e.g., [19], [131, [10], [37], [8], [20]). 

A practical workflow management system that can enable multi-system applications 
must deal with the specification and execution support related to: 

different types of (preexisting and new) tasks, the processing entities that execute or 
perform the tasks, and the interfaces through which the tasks are submitted to the 
processing entities, 

the coordination requirements between tasks, that are dependent on the execution 
states of individual tasks and the workflow as a whole as well as the data manipulated 
by these tasks, 

• the data exchange between tasks, that might also involve dealing with different data 
formats for different tasks, and 

interfacing with existing software systems (e.g., script interpreter/processors, abstract 
data management and manipulation, data format translators, etc.) that add value to 
worldtow processing and the associated computation. 

METEOR deals with all of the above aspects and offers the following features: 

• a well-defined model and the languages for specifying the workflows and the tasks, 

a compiler/interpreter for the workflow language (ancillary support may include syn- 
tax directed editors and/or graphical user interfaces that support workflow spec- 
ification, and support for testing the correctness and executability of the defined 
workflows), and 

run-time components, such as a workflow controller that supervises the progress of 
the workflow, enforces intertask dependencies and interfaces with existing systems, 
and task managers that have the responsibility for individual tasks. 

We first discuss a workflow model and the languages that support it. The language 
design is consistent with the need to support appropriate levels of abstractions for different 
classes of persons who might specify a workflow. At Bellcore and other organizations, 
for example, one group of persons (systems engineers) focus on the enterprise-level 
(end-user and application-centric) requirements that the workflows should support, while 
another group of persons (developers) better understand the systems implementation 
aspects of the workflows. This dichotomy as well as considerations for modular design 
and implementation has led us to have two component languages: workflow specification 
language (WFSL) and task specification language (TSL). It is possible to have graphical 
languages and tools for more user friendly, customized, and "higher level" workflow 
specifications (such as those offered by several existing workflow software, see [21]) 
that can be translated into WFSL and TSL. Furthermore, specifications in WFSL and 
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TSL can be compiled and/or interpreted into lower level and system specific execution 
code. In this sense, these languages can be said to offer intermediate-level specification. 

The paper is organized as follows. Section 2 discusses in more detail the requirements 
for workflow support in METEOR based on our interactions with real multi-system 
applications (both their current implementations and their future planned versions). A 
high-level description of the operational environment is also discussed since it has influ- 
enced the model and the language. Section 3 deals with related work and contrasts the 
METEOR approach with that of others. In general, METEOR attempts to use several 
ideas. Section 4 discusses the approach and rationale in the language design. Section 5 
and Section 6 discuss many aspects of WFSL and TSL, respectively. Section 7 reviews 
the architecture of the system, and also briefly deals with the issue of correctness in 
workflows. Section 8 gives our conclusions. 

2. The Environment and Application Requirements 

A typical large business operation has several thousand applications. For instance in a 
telecommunications company, around two hundred of these are large application systems, 
called Operation Support Systems (OSSs), each with several hundreds of thousands of 
lines of code and a very large database (e.g., see [1], [26], [27], [21] for representative 
applications and further discussion about this environment). Historically, end users per- 
formed operations on these OSSs using screens. To provide easier access, application 
programs and scripts have been written to perform operations using terminal emulation or 
through "contracts" that provide well-defined logical interfaces. Many new applications 
also access DBMSs directly for the purpose of auxiliary inventory management, monitor- 
ing of workflow or task status, statistics maintenance, or error processing. Applications 
could also involve humans processing some tasks (currently this is often needed for error 
resolution when OSSs issue Requests for Manual Assists- RMAs). To adequately model 
such real-world environments, we classify the relevant components of our applications 
into tasks, processing entities and their physical interfaces, and then discuss how they 
can be tied together into a workflow. 

2.1. Tasks, Interfaces, and Processing Entities 

Tasks are operations or a sequence of operations that are submitted for execution at the 
processing entities using their interfaces. The types of tasks that we currently consider 
include user tasks that involve humans in processing the tasks, and other application tasks 
such as scripts or application programs that may involve terminal emulations to remote 
systems, client programs or servers invoking application servers, database transactions, 
and contracts. For this paper, contract tasks can be viewed as predefined sets of operations 
at the OSSs that behave as stored procedures from the invoker's perspective. 

The processing entities for the application tasks include application systems (OSSs, 
legacy and modern application systems), servers supported by client-server and/or trans- 
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action processing systems (e.g., atop DCE and EncinaTM), DBMSs (for processing trans- 
actions), and script interpreters and compilers (for processing scripts and application 
programs). Furthermore, with user tasks, humans are the processing entities, who in 
turn may use other software (office automation software such as spread sheets and doc- 
ument/image processing systems). 

The physical interfaces include remote procedure call mechanisms such as DCE RPC 
to directly make calls to application servers, transactional RPCs to application servers 
under the control of a transaction monitor (such transaction monitors include ACMS TM, 
Tuxedo TM, and Encina), queue managers that deliver requests to application servers 
(proprietary or vendor product supported, e.g., Tuxedo/Q, Encina's RQS or DEC's Mes- 
sageQ), workstation-to-mainframe interfaces to allow a workstation-based client program 
to access a mainframe-based OSS, and interfaces that support user tasks and provide 
access to graphical user interfaces (such as those associated with document/image pro- 
cessing systems). 

2.2. Requirements for Workflow Management 

We now discuss some of the key requirements of workflow management in our environ- 
ment that influence the language design and the system architecture. 

. Inter-task dependencies specify how the execution of a task is related to that of others 
(based on the state of execution of other tasks and their data outputs) and external 
variables (e.g., time of day). The workflow management system shoUld be able to 
evaluate and manage several kinds of dependencies between tasks efficiently. 

. Data management in multi-system workftow applications can be very demanding. 
This involves support for different data formats, transport and storage of this data 
and complex manipulation of this data by auxiliary systems. Auxiliary systems are 
existing application programs (including applications that can invoke sub-workflows) 
or scripts, that can parse and manipulate complex data. 

. Typically, in Bellcore and many large companies, one set of people define the work- 
flows at the conceptual level, describing the functionality of tasks, inputs and outputs 
and dependencies. The exact details of tasks, interfaces and processing entities is 
the concern of another set of people who write the code for the tasks. This modu- 
lar approach to system engineering and design is very important, since it separates 
several details of an implementation (that might change depending on the imple- 
mentation environment) from the system specification. The workflow management 
system should enable this separation and also permit code-reuse. 

4. Business processes are rapidly changing. For instance, in the telecommunications 
world, new telecommunications services are offered very frequently. In general, 

Encina is a trademark of Transarc Corp. 
ACMS is a trademark of Digital Equipment Corp. 
Tuxedo is a trademark of Novell Inc. 
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as newer systems get incorporated into the business process, there is a need to 
flexibly and easily modify the workflows. Given that each new workflow most likely 
incorporates pre-existing tasks, only the conceptual workflow specification has to be 
written anew. This is yet another reason to separate the workflow specification from 
the details of the individual tasks. 

The workflow management system should be able to recognize and handle errors. 
Errors can be logical errors and system errors. Logical errors arise at the applica- 
tion level, e.g., if a particular item required from inventory is not in stock, a task 
attempting to procure this item can complete but with a logical failure. However, if 
the database is down, there is a system failure since the task cannot execute. The 
demarcation between logical and system errors is important for modularity. The task 
programmer and/or the workflow infrastructure handle system errors first, e.g., by 
retrying the same task (see Section 6). A workflow specification deals only with 
logical errors, but system errors could be elevated to the workflow level as logical 
errors, e.g., when a task fails repeatedly due to system errors. 

Workflows can be dynamic, i.e., the entire workflow cannot be determined before- 
hand. For instance, suppose a customer requires a digital telecommunications link 
between three of his locations. A special routing task will have to determine possible 
trunk routes between these locations, and this may in turn result in new tasks that as- 
sign appropriate inventory. It is generally not known beforehand how many of these 
new tasks will be generated, nor what additional control or data flow dependencies 
they can cause. The workflow management system should allow such incremental 
changes in the workflow specification at run-time. 

We assume that a workflow controller (centralized or distributed) co-ordinates tasks 
according to the intertask dependencies and other constraints, and maintains the state 
of the workflow at all times. Suppose the controller fails. It is desirable that forward 
recovery takes place, i.e., when the controller recovers, it resumes the workflow 
from where it left off. Some incomplete tasks may have to be restarted, but not the 
entire workflow. This requirement implies that the state of the workflow be stored 
persistently. 

3. Current Approaches 

In [14], the authors have described features that a workflow (called operation flow in [14]) 
model and specification language should support. The METEOR system closely follows 
this view and supports (with the terms used by [14] in parentheses) features such as: the 
definition of individual tasks (basic operation definition), a variety of tasks including user 
tasks (transactions and nonelectronic operations), state-based and value-based intertask 
dependencies and data management (control and data flow definition), and failure and 
exception handling (same terms). Currently, no separate or direct support for business 
rules and constraints, and security and role resolution identified in [14] is provided in 
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METEOR. These can partly or indirectly be supported by intertask dependencies and by 
individual interfaces (e.g., security features of DCE). 

Approaches in the literature dealing with workflows/activities [15] can be described 
as those based on multidatabase and relaxed/extended transactions ([19], [1], [37], [18]), 
active database and rule-based approaches ([12], [13]), combinations of the above two 
[20], and office and process-automation ([24], [30], [31]). The ACTA model [10] and 
the DOM model [20] provide frameworks for system specification that capture several of 
the above approaches. For instance, these models support the specification of complex 
intra- and inter-transaction state dependencies, and correctness dependencies such as se- 
rialization, visibility, co-operation and temporal dependencies. Such models can be used 
to not only specify workflows but also to check specification correctness. In METEOR, 
we adopt a subset of this specification framework, partly for simplicity and partly for 
the reason that the workflows we have studied (primarily in telecommunications) are 
characterized more by their dynamic nature and need for complex data manipulation, 
rather than intricate control flow specification based on serializability requirements. 

In [19], a language is proposed for describing (possibly nested) multi-transaction ac- 
tivities, and for spec!fying the flow of data between different modules. However, the 
specification of intertask control dependencies is limited, and it is assumed that all the 
leaf-level tasks are transactional. The ATM approach ([12], [13]) includes an extended 
nested transaction model and language for describing long running activities. Such a de- 
scription includes a procedural static specification of the high-level workflow, and rules 
(triggers) for the "dynamic" evolution of the workflow. However, the kind of dynamic 
workflows that we wish to support, where new tasks/inter-task dependencies can be added 
dynamically, is not discussed. In the ATM model, this would have to be supported by 
permitting the addition and deletion of rules at run-time. The ATM model also assumes 
leaf-level transactions, and organizes the workflow activity as an extended nested trans- 
action with deferred and decoupled nested transaction/activities. Furthermore, an activity 
can be queried as to its status (whether active, committed, aborted or compensated) or 
that of its subactivities/transactions. The ATM model does support a range of heteroge- 
neous tasks with differing execution state diagrams, however, does not specify how new 
tasks with new execution structures can be included in the model. 

In the ConTract model[37], a long running activity is modeled as a combination of 
scripts and steps, where scripts deal with the conceptual workflow and steps deal with 
individual tasks. The ConTracts model is comprehensive in its treatment of consistency 
of data, recovery, synchronization and co-operation. Data is passed between steps through 
contexts, and forward recovery can be handled through making the inputs and outputs of 
steps persistent. APRICOTS is a prototype implementation of the ConTract model [34] 
(some of our prototype implementation ideas have been borrowed from APRICOTS). 
The ConTract model, however, does not allow for dynamic workflows where all possible 
paths of the workflow do not have to be specified beforehand. Furthermore, there is 
no support in the ConTract model for the flexible integration of heterogeneous task 
structures. We believe that the distinction between interface versus processing entity is 
important in using heterogeneous task structures also (as discussed in the next section). 
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Another of the early transaction models, the Flex model [18], relaxes the atomicity and 
isolation properties of transactions. A variety of dependencies are possible between sub- 
transactions including partial orders on execution precedence (internal dependencies) and 
temporal predicates (external dependencies). Furthermore, a Flex transaction can com- 
plete successfully even if some subtransactions fail (defined as acceptable final states). 
The InterBase project at Purdue ([7]) is based on the Flex model and facilitates the 
execution of distributed programs with Flex transaction semantics on heterogeneous sys- 
tems. The InterBase Parallel Language (IPL) ([8]) shares some of our objectives and 
can deal with different data types, preference descriptions and data dependencies. It 
also allows the limited dynamic execution of workflows through conditional dependen- 
cies. The Transaction Management and Specification Environment(TSME) of the DOM 
project [20] uses an ACTA-like specification language for users to express properties 
of extended transactions. The TSME allows the specification of several transactional 
properties such as serializability, visibility and delegation, but there is no indication of 
high-level language support for nesting of tasks and the dynamic evolution of workflows. 
The ASSET system[4] is an interesting tool-kit approach to the management of extended 
transactions based on the ACTA framework. Language primitives are provided for initi- 
ating and committing or aborting transactions, and also for extended functionality such 
as delegation of resources and formation of dependencies between transactions. ASSET 
concentrates only on tasks that have behavior corresponding to a transaction or an ex- 
tended transaction. Additional primitives will have to be added to permit different kinds 
of task structures, or user-defined nesting of tasks. 

The METEOR approach is one of integrating the various techniques above. Our work- 
flow model is unique in that it allows the execution structure of heterogeneous tasks to be 
specified (as in [2], [35], [33]) and incorporated flexibly into the workflow. Thus several 
types of interfaces and tasks can be supported easily. By using rules similar to ECA 
rules [13] and the notion of user-definable compound tasks that are composed of simpler 
tasks or other compound tasks, we allow workflows to be nested. We also provide a 
flexible explicit data transfer specification using ideas from [19]. The notion of storing 
inputs and outputs persistently for the purpose of forward recovery is adapted from Con- 
Tracts. A unique feature of METEOR is the support for dynamic workflows, where at 
run-time several tasks and dependencies can be created anew. The combination of the 
above features provides for a powerful workflow management system. Note however 
that METEOR in its current form does have some limitations. We restrict ourselves to 
simple control dependencies unlike more complex ones ([101, [28], [2], [23], [20]), but 
allow a more comprehensive set of data dependencies. We do not associate the notions 
of deferred and decoupled transactions with rules as in the ECA approach; we provide 
such functionality by using explicit rules. Furthermore, the ConTract model provides 
synchronization invariants for concurrency control. METEOR does not yet provide this 
flexibility (see Section 7 for concurrency control issues). 

There are many proposals for multi-level and nested transaction models (e.g., [38]) that 
are relevant to workflow specification to various degrees. A perspective on combining 
workflow and transaction management was given in [6]. [5] addresses high-level lan- 
guage specification for a restricted class of compensatable transactions. Unlike many of 
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Figure 1. Schemat ic  of  a workf low 

these models, we do not view the entire application or the activities in only transactional 
terms, since several tasks can be non-transactional. Other specification and language 
efforts are the script-based workflow specification in Carnot [36], and the extensions to 
MSQL to support some features of workflows [33], and the STDL language [3]. The 
ideas behind TSL have been borrowed from several predecessors with which it shares 
its objectives and functionality. These include, among others, DOL [32], and the inter- 
faces that support executions of heterogeneous tasks against different processing entities 
(e.g., LAM in Narada [25], RSI in Interbase [17], and ESS in Carnot [36]). There have 
also been other approaches for multimedia document flow management [24] that are 
non-transactional in nature. 

4. METEOR's Integrated Approach 

In this section, we discuss the model, and the basic design decisions behind two lan- 
guages for specifying multi-system workflow applications. Tasks in a workflow can 
have different functionality, and can further be differentiated on the basis of the interface 
and/or the processing entity they are executed on. The METEOR workflow model in 
Section 4.1 provides the basis for separating the conceptual workflow specification from 
the details of individual tasks and is an adaptation of the model outlined in [35] and 
[33]. WFSL is based on the features of the workflow model. TSL supports the detailed 
specification of each task and its interaction with the interfaces/processing entities in a 
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Figure 2. Some Task Structures 

distributed environment (see Figure 1). At an architectural level, the WFSL specification 
would be executed by a workflow controller, whereas each task specification would be 
executed by a task manager (see Section 7). 

4.1. The Workflow Model 

A workflow comprises multiple tasks. The workflow specification might not be concerned 
with the details of the tasks, however, it would have to at least deal with the (externally 
visible) starting and completion events of tasks, the inputs and outputs of tasks and how 
they relate to other tasks. In general, we represent the execution behavior of each task 
using task structures. Three frequently occurring task structures in our environment are 
shown in Figure 2. Each task structure has an initial state, and on the start transition 
moves into the execut ing state. There could be one or more transitions after this, and 
in the three structures, the task eventually enters a terminating state (such as done, 
fa i l ed ,  committed, aborted). We distinguish between controllable transitions that can 
be enabled by the workflow controller, and non-controllable transitions that are enabled 
by the processing entity (this aspect of specification is especially important for scheduling, 
see [2] for more details). For instance, the done transition from the execut ing state to 
the done state is enabled only by the processing entity, whereas the s t a r t  transition is 
enabled by the workflow controller. All the transitions that are controllable in these tasks 
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Figure 3. Task Structures for Special Non-transactional Tasks 

are underlined. Task structures also indicate which states can possibly have data inputs 
or data outputs or both. In Figure 2, the initial state can receive data inputs, and outputs 
can be produced in the done, fa i led ,  committed or aborted states. 

In our environment, a user ~task or script is characterized by the non-transactional 
task structure shown in Figure 2. The task structure of a contract (stored procedure) is 
typically a transactional task (with ACID properties), which has an aborted or committed 
final state. The third type of task structure shown is that of a transaction supported by 
DBMSs that provide an open two-phase commit (2PC) feature [9]. Notice the transitions 
from prepared to aborted or from prepared to committed are controllable. Furthermore, 
there are two kinds of abort transitions from the executing state: one that is controllable 
(used when the workflow controller decides to abort the transaction), and another that is 
not controllable and initiated by the processing entity. 

There could be other task structures that model non-transactional computation. For 
instance, consider two tasks, one (a producer task) that produces a stream of output 
and the other (a consumer task) reads and processes that stream of output and produces 
another output stream (the output of one task is "pipe"d to the other). The execution 
structures for these tasks is shown in Figure 3. Note that inputs and outputs are not 
necessarily associated only with the start and termination of tasks: the consumer task 
can read input in the waiting state and produce output in the output_ready state, while 
the producer task produces its output in the output_ready state. 

The generic task structures in Figure 2 account only for possible interface or processing 
entity system errors elevated to logical errors as transitions to the fa i l ed  or aborted 
states. A task in the done or committed state reflects normal execution of a task from 
the system (as opposed to the application) perspective. The task can be further deemed 
successful or unsuccessful, based on application-specific criteria which can be included in 
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the workflow specification. Another error that is possible from the view of the workflow 
controller is as follows. The workflow controller might enable a controllable transition, 
but the transition fails due to some internal error, e.g., a task is unable to start due to 
a lack of enough swap space. It is assumed that for every such failure of an enabled 
controllable transition, the task makes a transition to a corresponding _err state, e.g. 
start_err. (Since handling the errors of each transition might make the specification 
very tedious, another approach that has been explored in a Bellcore prototype [ 11] is to 
specify a default state such as f a i l e d  or aborted that is reached when such an error 
happens.) 

Observe that a task structure does not determine the means of execution nor the func- 
tionality of the task, but only a high-level description of the (visible)state transitions. 
Two tasks might have the same structure, but have different functionality or can be ex- 
ecuted atop different interfaces and/or processing entities. Usually, the task structure is 
determined by the states that are observable while the task executes at the processing en- 
tity. Sometimes it is possible that the interface does not support the same view: suppose 
a database transaction is submitted through a persistent queue. The queue might only 
offer a non-transactional view of the task, i.e., the task has been submitted, and the task 
has either failed or has been done (and not that the task committed or aborted). This 
issue is discussed further in Section 6. 

The tasks described thus far are simple tasks in our model, i.e., a simple task is a 
physical unit of work that executes at a processing entity. Our model also includes 
compound tasks, which can be composed of simple tasks and other compound tasks. 
Compound tasks are logical units of work that are not executed against processing entities, 
but meant to specify co-ordination and data flow requirements between sub-tasks (see 
Section 5.4 for examples). All transitions of a compound task are controllable since the 
workflow specification of the task determines all the transitions. For example, consider 
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a non-transactional compound task, comprising several tasks, that is compensatable. The 
task structure for the compound task corresponds to Figure 4. The s t a r t  and compensate 
transitions are initiated by the workflow controller due to external events, whereas the 
f a i l ,  done and compensated transitions would be initiated by the controller due to 
appropriate states reached by the sub-tasks. A workflow can itself be specified as a 
compound task in our model, thus allowing a seamless integration of different workflows 
by nesting them within a super-workflow. Such flexible specification of compound tasks 
are a unique feature of the METEOR model. 

Tasks are not the only executable entities in a workflow. Often the data transferred 
between tasks has to be formatted appropriately using filters. Filters are repeatable (and 
side effect free) functions that need not be recoverable and need not be characterized by 
a task structure. Such functions can either be executed locally as part of the worldtow 
management system or remotely from shared libraries on auxiliary systems. 

Thus a workflow specification primarily contains: (a) simple tasks, filters, and com- 
pound tasks, (b) the task structure of each task in the worldtow, (c) the typed inputs and 
outputs of each task/filter types, and how they are related to the outputs and inputs of 
other task types, and (d) the preconditions for each controllable transition in each task. 

4.2. The METEOR Language Design and Rationale 

We briefly review the design of the METEOR languages and the functionality that they 
support. WFSL, which is used to describe the conceptual workflow specification, has 
been designed based on the METEOR worldtow model. WFSL is a declarative rule-based 
language that can define compound tasks. Note however that WFSL need not serve as 
the language used by the workflow designer to program in. A graphical interface could 
alternatively be used to generate a WFSL specification automatically. 

In WFSL, the workflow designer can declare a set of task types, based on their structure 
and then define classes of tasks with differing structures. Each task class has a task 
structure type and a set of typed inputs and outputs. Inputs and outputs can be scalar or 
array datatypes, and can also be streams. 

After defining instances of each class, the workflow designer can link up the task 
instances using rules. Each WFSL rule has two components: a control part and an 
optional data transfer part. The control part denotes the preconditions for a single 
controllable task transition. Whenever a task makes a state transition, we say that an 
event occurs. The preconditions can include references to events and/or data outputs of 
other tasks, as well as program variables. The data transfer part indicates which outputs 
of other tasks or variables (possibly passing through filters) are input to that task, i.e., for 
instance, the output ol of task T1 is fed through a filter f for reformatting and then fed 
into the input/1 of task T2. The data transfer specification in WFSL is very flexible. For 
instance, the data outputs of several tasks that become available at different times can be 
fed into one task. We can also specify alternative inputs to tasks, i.e., it is possible that 
under one circumstance, the output of task T1 feeds into the input of a second task T2, 
but under some other circumstance, the output of a third task T3 feeds into the input of 
T2. 
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We follow the ConTracts model in the requirement of forward recovery, and the rule- 
based nature of WFSL is consistent with this requirement. Every next step of the work- 
flow is determined by an evaluation of relevant rules when an event occurs, and a rule 
which has all its preconditions satisfied fires. Note that by this declarative approach, 
we have removed the need for a program counter. If all inputs, outputs and task states 
were made persistent, then during recovery, the workflow controller can start up with 
its state intact and resume evaluating rules. (In an imperative program implementing 
the workflow, the memory image of the program will have to be checkpointed instead. 
The logical checkpointing in the declarative approach is usually more efficient than the 
memory image checkpointing.) Furthermore, if the workflow is dynamic, the declarative 
nature of WFSL allows it to be incrementally interpreted during run-time. 

We now give a high-level description of TSL which is used to specify simple tasks. 
One of the key objectives of TSL is the minimal rewriting of existing tasks. TSL provides 
a wrapper for code describing interaction with an interface to a processing entity and 
essentially comprises a set of macros that can be embedded in a host language like C or 
C++. The main functionality of the TSL macros is to indicate points in the task execution 
at which the workflow controller can be informed about the current logical state of the task 
(and thereby points where the state of the task can be made persistent). This functionality 
also allows the workflow to deal with legacy applications without changing their code. If 
the legacy application is batched, then the TSL program consists of (a) a call to a macro 
indicating that the application is about to execute, (b) a call to an interface that submits 
or calls the legacy application,' and (c) a call to a macro when theapplication completes 
execution (see Section 6). If  instead the legacy application is interactive, then the TSL 
code will have to include functionality to interpret the intermediate results, provide input 
and also convey the state to the workflow controller. The task is essentially written in 
the host language, embedded sub-languages supported by the processing entity, and TSL 
macros. 

As part of TSL, we also prescribe how new task programs should be written. The 
interface is made explicit in the task specification, and this allows the task programmer 
to specify error handling for interface or processing entity (system) errors. For instance, 
the task submission to the interface might time out, or might need to be re-submitted 
for up to r~ retries, or a different interface might be chosen, and so on. (Note that a 
system error can eventually develop into a logical error seen at the workflow level. For 
instance, a task program can try to re-submit a task several times with repeated system 
errors before it gives up. The workflow specification in WFSL would then have to handle 
the error by possibly submitting an alternative task.) 

In summary, WFSL deals with the enterprise or application issues. It is used to specify 
the workflows, including all task types and classes in a worldtow, all intertask dependen- 
cies, filter calls, and application level failure recovery and error handling issues (including 
possible application specific compensation using alternate tasks). TSL provides a homo- 
geneous view of simple tasks to the workflow controller, and deals with interface-specific 
details. TSL thereby also deals with task level failure recovery and error handling that 
are interface and/or processing entity specific. 
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5. WFSL 

We describe this language by using some representative examples. We focus on how the 
tasks can be placed together in a workflow. For brevity, details of the languages are not 
discussed, but can be found in [29]. 

5.1. Task type and instance declarations 

The following example declares a simple task type that has the structure of a transac- 
tion. (We will use the names SIMPLE_NON_TRANSACTIONAL, SIMPLE_TRANSACTIONAL and 
TRANSACTIONAL_OPEN2PC to refer to the task structures in Figure 2.) This task has one 
controllable transition from i n i t i a l  to executing, and before the transition occurs, in- 
put(s) can be received in the i n i t i a l  state. The two non-controllable transitions can 
produce output in the state at the end of the transition. Furthermore, recall that an ad- 
ditional s t a r t _ e r r  state is defined implicitly to account for the (possible) failure of the 
controllable start transition. 

simpleTaskType SIMPLE_TRANSACTIONAL 

{ 

CONTROLLABLE start (initial, executing) input ; 

NOT_CONTROLLABLE abort (executing, aborted) output ; 

NOT_CONTROLLABLE commit (executing, committed) output ; 

} 

The following statement defines task classes called Loop_Assignment and circuit 

_Facility_Check that are SIMPLE_TRANSACTIONAL tasks and which have input and outputs 

of type FCIF. (FCIF (Flexible Computer Interface Format) is a de facto standard for data 
transfer between OSSs in several telecommunications environments. Messages in the 
FCIF format have a tree structure, where the non-leaf nodes have tags and the leaf nodes 
hold the data, which is assumed to be defined as in C or C++.) Furthermore, the input 
is received in the initial state and the output is externalized in only the committed state. 

simpleTaskClass LoopAssignment, Circuit_Facility_Check SIMPLE_TRANSACTIONAL 

(input@{initial} FCIF inputl , output@{committed} FCIF outputl) ; 

Several instances of the same task class can be used within a workflow, as follows, 
where T.1 and L2 are two instances of Loop--Assignment: 

Loop_Assignment LI, L2 ; 

The definition of a compound task is given entirely within WFSL (unlike a simple 
task, whose code is written in another language and compiled/interpreted independently). 
An entire workflow can be represented as a compound task. In our environment, the 
compound task usually associated with a workflow has a non-transactional task structure. 
We refer to this task structure by COMPOUND_NON_TRANSACTIONAL (Figure 5). Compound 
task types and classes are specified like simple task types and classes. Compound tasks 
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%f %f' 

Failed Done Aborted Committed 

COMPOUND NON TRANSACTIONAL COMPOUNDTRANSACTIONAL 

Figure 5. Some Compound Task Structures 

can also have a transactional task structure provided all tasks within them are transactional 
with open two-phase commit. For instance, within a large workflow, there might be 
two simple tasks to be executed as a transactional unit. Then the two can be grouped 
together into a transactional compound task type COMPOUNI~_TRaNSAeTZONAL (Figure 5). 
We discuss such an example in Section 5.4. Specification of transactional tasks and 
transactional compound tasks can support the development of transactional workflows 
([351, [33], [21]). 

5.2. Intertask Dependencies 

Intertask dependencies determine how the tasks (instances of task classes) in the workflow 
are coordinated for execution. Other coordination aspects, such as concurrency control 
among concurrent workflows, will be ignored for now and briefly discussed in Section 
7. Two general types of dependencies are of interest: state dependencies and value 
dependencies. 

A state dependency specifies how a controllable transition of a task depends on the 
current observable states of other tasks. A state dependency is specified as a rule con- 
sisting of < left hand side > evaluator < right hand side >. Several complex 
dependencies have been defined in the literature ([28], [10], [2], [20]). However, in the 
environments in which related tasks in a workflow execute on autonomously developed 
and often "closed" systems, we find that the BEGin-dependency, sEazam-dependency, 
BEGIN-ON-COMMIT-dependency and BEGIN-ON-aBORT dependency of [10] are the most 
relevant. 

We express the dependencies such as those mentioned above using the evaluator EN- 
ABT.~S, such that the left hand side includes a predicate over task states and the right 
hand side refers to a controllable transition. For instance, the following state dependency 
specifies that the s t a r t  transition of r.2 can be enabled only after L1 has entered the d o n e  

state. 

[Ll,done] ENABLES [L2, start] 
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ENABLES 2 is defined as follows : the event(s) corresponding to the (controllable) 
transition(s) identified on the right hand side is enabled if and only if the event(s) leading 
to the state(s) identified by the left hand side have occurred. Other evaluators can be 
incorporated into WFSL as the need arises (the main impact would be on the scheduling 
algorithms within the workflow controller: see Section 7). 

The approach taken above is similar to E-C-A rules [12], where the occurrence of an 
event (transition) and the Satisfaction of a condition leads to an action being triggered. 
However, ECA rules use events on the left hand side, in contrast to states as in our case. 
There are two small differences between the two approaches. First, the semantics of 
having reached a state implies additional actions of having produced the output objects 
(if appropriate) and logged them; approaches using transitions between the states on the 
left hand side may or may not imply such actions. Second, since several events could 
lead to the same state, one can minimize the number of rules by using the state instead 
of naming each event. 

A value dependency may optionally be associated with a state dependency to further 
constrain the latter. The data that are referred to in the value dependency can be data 
items that are the output of some task, program variables that keep track of some data 
items in the workflow, constants, or the results of filter evaluations. When used in a 
value dependency, a filter can also be used to determine the logical success or failure 
of a previously terminated task (typically a done nontransactional task or a committed 
transactional task). For example, the above state dependency can be further constrained 
using a program variable outvaln4 and by using a filter function called "success" which 
determines whether L1 has logically (i.e., at the application level) completed successfully: 

[Ll,done] & (success(Ll.outputl) = TRUE) & (outvalL4 > 5) 

ENABLES [L2, start] 

The usual boolean and arithmetic operators can be used in value dependencies. 

5.3. Input and Output Assignments 

In a workflow, each task has to get data input(s) from either the output of some other 
task, constants, program variables or the input to the entire workflow (compound task). 
Thus, the workflow specification includes the association of inputs and outputs of each 
task to those of some other tasks. As an example, output l  of task T.1 fed to ±nputl of 
task 52 is specified as: 

Ll.outputl -> L2.inputl; 

A program variable can be assigned to in a similar fashion. Program variables in a 
WFSL program can be global or local to a compound task. For the purpose of simplicity 
and to avoid problems of parallel assignment due to concurrent tasks, we assume that 
each program variable can be assigned to at most once during run-time and that the 
value of a program variable is undefined before it is assigned to. Program variables are 
different from the input and output variables of tasks, since input and output variables 
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of tasks can be assigned to several times, as in the case when a task is restarted at the 
workflow level (see Section 5.4 for an example). We do not yet support the capability 
to address different versions. Hence the WFSL program allows at most one version of  a 
particular task instance to be executing at any time, and any reference to a input/output 
variable of  a task indicates that of  the latest version. A local program variable or an 
instance of a task class defined within a compound task can be referred to only within 
that compound task. 3 

The input and output assignments of a task are given in conjunction with the intertask 
dependencies, since it is crucial to determine when the outputs referred to in these as- 
signments are made available. We assume that only the parts of control dependencies 
that refer to the states of  tasks are evaluated before the (optional) data part of  the depen- 
dency corresponding to the output of  the state can be evaluated. Furthermore, the data 
dependency is enabled only when the control dependency evaluates to true. 

The following rule indicates that 52 starts when 51 completes successfully and the value 
of  o u t v a l L 4  is more than 5, and that the input for L2 is available when L1 transitions to 
done .  

[Ll,done] & (success(Ll. outputl) : TRUE) & (outvalL4 > 5) 

ENABLES [L2, start] % Ll.outputl -> L2.inputl ; 

5.4. Examples 

We discuss two examples to demonstrate some of the workfloW specification features. 
The emPhasis in this section is not on the language but how the METEOR model flexibly 
allows the integration of transactional and non-transactional simple and compound tasks. 
The first example shows how the repeated occurrence of  an error can be handled. :The 
second example shows how a transactional compound task can be constructed and placed 
within another compound task. 

The first example has three non-transactional tasks, a, E, and c (Figure 6). When a is 
done, c is started. If  a encounters a system error, then B is started. When B is done, 
then i is started up again. Notice that the relationship between a and B is similar to 
that between a task and the corresponding failure handling task - when the task fails, the 
failure handling task takes over, and once the latter completes, the original task takes 
over. The workflow fails if c fails or B fails. 

The workflow specification in Figure 7 defines the control and data flow between tasks 
A, B and e (the line numbers axe just for reference and are not part of  the syntax). Notice 
the use of  a filter to massage the input to the workflow. Line 5 indicates that the workflow 
can make a transition to the done state when c reaches the done state. The workflow 
enters the failed state if c has failed or if B has failed (line 6), or if there was some 
problem during the initiation of  the tasks (line 7). Notice that the following scenario can 
occur : A moves to failed, B is started and then completes, then A is started, and so o n  
(the assumption is that this terminates). When we refer to a state of  A on the left hand 
side of  any of  the rules (e.g., in line 4), the reference is to the currently "active" instance 
when the rule is evaluated. 
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Figure 6. Workflow Example 1: Control F l o w  

We now review the second example (Figure 8). The workttow is indicated in lines 10 
to 14.  WORKFLOWl contains a simple non-transactional task a and a compound transaction 
Bc (described in lines 1-9). BC is composed of two simple open-2pc transactions B and c 
that are done as a transactional unit. If either a fails or the transactional unit aborts, then 
the workflow is said to have failed. The compound task BC has rules for a (non-standard) 
two-phase commit between B and e. Rule 1 generates a global transaction id, that is 
assumed to be propagated to the resource managers through the B and c. After B and c 
have reached the done state, the workflow designer wishes to verify some data conditions 
before deciding to commit the transaction (rules 4 and 5). This shows the flexibility of  
WFSL. However, if all the workflow designer wants is a standard two-phase commit 
between B and C, we can provide syntactic sugar to let the designer specify this without 
using the rules. Rules 13 and 14 influence the fail transition of WOR~FLOW1. 

We have thereby illustrated in this section how WFSL can be used to specify workflows 
that contain both transactional and non-transactional units. 

5.5. Advanced Features: Dynamic aspects of workflows 

Suppose a specification of a workflow includes a set of tasks and their associated depen- 
dencies. It is possible that based on some predicates which may include states or outputs 
of tasks or external variables, some of those tasks are executed and some others are not. 
We do not consider this scenario a dynamic workflow since the specification is static 
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typedef ... FCIF ; 

typedef struct 

{ 

int field_one ; 

char field_two; 

} * SPECIAL_REC ; 

const NULL = 0 ; 

simpleTaskType SIMPLE_NON_TRANSACTIONAL{ ... } ; 

compoundTaskType COMPOUND_NON TRANSACTIONAL{ ... } ; 

simpleTaskClass A_class SIMPLE NON TRANSACTIONAL 

(input@{initial} FCIF inputl , output@{done} SPECIAL_REC outputl); 

simpleTaskClass B_class SIMPLE NON TRANSACTIONAL 

(input@{initial} SPECIAL_REC inputl , output@{done} FCIF outputl); 

simpleTaskClass C_class SIMPLE NON TRANSACTIONAL 

(input@{initial} SPECIAL_REC inputl , output@{done} SPE- 

CIAL_REC outputl); 

Filter FCIF fI(FCIF) ; 

compoundTaskClass WORKFLOWI COMPOUND_NON_TRANSACTIONAL 

(input@{initial} FCIF inputl , output{done, failed} SPECIAL_REC out- 

putl ); 

{ 

A_class A ; B_class B ; C_class C ; 

SPECIAL_REC varl ; 

1 [WORKFLOWl,executing] ENABLES [A, start] % 

fl(WORKFLOWl.inputl) -> A.inputl ; 

2 [A, failed] ENABLES [B,start] % 

A.outputl -> B.inputl ; 

3 [B,done] ENABLES [A, start] % 

B.outputl -> A.inputl ; 

4 [A,done] ENABLES [C,start] % 

A.outputl -> C.inputl ; 

5 [C,done] ENABLES [WORKFLOWI,done] % 

C.outputl -> WORKFLOWl.outputl ; 

6 [C,failed]) I [B, failed] ENABLES [WORKFLOWI,fail] % 

A.outputl -> WORKFLOWl.outputl ; 

7 [A, start_err] I [B,start_err] I [C,start_err] 

ENABLES [WORKFLOWI,fail] % 

NULL -> WORKFLOWl.outputl ; 

} 

WORKFLOWI WFI ; 

Figure 7. Workflow Specification Example 1 



typedef char[2000] str ; 

constant int ERROR = 0; constant int PARTIAL_SUCCESS = 1 ; 

simpleTaskClass A_class SIMPLE NON TRANSACTIONAL 

(input@{initial} str inputl , output@{done) str outputl) ; 

simpleTaskClass TID_class SIMPLENON_TRANSACTIONAL 

(output@{done) int outputl) ; 

simpleTaskClass B_class TRANSACTIONAL_OPEN2PC 

(in- 

put@{initial} int il,input@{initial) TID tl,output@{done] int outputl) 

simpleTaskClass C_class TRANSACTIONAL_OPEN2PC 

(input int il, TID tl ; output@{done} int outputl) ; 

Filter int fl(str) ; Filter int f2(str) ; 

compoundTaskClass TRANS_BC COMPOUND_TRANSACTIONAL 

(input@{initial} str inputl) ; 

{ B_class B ; C_class C ; TID_class genTID ; 

1 [TRANS_BC,executing] ENABLES [genTID,start] ; 

2 [genTID,done] ENABLES [B, start] % 

fI(TRANS_BC.inputl) -> B.il, genTID.outputl -> B.tl ; 

3 [TRANS BC,executing] ENABLES [C,start] % 

f2(TRANS_BC.inputl) -> C.il, genTID.outputl -> C.tl ; 

4 [B,done] & [C,done] & (B.outputl > C.outputl) ENABLES 

[B,prepare] & [C,prepare] ; 

5 [B,done] & [C,done] & (B.outputl <= C.outputl) ENABLES 

[B,abort] & [C,abort] ; 
! 

6 [B,prepared] & [C,prepared] ENABLES [B,commit] & [C,commit] ; 

7 [B,committed] & [C,committed] ENABLES [TRANS_BC,commit]; 

8 [B,aborted]IENABLES [C,abort] & [TRANS_BC,abort]; 

9 [C,aborted] ENABLES [B,abort] & [TRANS_BC,abort] ; 

• . . } 

compoundTaskClass WORKFLOWI COMPOUND_NONTRANSACTIONAL 

(input@(initial] str inputl , output@{fa±led,done} str outputl, 

output@{failed} int output2 ) ; 

{ A_class A ; TRANS_BC BC ; 

i0 [WORKFLOWI, executing] ENABLES [A, start] % 

WORKFLOWI.inputl -> A.inputl; 

ii [A, done] & (success(A.outputl) = TRUE) ENABLES 

[BC,start] % A.outputl -> BC.inputl ; 

12 [BC,committed] ENABLES [WORKFLOWI,done] % 

A.outputl -> WORKFLOWI.outputl; 

13 ([A,done] & (success(A.outputl) = FALSE)) I [A, failed] ENABLES 

[WORKFLOWI,fail] % ERROR -> WORKFLOWI.output2 ; 

14 [BC,aborted] ENABLES [WORKFLOW, fail] % A.outputl -> WORKFLOWI.outputl, 

PARTIAL_SUCCESS -> WORKFLOWl.output2 ; 

• . . } 

Figure 8. Workflow Specification Example 2 
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even though the run-time behavior of the workflow is dynamic (conditional execution of 
statements can be defined using predicates in intertask dependencies). 

Now consider the following telecommunications example. Suppose a customer requires 
a digital link between three of his locations. Usually, such a link would require the 
following steps: (a) assignment of loop inventory from each location to the local central 
office, (b) the assignment of the central office equipment that connects with the loop 
inventory, and then (c) the assignment of trunk equipment and the associated central 
office equipment that connects the central offices together. The (a) steps for all three 
locations can be done independent of each other and similarly the (b) steps. The (c) step 
however first involves generating a route for the trunk equipment that would connect 
the central offices together. This might result in further assignments of equipment at 
intermediate central offices, and for some specific digital technologies, these assignments 
have to be done in a specific order (together with data flow between these assignments) 
to ensure proper connectivity. Note that since the number of possible tasks in the above 
example is finite, the entire workflow above can be coded up in a static specification using 
appropriate pre-conditions. However, enumerating all the conditions in a workflow that 
contains all possible tasks is messy and tedious, and the workflow specification is likely 
to be very long and incomprehensible. In addition, note that some complex procedures 
like the generation of the routes between the central offices of the customer locations 
are usually done by specialized software. The approach we take below allows us to 
incorporate these procedures as tasks in the workflow. 

We summarize the situations under which we believe a workflow is dynamic or which 
are tedious to capture using a static "all-encompassing" specification: 

1. A variable number of new instances of task types are added depending upon the 
values of certain data items in the workflow. 

2. New flow of data are added between pre-existing tasks, between new tasks and 
between pre-existing and new tasks. 

3. New control and data dependencies are added. 

The following features in the language support the above requirements: 

1. Arrays of task type instances, and syntactic sugar to refer to all the tasks or a subset 
of the tasks. 

2. General control modifiers that process the current graphs representing control and 
data flows (see Section 7) and their inputs to add new tasks and dependencies to 
the existing graphs (in the trivial case, the entire workflow can be a control modifier 
with one node, but then this is a true closed legacy application!). 

We handle arrays of task instances as follows. Suppose we have a sirapleTaskType 
ARRAYCONTROL: 

simpleTaskClass ACF_Class ARRAY_CONTROL 

(input@{initial} FCIF inputl ; 

output@{done} int numouts, FCIF outputl[MAXNUM]) 
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Class ACRCZass takes an FCIF input and produces two outputs: a number and an 
array of FCIF outputs. Suppose the former is the number of instances that need to be 
executed to handle the multiple outputs being generated by the task. A program fragment 
indicating how the information output by an instance of class ACF_Class is used by the 
workflow designer as follows. We introduce the following two predicates in the language: 
( fo ra l l  i in a . .b)  and (exists  i in a. .b)  tO quantify over elements in a set, where 
the semantics of these predicates are as usual. 

ACF_Class ACF ; A_Class A[MAXNUM] ; 

B_Class B; 

1 [ACF,done] ENABLES 

(forall i in {l..ACF.numouts} [A[i],start]) % 

(forall i in {l•.ACF.numouts} {ACF.outputl[i] -> A[i].inputl}) ; 

2 (forall i in {l..ACF.numouts} [A[i],done] ) ENABLES 

[B,start] % 

ACF•numouts -> B.inputl, 

(forall in {l..ACF.numouts] A[i].outputl -> B.inputs2[i]) ; 

3 [B,done] ENABLES [WFl,done] % B.outputl -> WFl.outputl ; 

4 (exists i in {l..ACF.numouts] [A, failed]) ENABLES [WFl,fail] % 

Line 1 above indicates that when ACE reaches the d o n e  state, multiple instances of A 
are started, and each one of the outputs of ACF is input to one A. Line 2 shows how B is 
enabled when all the instances of A have reached the done state• Each of the outputs of 
the instances of A are fed as an array input to B, along with the number of inputs. Line 
4 indicates that the enclosing wFx fails if any of the A'S reach the f a i l e d  state. This 
example thereby shows how one can generate multiple task instances of the same 

class, such that a restricted class of new dependencies and data flow can be added 

between new and pre-existing task instances. 

A more complex case is when arbitrary new dependencies and data flow can be gen- 
erated and inserted into the workflow program• We take the approach that this involves 
application-specific code that could arbitrarily modify the entire workflow. We therefore 
introduce another control class called c o n t r o l C l a s s  that indicates to the workflow con- 
troller that in addition to its outputs, this task produces a new workflow specification 
that has to be re-interpreted by the workflow controller. There is a naming problem that 
arises here. The software that generates a modification to the workflow should know 
about the current workflow program, and produce a new program that includes the same 
names for task instances and possibly other new names for new tasks• If this software is 
pre-existing code, a translator is required to translate the current graph specification to 
the format accepted by the software and a reverse translator to convert back to WFSL. It 
is assumed that no changes can be made to the declaration or state of pre-existing task 
instances, except involving them in more control and data dependencies. Once the con- 
trol modifier finishes execution, the workflow controller reinterprets the WFSL program, 
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Contract (FCIF_idl,FCIF_id2) 

FCIF FCIF_idI,FCIF_id2 ; 

{ int temp_qms_stat, iter ; 

extern int did_commit() ;/*Function determining if 

contract committed*/ 

TASK_EXECUTING() ; 

iter = MAX_TRIES ; /* Try QMS call up to MAX_TRIES 

times if system failure*/ 

do 

{ EXEC QMS send_and_recv (FCIF_idl, FCIF_id2) ; 

temp_qms_stat = qms_status ; 

iter-- ; 

) 

while (temp_qms_stat == (QMS_FAILURE I I OSS--DOWN--FAILURE) I Iiter > 0) 

if (iter ==0) TASK ABORTED() ; /* Abort due to system failure */ 

else if (did_commit(FCIF id2) = TRUE) 

TASK COMMITTED(FCIF id2) ; 

else TASK ABORTED() ; /* Abort due to actual abort 

of contract at OSS */ 

Figure 9. Contract Task 

and starts executing the workflow specification as before. An example is given in the 
Appendix, and more details of  how this is implemented is given in Section 7. 

6. TSL 

In this section we briefly describe how a task program is written. A task programmer 
includes the following kinds of statements in his/her task program: 

1. Interface specific statements : This includes statements to identify the interface and 
to handle errors at the interface or processing entity. 

. Processing entity specific task statements : These are statements of  the task that need 
to be executed against the processing entity. For instance, these might be embedded 
SQL statements for databases, or contract specifications for OSSs. 

. Statements for revealing the task (structure) state to the workflow controlling en- 
tity : The task programmer explicitly includes macros within the program such as 
TaSK_EXECUTING(/ and TASK_DONE() to indicate to the workflow controller that the 
task has reached a particular state. 
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We consider an example task program that submits a contract to an OSS through a 
queued message system called QMS (Figure 9). QMS is accessed by a transactional 
RPC call from a client. We assume that the access to QMS is made partially transparent 
using Embedded QMS calls (like Embedded SQL calls). We assume a s e n d _ a n d _ r e c v  

construct in Embedded QMS to send a message to QMS and block until the correlated 
reply comes back, or there is a system failure. Suppose the workflow designer assumed 
con t rac t  to be transactional, and the contract execution at the processing entity is also 
transactional. However, since the submission of the contract is through the interface, 
it is possible that the task completes successfully as far as the interface is concerned 
(i.e., without a system error), but the task could have committed or aborted. Thus, if 
the task does return successfully, the function d id_commi t  ( ) in the task program is used 
to determine whether the contract committed or aborted. Notice how the task takes into 
account the system errors of the interface and the processing entity. Furthermore, the 
workflow controller does not know any details of the interface that this task is using. 
Existing applications which are callable can be wrapped in such task code. The details 
of the TSL macros are not covered in this paper due to lack of space. 

7. Architecture and Workflow Execution Support 

In this section, we sketch the run-time architecture of a workflow management system 
that can support the model and the languages that we have discussed. A prototype of 
such a system has been implemented at Bellcore 4. The run-time components (Figure 10) 
include the following (we assume a message passing architecture, but that need not be 
the case): 

• A workflow controller that co-ordinates the execution of the worldtow based on the 
specification in WFSL. If the workflow is static (i.e., there are no arrays of tasks, or 
no cont ro lClass  declaration), the workflow specification in WFSL can be compiled 
into a controller executable. However, if the workflow can evolve dynamically, the 
workflow specification has to be interpreted. 

• Task managers that are responsible for starting up the TSL programs and perform 
supervisory roles during forward recovery. 

• A communications infrastructure for two purposes: (a) the controller and the task 
managers have to interact reliably with one another, for which we use the messaging 
facilities of a TP Monitor, and (b) native interfaces that allow task manager programs 
to interact with processing entities. 

• Filter function libraries that enable the massaging of data from one format to another, 
extract useful information from complex formatted data, and the like. Filters can be 
invoked locally within the workflow controller or remotely at auxiliary systems (using 
the messaging infrastructure). 

• A recovery management system that logs the state of individual tasks and the inputs 
and outputs of tasks for the purpose of forward recovery. 
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i 

Task Managers 

,~: Task logs 

Interfaces 

~: Processing Entities 

Figure 10. Run-time architecture 

We now discuss the execution of the workflow controller. We first deal with the 
simple case when the specification is interpreted. A workflow controller is started for 
each instance of a workflow. The controller first reads in the specification of the workflow 
and interprets the specification. The internal data structure for the workflow is two sets 
of graphs, one for data flow and one for control flow. When the workflow instance 
starts, it is assumed to be in the executing state. The controller then starts evaluating 
the rules and decides on a controllable transition to enable. This transition could be 
for a compound task or for a simple task. The controller then determines whether the 
transition is a start transition. If so, for a simple task, it needs to start (or connect to) 
a task manager that runs the task program (a directory service that maps task names 
to the names of executables at specific machines). For a compound task, the controller 
needs to record the start of the compound task and continue to evaluate the rules of 
the "started" compound task. If the transition is not a start transition, the controller 
enables the appropriate transition by either sending a message to the appropriate task 
manager (for a simple task) or by simply recording the transition (for a compound task). 
In both cases, the enabling of the transition is logged along with the inputs associated 
with that event. When the task program changes its logical state (an event), it reports the 
current state through the TSL macros back to the controller, which logs it. If  the event 
involves a transition to a state in which data can be made available to the controller, 
then the data is logged and also sent to the controller. The controller then evaluates 
relevant rules (involving the event in the pre-conditions, if any) and determines which 
controllable transitions can be enabled again. (Several strategies have been discussed in 
the literature, e.g., [2], [33], to determine how inter-task dependencies can be evaluated.) 
This continues until the workflow has logically succeeded or logically failed. 

In our environment, several of the systems use closed transaction monitors with queued 
message inputs, so one cannot include them in an atomic transaction [22]. Transactional 
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compound tasks in our environment are limited to transactions that run on XA-compliant 
databases, i.e., the database libraries support xa . . . .  calls [22]. Transactional com- 
pound tasks are executed as follows. The individual databases are registered as resource 
managers with the workflow controller when the task manager for each corresponding 
transaction is started. The workflow controller functions as the transaction manager: the 
workflow specification has the responsibility of generating a global transaction identi- 
fier ( t r i d )  for the whole transaction and then the workflow controller co-ordinates a 
two-phase commit between the involved resource managers, through the task managers. 
Essentially, the macro code for the tasks (running within the task manager process) issues 
the xa . . . .  calls for prepare, and commit (or abort), when these controllable transitions 
are enabled by the workflow controller. In case the databases are not XA-compliant but 
an open transaction manager governs them, it is possible to use the gateway techniques 
prescribed in [22] to interact with the database. 

The next  issue is that of incorporating dynamism into workflows. Our approach in- 
cluded syntax for specifying the enabling of  transitions of arrays of  tasks, by quantifying 
over a set of  integers respresenting the indices of those tasks. On the start transitions of 
the tasks, the workflow controller instantiates the control graph with a fixed number of  
concurrently executing task instances of  a particular class whose input/output behaviors 
are similar. The f o r a l l  and e x i s t  predicates are used not only as a means of  quan- 
tification, but also as syntactic sugar. If  a f o r a n  quantifies over an entire rule (both 
control and data flow), then several independent instances of the rule are assumed by 
the workflow controller, for each index quantified in the f o r a l l .  This allows several 
instances of  the same rule to fire independently of  one another. For instance, consider the 
following code fragment that enables the compensating transaction for A [ i ] if A [ i I has 
already committed and the compound task to which a belongs has to be compensated. 
The input to compA[i] is the same as that for a [ i ] .  

(forall i in {l..num} [WF,compensate] & [A[i],committed] 

ENABLES [compA[i],start] % A[i].inputl -> compA[i].inputl ; 

In this case, if nura is 2, then two rules for A [ 1 ] and A [ 2 ] respectively are assumed by 
the workflow controller. This allows the two compensations to be executed independent 
of  one another. If  the foralZ quantifies over only the control part of a rule, then the 
workflow controller assumes several rules with differing control parts based on the indices 
referred to in the quantification, and with same data parts. If  the f o r a l l  quantifies only 
over the left hand side of the control part of  a rule, then a logical AND of all the instances 
of  the left hand side is taken (logical OR for ex is t s ) .  

For more general dynamism, the c o n t r o l c l a s s  can be used. We assume that since this 
can modify the graphs of control and data flow dependencies, at most one such instance 
of this class can be executing at any point of time. When such an instance is started, the 
workflow controller provides as an additional input to the task a representation of  the 
two graphs. When the task completes execution, it provides the workflow controller with 
two new graphs depicting the new control f o w  and the new data flow. After instantiating 
these graphs, the workflow controller resumes the evaluation of the various control and 
data dependencies between tasks. The c o n t r o l C l a s s  can also produce typed outputs that 
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can be used in the workflow. Thus after the graph has been modified, the instance is 
treated as just any other task when it is done and it has outputs that can be consumed in 
the workflow. (see Appendix for a dynamic workflow example). 

To support forward recovery in case the workflow controller or the task managers crash, 
the task states, and inputs and outputs are logged. If either the workflow controller or 
the task managers fail, then when they restart, a recovery mechanism is used to recover 
their states at the time of failure. Any task manager that fails and recovers must interact 
with the workflow controller to resynchronize with the controller (it is possible that 
another task manager has been started up in the meantime to handle the same task). 
The recovery mechanisms used are documented in [27] and [11]. Notice however that 
interactions between task managers and the interfaces to processing entities might not be 
reliable. It is therefore possible that the same tasks may be resubmitted to a processing 
entity (possibly if the task manager detects a communications failure). It is imperative 
that either the task be idempotent, i.e, the task can be repeated with the same effect, 
or some other mechanism prevents the task from being executed again. OSSs and their 
interfaces simulate the idempotence property - any task that is submitted to the interface 
has a unique identifier and the OSSs do not execute it if already executed. Consider 
now a standard DBMS transaction. If the logging of the start of the task at the workflow 
controller and the database access of the task is run as part of the same (top-level) 
"transaction", then the task needs to be resubmitted only if it is not recorded in the 
workflow controller log. If  the task is non-transactional, then either the task should itself 
be idempotent or the task manager must be able to verify that the resubmitted task has 
or has not been done. If neither is true, human assistance would become necessary. 

We now briefly address the issues related to concurrency control and enforcement of 
inter-task dependencies. Traditionally, the correctness of a database system has been 
defined in terms of the serializability of transactions and this has been ensured by using 
the ACID properties. Appropriate concurrency control and recovery techniques are used 
to implement ACID transactions. In multi-database systems, several application-specific 
relaxed notions of serializability and isolation have been developed to accommodate 
the semantics and architecture of the application. Our environment with its mix of 
transactional and non-transactional tasks presents yet another difficult example where 
serializability and isolation of workflows cannot be preserved. For transactional tasks, 
the unit of atomicity and isolation is the task itself since the systems at which these tasks 
execute ensure isolation at the system. Non-transactional tasks do not have any isolation 
or serializability properties, so entire workflows cannot be serializable with respect to 
one another. In the case of workflows which only deal with transactional tasks, we 
have proposed elsewhere concurrency control and recovery mechanisms that make use 
of application-specific properties like limited commutativity and relaxed isolation [26]. 

Another requirement is that the specification of the workflow be correct, i.e., the rules 
guarantee progress and safety properties that the workflow will eventually terminate. 
In [2], attributes (forcible, rejectable and deIayable) are associated with controllable 
transitions to establish safety and termination properties of a workflow. Such attributes are 
needed by the workflow controller for the correct enforcement of inter-task dependencies 
during run-time (also see [20] and [21] for related work.) 
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8. Conclusions 

We have discussed the issue of supporting workflow management in environments that 
involve heterogeneous tasks such as applications that access remote servers, scripts, 
database transactions as well as human tasks. The tasks may be submitted through a 
variety of interface systems such as those based on persistent queues, RPCs, transactional 
RPCs, etc. The processing entities that process the tasks include script interpreters, 
application systems with their own databases, DBMSs, and humans (who may in turn 
be supported by GUI interfaces and use other application software). We discussed a 
workflow model and "intermediate" languages used in the METEOR project. 

The language WFSL specifies the application-level issues of workflows. WFSL is 
characterized by task type declarations that capture the observable behavior of the task 
using task structures and data inputs and outputs, task class and instance declarations to 
support specification reuse, inter-task dependencies and data exchange statements that 
express task coordination and data flow requirements, and filters for data manipulation. 
TSL is used to specify individual tasks while accommodating some heterogeneities related 
to interfaces and processing entities in a distributed environment. TSL supports macros 
that allow tasks to reveal their task structures to the workflow management system, and 
also enable logging for recovery. Furthermore, task programs are designed to handle 
interface or processing entity related system errors. 

We have also briefy discussed a system architecture for the workflow management 
aspect of METEOR. A prototype of METEOR was completed and used to demonstrate 
the basic functionality to prospective clients by using a real multi-system application, 
and to get further requirements. A rudimentary graphical specification interface was also 
implemented. One approach to the workflow controller part of the system was discussed 
in [2] and later implemented at MCC, while another was completed at Bellcore. A more 
comprehensive prototype system is currently being implemented by the collaborators 
in the METEOR project. We have also initiated an effort to develop a comprehensive 
graphical environment for specifying, testing, simulating and maintaining the workflows. 

Several issues need further work. WFSL has been extended to accommodate some ap- 
plications that have dynamic workflows and need more expressiveness from the language 
aspect. The extensions until now have dealt with specifying more flexible data or task 
types. While we support complex value dependencies, we have restricted the "control" 
aspect of WFSL (based on application needs) by using only the ENABr.ES evaluator. We 
plan to extend WFSL to include more evaluators as and when the need arises and partic- 
ularly when non-transactional tasks are involved. We discussed an example that showed 
how a compound task can be composed of two transactional tasks with open two-phase 
commit by writing rules for the commit explicitly. If this was a "vanilla" transaction, 
then we could provide some syntactic sugar in WFSL to relieve the workflow designer 
from specifying the rules. We are looking at examples to see what kind of syntactic 
sugar might be needed. We have attempted to address some instances of heterogeneity 
in our environment. Several other heterogeneities exist such as those based on transaction 
and concurrency control mechanisms, semantic heterogeneity, and the like. We need to 
address such issues. Support for specifying business rules and roles is also being con- 
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sidered motivated by requirements for workflow automation in healthcare environments. 
We are also investigating how a workflow in WFSL can be evaluated for the properties 
of progress and safety. 
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Appendix 

A dynamic workflow example 

The following example performs service provisioning, i.e. the assignment of inventory 
for a digital link between several customer locations. The input to the workflow program 
is a service order. For each customer location specified, the loop inventory from the 
customer location to the nearest central office facility is first assigned, and then inventory 
at each central office for connecting to the assigned loop. Then a routing task figures out 
what trunk lines and intermediate central offices are needed to connect all the customer 
locations (~x~r~r~ is the maximum number of such locations assignable on a service order) 
and their adjoining central offices together. The input is initially parsed by the LoopC 
task, which determines how many customer locations need to be connected and what 
their adjoining central offices are. This task also produces an appropriate FCIF output 
for each loop assignment task, Loop. After assigning the loops, the Route task is started 
that determines intermediate trunk lines and additional central offices. Furthermore, the 
loop assignments determine in what order the trunks and central offices are assigned. In 
short, Route is an instance of modifyControlClass, that adds  data flow and dependencies 
between the tasks. When Route is done, the central office assignments can be done. If 
any of the steps abort, the workflow is compensated, i.e. all other steps in the workflow 
that have committed are compensated too. Notice the complex data flow between the 
tasks. 

simpleTaskClass LoopCtrlClass ARRAY_CONTROL 

(input@{initial} FCIF inputl,output@{done} int numouts, 

output@{done} FCIF output[MAY~UM]) ; 
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modifyControlClass RouteClass MODIFY CONTROL 

(input@{initial} FCIF inputs[MAXNUMS], 

output@{done} FCIF outputs[MAXiNIIMS]); 

simpleTaskClass LoopClass SIMPLE_TRANSACTIONAL 

(input@{initial} FCIF inputs[MAXNUM], 

output@{committed,aborted} FCIF outputl ) ; 

simpleTaskClass compLoopClass SIMPLE_TRANSACTIONAL ... ; 

simpleTaskClass SwitchClass SIMPLE_TRANSACTIONAL ... ; 

simpleTaskClass compSwitchClass SIMPLE_TRANSACTIONAL ... ; 

compoundTaskClass WFI COMPOUND_NON_TRANSACTIONAL 

(input@{initial} FCIF inputl , output@{done} FCIF outputs[MAXNUM]) 

{ LoopCtrlClass LoopC ; 

LoopClass Loop[MAXNUM] ; 

compLoopClass compLoop[MAXNUM] ; 

SwitchClass Switch[MAXNUM] ; 

compSwitchClass compSwitch[MA_X/qUM] ; 

RouteClass Route ; 

[WFl,executing] ENABLES [LoopC,start] % WFl.inputl -> LoopC.inputli 

[LoopC,done] ENABLES (forall in {l..LoopC.numouts} [Loop[i],start])% 

(forall i in {l..LoopC.numouts} LoopC.outputl[i] -> Loop[i].inputl); 

(forall i in {l..LoopC.numouts}[Loop[i],committed]) ENABLES [Route,start]% 

(forall i in {l..LoopC.numouts} Loop[i].outputl -> Route.inputs[i]); 

[Route,done] ENABLES (forall i in {l..LoopC.numouts} [Switch[i],start])% 

(forall i in {l..LoopC.numouts} Route.outputs[i] -> Switch[i].inputl) ; 

(forall i in {l..LoopC.numouts} [Switch[i],committed]) -> [WFl,done] % 

(forall i in {l..LoopC.numouts} Switch[i].outputl-> WFl.outputs[i]); 

// Failure cases when some task aborts, and the other 

// tasks have to be compensated for 

[LoopC,failed] ENABLES [WFl,compensated] ; // No task to compensate 

[Route,failed] ENABLES [WFi,compensate] ; 

(exists i in {l..LoopC.numouts} [Loop[i],aborted] I [Switch[i],aborted]) 

ENABLES [WFl,compensate] ; 

(forall i in {l..LoopC.numouts} [WFl,compensate] & [Loop[i],committed] 

ENABLES [compLoop[i],start] % Loop[i].inputl -> compLoop[i].inputl ); 

(forall i in {l..LoopC.numouts} [WFl,compensate] & [Switch[i],committed] 

ENABLES [compSwitch[i],start]%Loop[i].inputl -> compSwitch[i].inputl); 

(foral{ i in {l..LoopC.numouts} ([compLoop[i],committed] I 

[Loop[i],aborted]) & ([compSwitch[i],committed] 1 [Switch[i],aborted])) 

ENABLES [WFl,compensated] ; 
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Notes 

1. The METEOR project was initiated at Bellcore. Current collaborators include the University of Georgia 
and the Univerity of Houston. 

2. ENABLES is a combination of the "--+" and "<"  primitives [28]: If ex and e2 are transitions and el  
leads to the state s l ,  then s l  ENABLES e2 is equivalent to el  ~ enable(e2), enable(e2) ---+ el and 
el < e2, where enable(e) indicates the action of the workflow controller enabling e. 

3. The ConTracts model does provide support for versioning, and also creates a new version of a context 
every time a new output is produced by a task. 

4. The prototype supports all key components and features discussed here, but (a) implemented limited types 
of task managers, and (b) several implementation choices allowed a simple implementation but at the 
expense of performance. 
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