
Distributed and Parallel Databases, 3, 155-186 (1995)
© 1995 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Managing Heterogeneous Multi-System Tasks to
Support Enterprise-Wide Operations
NARAYANAN KPdSHNAKUMAR nkk@bellcore.com
Information Sciences and Technology Research Lab, Bellcore, MRE 2B324, 445 South Street, Morristown, NJ
07960

AMIT SHETH amit @cs.uga.edu
Large Scale Distributed Information Systems Lab, Dept. of Computer Science, University of Georgia, 415
Graduate Studies Research Center, Athens, GA 30602-7404

Recommended by: Omran Bukhres and e. Kithn

Abstract. The computing environment in most medium-sized and large enterprises involves old main-frame
based (legacy) applications and systems as well as new workstation-based distributed computing systems. The
objective of the METEOR project is to support multi-system workflow applications that automate enterprise
operations. This paper deals with the modeling and specification of workflows in such applications. Tasks in
our heterogeneous environment can be submitted through different types of interfaces on different processing
entities. We first present a computational model for workflows that captures the behavior of both transactional
and non-transactional tasks of different types. We then develop two languages for specifying a workflow
at different levels of abstraction: the Workflow Specification Language (WFSL) is a declarative rule-based
language used to express the application-level interactions between multiple tasks, while the Task Specification
Language (TSL) focuses on the issues related to individual tasks. These languages are designed to address
the important issues of inter-task dependencies, data formatting, data exchange, error handling, and recovery.
The paper also presents an architecture for the workflow management system that supports the model and the
languages.

Keywords: Workflow, Automation, Databases, Heterogeneity, Transactions, Tasks

1. Introduct ion

The need to improve productivi ty and cut costs has resulted in the need to signifi-

cantly reengineer and automate enterprise operations or activities. The object ive of the
M E T E O R (Managing End-To-End OpeRations) project 1 is to support and enable flexible
automated solut ions for enterprise-wide operations (workflows). In this paper, we present

a model and the languages for specifying mul t i -sys tem workflows in M E T E O R , as well
as a discussion of execution support.

A workflow in an enterprise typically involves performing multiple, related tasks, which

can be heterogeneous and performed on or by heterogeneous processing entities. The size
and complexi ty of several existing processing entities and the fact that they main ta in a
real- t ime inventory implies that they cannot be easily migrated over or modified to enable

a more manageab le and homogeneous envi ronment . Thus, in METEOR, our approach to
automat ing workflows is necessari ly a bot tom-up one: we wish (and need) to support the
current execut ion env i ronments as well as evolving ones, Other approaches in the litera-
ture to workflow automat ion have taken one of distributed transaction processing, office

156 N. KRISHNAKUMAR AND A. SHETH

(document or e-mail workflow) automation, or multidatabase transaction perspectives.
We wish to support an amalgamation of all of these - both in modeling/specification and
implementation. We also attempt to integrate and extend the results of several relevant
research efforts in the literature (e.g., [19], [131, [10], [37], [8], [20]).

A practical workflow management system that can enable multi-system applications
must deal with the specification and execution support related to:

different types of (preexisting and new) tasks, the processing entities that execute or
perform the tasks, and the interfaces through which the tasks are submitted to the
processing entities,

the coordination requirements between tasks, that are dependent on the execution
states of individual tasks and the workflow as a whole as well as the data manipulated
by these tasks,

• the data exchange between tasks, that might also involve dealing with different data
formats for different tasks, and

interfacing with existing software systems (e.g., script interpreter/processors, abstract
data management and manipulation, data format translators, etc.) that add value to
worldtow processing and the associated computation.

METEOR deals with all of the above aspects and offers the following features:

• a well-defined model and the languages for specifying the workflows and the tasks,

a compiler/interpreter for the workflow language (ancillary support may include syn-
tax directed editors and/or graphical user interfaces that support workflow spec-
ification, and support for testing the correctness and executability of the defined
workflows), and

run-time components, such as a workflow controller that supervises the progress of
the workflow, enforces intertask dependencies and interfaces with existing systems,
and task managers that have the responsibility for individual tasks.

We first discuss a workflow model and the languages that support it. The language
design is consistent with the need to support appropriate levels of abstractions for different
classes of persons who might specify a workflow. At Bellcore and other organizations,
for example, one group of persons (systems engineers) focus on the enterprise-level
(end-user and application-centric) requirements that the workflows should support, while
another group of persons (developers) better understand the systems implementation
aspects of the workflows. This dichotomy as well as considerations for modular design
and implementation has led us to have two component languages: workflow specification
language (WFSL) and task specification language (TSL). It is possible to have graphical
languages and tools for more user friendly, customized, and "higher level" workflow
specifications (such as those offered by several existing workflow software, see [21])
that can be translated into WFSL and TSL. Furthermore, specifications in WFSL and

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 157

TSL can be compiled and/or interpreted into lower level and system specific execution
code. In this sense, these languages can be said to offer intermediate-level specification.

The paper is organized as follows. Section 2 discusses in more detail the requirements
for workflow support in METEOR based on our interactions with real multi-system
applications (both their current implementations and their future planned versions). A
high-level description of the operational environment is also discussed since it has influ-
enced the model and the language. Section 3 deals with related work and contrasts the
METEOR approach with that of others. In general, METEOR attempts to use several
ideas. Section 4 discusses the approach and rationale in the language design. Section 5
and Section 6 discuss many aspects of WFSL and TSL, respectively. Section 7 reviews
the architecture of the system, and also briefly deals with the issue of correctness in
workflows. Section 8 gives our conclusions.

2. The Environment and Application Requirements

A typical large business operation has several thousand applications. For instance in a
telecommunications company, around two hundred of these are large application systems,
called Operation Support Systems (OSSs), each with several hundreds of thousands of
lines of code and a very large database (e.g., see [1], [26], [27], [21] for representative
applications and further discussion about this environment). Historically, end users per-
formed operations on these OSSs using screens. To provide easier access, application
programs and scripts have been written to perform operations using terminal emulation or
through "contracts" that provide well-defined logical interfaces. Many new applications
also access DBMSs directly for the purpose of auxiliary inventory management, monitor-
ing of workflow or task status, statistics maintenance, or error processing. Applications
could also involve humans processing some tasks (currently this is often needed for error
resolution when OSSs issue Requests for Manual Assists- RMAs). To adequately model
such real-world environments, we classify the relevant components of our applications
into tasks, processing entities and their physical interfaces, and then discuss how they
can be tied together into a workflow.

2.1. Tasks, Interfaces, and Processing Entities

Tasks are operations or a sequence of operations that are submitted for execution at the
processing entities using their interfaces. The types of tasks that we currently consider
include user tasks that involve humans in processing the tasks, and other application tasks
such as scripts or application programs that may involve terminal emulations to remote
systems, client programs or servers invoking application servers, database transactions,
and contracts. For this paper, contract tasks can be viewed as predefined sets of operations
at the OSSs that behave as stored procedures from the invoker's perspective.

The processing entities for the application tasks include application systems (OSSs,
legacy and modern application systems), servers supported by client-server and/or trans-

158 N. KRISHNAKUMAR AND A. SHETH

action processing systems (e.g., atop DCE and EncinaTM), DBMSs (for processing trans-
actions), and script interpreters and compilers (for processing scripts and application
programs). Furthermore, with user tasks, humans are the processing entities, who in
turn may use other software (office automation software such as spread sheets and doc-
ument/image processing systems).

The physical interfaces include remote procedure call mechanisms such as DCE RPC
to directly make calls to application servers, transactional RPCs to application servers
under the control of a transaction monitor (such transaction monitors include ACMS TM,
Tuxedo TM, and Encina), queue managers that deliver requests to application servers
(proprietary or vendor product supported, e.g., Tuxedo/Q, Encina's RQS or DEC's Mes-
sageQ), workstation-to-mainframe interfaces to allow a workstation-based client program
to access a mainframe-based OSS, and interfaces that support user tasks and provide
access to graphical user interfaces (such as those associated with document/image pro-
cessing systems).

2.2. Requirements for Workflow Management

We now discuss some of the key requirements of workflow management in our environ-
ment that influence the language design and the system architecture.

. Inter-task dependencies specify how the execution of a task is related to that of others
(based on the state of execution of other tasks and their data outputs) and external
variables (e.g., time of day). The workflow management system shoUld be able to
evaluate and manage several kinds of dependencies between tasks efficiently.

. Data management in multi-system workftow applications can be very demanding.
This involves support for different data formats, transport and storage of this data
and complex manipulation of this data by auxiliary systems. Auxiliary systems are
existing application programs (including applications that can invoke sub-workflows)
or scripts, that can parse and manipulate complex data.

. Typically, in Bellcore and many large companies, one set of people define the work-
flows at the conceptual level, describing the functionality of tasks, inputs and outputs
and dependencies. The exact details of tasks, interfaces and processing entities is
the concern of another set of people who write the code for the tasks. This modu-
lar approach to system engineering and design is very important, since it separates
several details of an implementation (that might change depending on the imple-
mentation environment) from the system specification. The workflow management
system should enable this separation and also permit code-reuse.

4. Business processes are rapidly changing. For instance, in the telecommunications
world, new telecommunications services are offered very frequently. In general,

Encina is a trademark of Transarc Corp.
ACMS is a trademark of Digital Equipment Corp.
Tuxedo is a trademark of Novell Inc.

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 159

.

.

.

as newer systems get incorporated into the business process, there is a need to
flexibly and easily modify the workflows. Given that each new workflow most likely
incorporates pre-existing tasks, only the conceptual workflow specification has to be
written anew. This is yet another reason to separate the workflow specification from
the details of the individual tasks.

The workflow management system should be able to recognize and handle errors.
Errors can be logical errors and system errors. Logical errors arise at the applica-
tion level, e.g., if a particular item required from inventory is not in stock, a task
attempting to procure this item can complete but with a logical failure. However, if
the database is down, there is a system failure since the task cannot execute. The
demarcation between logical and system errors is important for modularity. The task
programmer and/or the workflow infrastructure handle system errors first, e.g., by
retrying the same task (see Section 6). A workflow specification deals only with
logical errors, but system errors could be elevated to the workflow level as logical
errors, e.g., when a task fails repeatedly due to system errors.

Workflows can be dynamic, i.e., the entire workflow cannot be determined before-
hand. For instance, suppose a customer requires a digital telecommunications link
between three of his locations. A special routing task will have to determine possible
trunk routes between these locations, and this may in turn result in new tasks that as-
sign appropriate inventory. It is generally not known beforehand how many of these
new tasks will be generated, nor what additional control or data flow dependencies
they can cause. The workflow management system should allow such incremental
changes in the workflow specification at run-time.

We assume that a workflow controller (centralized or distributed) co-ordinates tasks
according to the intertask dependencies and other constraints, and maintains the state
of the workflow at all times. Suppose the controller fails. It is desirable that forward
recovery takes place, i.e., when the controller recovers, it resumes the workflow
from where it left off. Some incomplete tasks may have to be restarted, but not the
entire workflow. This requirement implies that the state of the workflow be stored
persistently.

3. Current Approaches

In [14], the authors have described features that a workflow (called operation flow in [14])
model and specification language should support. The METEOR system closely follows
this view and supports (with the terms used by [14] in parentheses) features such as: the
definition of individual tasks (basic operation definition), a variety of tasks including user
tasks (transactions and nonelectronic operations), state-based and value-based intertask
dependencies and data management (control and data flow definition), and failure and
exception handling (same terms). Currently, no separate or direct support for business
rules and constraints, and security and role resolution identified in [14] is provided in

160 N. KRISHNAKUMAR AND A. SHETH

METEOR. These can partly or indirectly be supported by intertask dependencies and by
individual interfaces (e.g., security features of DCE).

Approaches in the literature dealing with workflows/activities [15] can be described
as those based on multidatabase and relaxed/extended transactions ([19], [1], [37], [18]),
active database and rule-based approaches ([12], [13]), combinations of the above two
[20], and office and process-automation ([24], [30], [31]). The ACTA model [10] and
the DOM model [20] provide frameworks for system specification that capture several of
the above approaches. For instance, these models support the specification of complex
intra- and inter-transaction state dependencies, and correctness dependencies such as se-
rialization, visibility, co-operation and temporal dependencies. Such models can be used
to not only specify workflows but also to check specification correctness. In METEOR,
we adopt a subset of this specification framework, partly for simplicity and partly for
the reason that the workflows we have studied (primarily in telecommunications) are
characterized more by their dynamic nature and need for complex data manipulation,
rather than intricate control flow specification based on serializability requirements.

In [19], a language is proposed for describing (possibly nested) multi-transaction ac-
tivities, and for spec!fying the flow of data between different modules. However, the
specification of intertask control dependencies is limited, and it is assumed that all the
leaf-level tasks are transactional. The ATM approach ([12], [13]) includes an extended
nested transaction model and language for describing long running activities. Such a de-
scription includes a procedural static specification of the high-level workflow, and rules
(triggers) for the "dynamic" evolution of the workflow. However, the kind of dynamic
workflows that we wish to support, where new tasks/inter-task dependencies can be added
dynamically, is not discussed. In the ATM model, this would have to be supported by
permitting the addition and deletion of rules at run-time. The ATM model also assumes
leaf-level transactions, and organizes the workflow activity as an extended nested trans-
action with deferred and decoupled nested transaction/activities. Furthermore, an activity
can be queried as to its status (whether active, committed, aborted or compensated) or
that of its subactivities/transactions. The ATM model does support a range of heteroge-
neous tasks with differing execution state diagrams, however, does not specify how new
tasks with new execution structures can be included in the model.

In the ConTract model[37], a long running activity is modeled as a combination of
scripts and steps, where scripts deal with the conceptual workflow and steps deal with
individual tasks. The ConTracts model is comprehensive in its treatment of consistency
of data, recovery, synchronization and co-operation. Data is passed between steps through
contexts, and forward recovery can be handled through making the inputs and outputs of
steps persistent. APRICOTS is a prototype implementation of the ConTract model [34]
(some of our prototype implementation ideas have been borrowed from APRICOTS).
The ConTract model, however, does not allow for dynamic workflows where all possible
paths of the workflow do not have to be specified beforehand. Furthermore, there is
no support in the ConTract model for the flexible integration of heterogeneous task
structures. We believe that the distinction between interface versus processing entity is
important in using heterogeneous task structures also (as discussed in the next section).

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 161

Another of the early transaction models, the Flex model [18], relaxes the atomicity and
isolation properties of transactions. A variety of dependencies are possible between sub-
transactions including partial orders on execution precedence (internal dependencies) and
temporal predicates (external dependencies). Furthermore, a Flex transaction can com-
plete successfully even if some subtransactions fail (defined as acceptable final states).
The InterBase project at Purdue ([7]) is based on the Flex model and facilitates the
execution of distributed programs with Flex transaction semantics on heterogeneous sys-
tems. The InterBase Parallel Language (IPL) ([8]) shares some of our objectives and
can deal with different data types, preference descriptions and data dependencies. It
also allows the limited dynamic execution of workflows through conditional dependen-
cies. The Transaction Management and Specification Environment(TSME) of the DOM
project [20] uses an ACTA-like specification language for users to express properties
of extended transactions. The TSME allows the specification of several transactional
properties such as serializability, visibility and delegation, but there is no indication of
high-level language support for nesting of tasks and the dynamic evolution of workflows.
The ASSET system[4] is an interesting tool-kit approach to the management of extended
transactions based on the ACTA framework. Language primitives are provided for initi-
ating and committing or aborting transactions, and also for extended functionality such
as delegation of resources and formation of dependencies between transactions. ASSET
concentrates only on tasks that have behavior corresponding to a transaction or an ex-
tended transaction. Additional primitives will have to be added to permit different kinds
of task structures, or user-defined nesting of tasks.

The METEOR approach is one of integrating the various techniques above. Our work-
flow model is unique in that it allows the execution structure of heterogeneous tasks to be
specified (as in [2], [35], [33]) and incorporated flexibly into the workflow. Thus several
types of interfaces and tasks can be supported easily. By using rules similar to ECA
rules [13] and the notion of user-definable compound tasks that are composed of simpler
tasks or other compound tasks, we allow workflows to be nested. We also provide a
flexible explicit data transfer specification using ideas from [19]. The notion of storing
inputs and outputs persistently for the purpose of forward recovery is adapted from Con-
Tracts. A unique feature of METEOR is the support for dynamic workflows, where at
run-time several tasks and dependencies can be created anew. The combination of the
above features provides for a powerful workflow management system. Note however
that METEOR in its current form does have some limitations. We restrict ourselves to
simple control dependencies unlike more complex ones ([101, [28], [2], [23], [20]), but
allow a more comprehensive set of data dependencies. We do not associate the notions
of deferred and decoupled transactions with rules as in the ECA approach; we provide
such functionality by using explicit rules. Furthermore, the ConTract model provides
synchronization invariants for concurrency control. METEOR does not yet provide this
flexibility (see Section 7 for concurrency control issues).

There are many proposals for multi-level and nested transaction models (e.g., [38]) that
are relevant to workflow specification to various degrees. A perspective on combining
workflow and transaction management was given in [6]. [5] addresses high-level lan-
guage specification for a restricted class of compensatable transactions. Unlike many of

162 N, K R I S H N A K U M A R A N D A. S H E T H

........ / [........ .Sc?pe of WFSL

. . - ' """ T2 "'"

(I T1 T4 "*'*".

! ' ,-.. 1 i

scopoo, i i3,

I1 I : I ', ' [[
i ~ ,, i I ,

,: , '., , ~ ?

I)E) I 1 PE1 AUX1 L PE3
i
Y

Figure 1. Schemat ic of a workf low

these models, we do not view the entire application or the activities in only transactional
terms, since several tasks can be non-transactional. Other specification and language
efforts are the script-based workflow specification in Carnot [36], and the extensions to
MSQL to support some features of workflows [33], and the STDL language [3]. The
ideas behind TSL have been borrowed from several predecessors with which it shares
its objectives and functionality. These include, among others, DOL [32], and the inter-
faces that support executions of heterogeneous tasks against different processing entities
(e.g., LAM in Narada [25], RSI in Interbase [17], and ESS in Carnot [36]). There have
also been other approaches for multimedia document flow management [24] that are
non-transactional in nature.

4. METEOR's Integrated Approach

In this section, we discuss the model, and the basic design decisions behind two lan-
guages for specifying multi-system workflow applications. Tasks in a workflow can
have different functionality, and can further be differentiated on the basis of the interface
and/or the processing entity they are executed on. The METEOR workflow model in
Section 4.1 provides the basis for separating the conceptual workflow specification from
the details of individual tasks and is an adaptation of the model outlined in [35] and
[33]. WFSL is based on the features of the workflow model. TSL supports the detailed
specification of each task and its interaction with the interfaces/processing entities in a

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 163

l ~nilnitial ? Initial

xleuting ~ f-~xlcuting

fai done abor commit

Failed Done Aborted Committed

A sample non-transactional task structure A transactional task structure

O Inputstate

Outputstate

@ State with no external data input or output

~ Initial

f-~ r-/-

Aborted Committed

An open 2PC transaction structure

Figure 2. Some Task Structures

distributed environment (see Figure 1). At an architectural level, the WFSL specification
would be executed by a workflow controller, whereas each task specification would be
executed by a task manager (see Section 7).

4.1. The Workflow Model

A workflow comprises multiple tasks. The workflow specification might not be concerned
with the details of the tasks, however, it would have to at least deal with the (externally
visible) starting and completion events of tasks, the inputs and outputs of tasks and how
they relate to other tasks. In general, we represent the execution behavior of each task
using task structures. Three frequently occurring task structures in our environment are
shown in Figure 2. Each task structure has an initial state, and on the start transition
moves into the execut ing state. There could be one or more transitions after this, and
in the three structures, the task eventually enters a terminating state (such as done,
fa i l ed , committed, aborted). We distinguish between controllable transitions that can
be enabled by the workflow controller, and non-controllable transitions that are enabled
by the processing entity (this aspect of specification is especially important for scheduling,
see [2] for more details). For instance, the done transition from the execut ing state to
the done state is enabled only by the processing entity, whereas the s t a r t transition is
enabled by the workflow controller. All the transitions that are controllable in these tasks

164 N. KRISHNAKUMAR AND A. SHETH

Initial

.... ~ ' - - ' = ~ t ~'ixleuting

Output_ready

Done

A task producing a stream of data

@
Done

Output_ready

A task consuming a stream of data

Note : Both tasks above have a Failed state that is not shown.

All states except the Initial and Done state have a fail transition to this state.

Figure 3. Task Structures for Special Non-transactional Tasks

are underlined. Task structures also indicate which states can possibly have data inputs
or data outputs or both. In Figure 2, the initial state can receive data inputs, and outputs
can be produced in the done, fa i led , committed or aborted states.

In our environment, a user ~task or script is characterized by the non-transactional
task structure shown in Figure 2. The task structure of a contract (stored procedure) is
typically a transactional task (with ACID properties), which has an aborted or committed
final state. The third type of task structure shown is that of a transaction supported by
DBMSs that provide an open two-phase commit (2PC) feature [9]. Notice the transitions
from prepared to aborted or from prepared to committed are controllable. Furthermore,
there are two kinds of abort transitions from the executing state: one that is controllable
(used when the workflow controller decides to abort the transaction), and another that is
not controllable and initiated by the processing entity.

There could be other task structures that model non-transactional computation. For
instance, consider two tasks, one (a producer task) that produces a stream of output
and the other (a consumer task) reads and processes that stream of output and produces
another output stream (the output of one task is "pipe"d to the other). The execution
structures for these tasks is shown in Figure 3. Note that inputs and outputs are not
necessarily associated only with the start and termination of tasks: the consumer task
can read input in the waiting state and produce output in the output_ready state, while
the producer task produces its output in the output_ready state.

The generic task structures in Figure 2 account only for possible interface or processing
entity system errors elevated to logical errors as transitions to the fa i l ed or aborted
states. A task in the done or committed state reflects normal execution of a task from
the system (as opposed to the application) perspective. The task can be further deemed
successful or unsuccessful, based on application-specific criteria which can be included in

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 165

%2'

Failed ~ ~m.~n~e

Compensating

Figure 4. Compound Non-transactional Task with Compensation

the workflow specification. Another error that is possible from the view of the workflow
controller is as follows. The workflow controller might enable a controllable transition,
but the transition fails due to some internal error, e.g., a task is unable to start due to
a lack of enough swap space. It is assumed that for every such failure of an enabled
controllable transition, the task makes a transition to a corresponding _err state, e.g.
start_err. (Since handling the errors of each transition might make the specification
very tedious, another approach that has been explored in a Bellcore prototype [11] is to
specify a default state such as f a i l e d or aborted that is reached when such an error
happens.)

Observe that a task structure does not determine the means of execution nor the func-
tionality of the task, but only a high-level description of the (visible)state transitions.
Two tasks might have the same structure, but have different functionality or can be ex-
ecuted atop different interfaces and/or processing entities. Usually, the task structure is
determined by the states that are observable while the task executes at the processing en-
tity. Sometimes it is possible that the interface does not support the same view: suppose
a database transaction is submitted through a persistent queue. The queue might only
offer a non-transactional view of the task, i.e., the task has been submitted, and the task
has either failed or has been done (and not that the task committed or aborted). This
issue is discussed further in Section 6.

The tasks described thus far are simple tasks in our model, i.e., a simple task is a
physical unit of work that executes at a processing entity. Our model also includes
compound tasks, which can be composed of simple tasks and other compound tasks.
Compound tasks are logical units of work that are not executed against processing entities,
but meant to specify co-ordination and data flow requirements between sub-tasks (see
Section 5.4 for examples). All transitions of a compound task are controllable since the
workflow specification of the task determines all the transitions. For example, consider

166 N. KRISHNAKUMAR AND A. SHETH

a non-transactional compound task, comprising several tasks, that is compensatable. The
task structure for the compound task corresponds to Figure 4. The s t a r t and compensate
transitions are initiated by the workflow controller due to external events, whereas the
f a i l , done and compensated transitions would be initiated by the controller due to
appropriate states reached by the sub-tasks. A workflow can itself be specified as a
compound task in our model, thus allowing a seamless integration of different workflows
by nesting them within a super-workflow. Such flexible specification of compound tasks
are a unique feature of the METEOR model.

Tasks are not the only executable entities in a workflow. Often the data transferred
between tasks has to be formatted appropriately using filters. Filters are repeatable (and
side effect free) functions that need not be recoverable and need not be characterized by
a task structure. Such functions can either be executed locally as part of the worldtow
management system or remotely from shared libraries on auxiliary systems.

Thus a workflow specification primarily contains: (a) simple tasks, filters, and com-
pound tasks, (b) the task structure of each task in the worldtow, (c) the typed inputs and
outputs of each task/filter types, and how they are related to the outputs and inputs of
other task types, and (d) the preconditions for each controllable transition in each task.

4.2. The METEOR Language Design and Rationale

We briefly review the design of the METEOR languages and the functionality that they
support. WFSL, which is used to describe the conceptual workflow specification, has
been designed based on the METEOR worldtow model. WFSL is a declarative rule-based
language that can define compound tasks. Note however that WFSL need not serve as
the language used by the workflow designer to program in. A graphical interface could
alternatively be used to generate a WFSL specification automatically.

In WFSL, the workflow designer can declare a set of task types, based on their structure
and then define classes of tasks with differing structures. Each task class has a task
structure type and a set of typed inputs and outputs. Inputs and outputs can be scalar or
array datatypes, and can also be streams.

After defining instances of each class, the workflow designer can link up the task
instances using rules. Each WFSL rule has two components: a control part and an
optional data transfer part. The control part denotes the preconditions for a single
controllable task transition. Whenever a task makes a state transition, we say that an
event occurs. The preconditions can include references to events and/or data outputs of
other tasks, as well as program variables. The data transfer part indicates which outputs
of other tasks or variables (possibly passing through filters) are input to that task, i.e., for
instance, the output ol of task T1 is fed through a filter f for reformatting and then fed
into the input/1 of task T2. The data transfer specification in WFSL is very flexible. For
instance, the data outputs of several tasks that become available at different times can be
fed into one task. We can also specify alternative inputs to tasks, i.e., it is possible that
under one circumstance, the output of task T1 feeds into the input of a second task T2,
but under some other circumstance, the output of a third task T3 feeds into the input of
T2.

MANAGING H E T E R O G E N E O U S MULTI-SYSTEM TASKS 167

We follow the ConTracts model in the requirement of forward recovery, and the rule-
based nature of WFSL is consistent with this requirement. Every next step of the work-
flow is determined by an evaluation of relevant rules when an event occurs, and a rule
which has all its preconditions satisfied fires. Note that by this declarative approach,
we have removed the need for a program counter. If all inputs, outputs and task states
were made persistent, then during recovery, the workflow controller can start up with
its state intact and resume evaluating rules. (In an imperative program implementing
the workflow, the memory image of the program will have to be checkpointed instead.
The logical checkpointing in the declarative approach is usually more efficient than the
memory image checkpointing.) Furthermore, if the workflow is dynamic, the declarative
nature of WFSL allows it to be incrementally interpreted during run-time.

We now give a high-level description of TSL which is used to specify simple tasks.
One of the key objectives of TSL is the minimal rewriting of existing tasks. TSL provides
a wrapper for code describing interaction with an interface to a processing entity and
essentially comprises a set of macros that can be embedded in a host language like C or
C++. The main functionality of the TSL macros is to indicate points in the task execution
at which the workflow controller can be informed about the current logical state of the task
(and thereby points where the state of the task can be made persistent). This functionality
also allows the workflow to deal with legacy applications without changing their code. If
the legacy application is batched, then the TSL program consists of (a) a call to a macro
indicating that the application is about to execute, (b) a call to an interface that submits
or calls the legacy application,' and (c) a call to a macro when theapplication completes
execution (see Section 6). If instead the legacy application is interactive, then the TSL
code will have to include functionality to interpret the intermediate results, provide input
and also convey the state to the workflow controller. The task is essentially written in
the host language, embedded sub-languages supported by the processing entity, and TSL
macros.

As part of TSL, we also prescribe how new task programs should be written. The
interface is made explicit in the task specification, and this allows the task programmer
to specify error handling for interface or processing entity (system) errors. For instance,
the task submission to the interface might time out, or might need to be re-submitted
for up to r~ retries, or a different interface might be chosen, and so on. (Note that a
system error can eventually develop into a logical error seen at the workflow level. For
instance, a task program can try to re-submit a task several times with repeated system
errors before it gives up. The workflow specification in WFSL would then have to handle
the error by possibly submitting an alternative task.)

In summary, WFSL deals with the enterprise or application issues. It is used to specify
the workflows, including all task types and classes in a worldtow, all intertask dependen-
cies, filter calls, and application level failure recovery and error handling issues (including
possible application specific compensation using alternate tasks). TSL provides a homo-
geneous view of simple tasks to the workflow controller, and deals with interface-specific
details. TSL thereby also deals with task level failure recovery and error handling that
are interface and/or processing entity specific.

168 N. KRISHNAKUMAR AND A. SHETH

5. WFSL

We describe this language by using some representative examples. We focus on how the
tasks can be placed together in a workflow. For brevity, details of the languages are not
discussed, but can be found in [29].

5.1. Task type and instance declarations

The following example declares a simple task type that has the structure of a transac-
tion. (We will use the names SIMPLE_NON_TRANSACTIONAL, SIMPLE_TRANSACTIONAL and
TRANSACTIONAL_OPEN2PC to refer to the task structures in Figure 2.) This task has one
controllable transition from i n i t i a l to executing, and before the transition occurs, in-
put(s) can be received in the i n i t i a l state. The two non-controllable transitions can
produce output in the state at the end of the transition. Furthermore, recall that an ad-
ditional s t a r t _ e r r state is defined implicitly to account for the (possible) failure of the
controllable start transition.

simpleTaskType SIMPLE_TRANSACTIONAL

{

CONTROLLABLE start (initial, executing) input ;

NOT_CONTROLLABLE abort (executing, aborted) output ;

NOT_CONTROLLABLE commit (executing, committed) output ;

}

The following statement defines task classes called Loop_Assignment and circuit

_Facility_Check that are SIMPLE_TRANSACTIONAL tasks and which have input and outputs

of type FCIF. (FCIF (Flexible Computer Interface Format) is a de facto standard for data
transfer between OSSs in several telecommunications environments. Messages in the
FCIF format have a tree structure, where the non-leaf nodes have tags and the leaf nodes
hold the data, which is assumed to be defined as in C or C++.) Furthermore, the input
is received in the initial state and the output is externalized in only the committed state.

simpleTaskClass LoopAssignment, Circuit_Facility_Check SIMPLE_TRANSACTIONAL

(input@{initial} FCIF inputl , output@{committed} FCIF outputl) ;

Several instances of the same task class can be used within a workflow, as follows,
where T.1 and L2 are two instances of Loop--Assignment:

Loop_Assignment LI, L2 ;

The definition of a compound task is given entirely within WFSL (unlike a simple
task, whose code is written in another language and compiled/interpreted independently).
An entire workflow can be represented as a compound task. In our environment, the
compound task usually associated with a workflow has a non-transactional task structure.
We refer to this task structure by COMPOUND_NON_TRANSACTIONAL (Figure 5). Compound
task types and classes are specified like simple task types and classes. Compound tasks

MANAGING H E T E R O G E N E O U S MULTI-SYSTEM TASKS 169

%f %f'

Failed Done Aborted Committed

COMPOUND NON TRANSACTIONAL COMPOUNDTRANSACTIONAL

Figure 5. Some Compound Task Structures

can also have a transactional task structure provided all tasks within them are transactional
with open two-phase commit. For instance, within a large workflow, there might be
two simple tasks to be executed as a transactional unit. Then the two can be grouped
together into a transactional compound task type COMPOUNI~_TRaNSAeTZONAL (Figure 5).
We discuss such an example in Section 5.4. Specification of transactional tasks and
transactional compound tasks can support the development of transactional workflows
([351, [33], [21]).

5.2. Intertask Dependencies

Intertask dependencies determine how the tasks (instances of task classes) in the workflow
are coordinated for execution. Other coordination aspects, such as concurrency control
among concurrent workflows, will be ignored for now and briefly discussed in Section
7. Two general types of dependencies are of interest: state dependencies and value
dependencies.

A state dependency specifies how a controllable transition of a task depends on the
current observable states of other tasks. A state dependency is specified as a rule con-
sisting of < left hand side > evaluator < right hand side >. Several complex
dependencies have been defined in the literature ([28], [10], [2], [20]). However, in the
environments in which related tasks in a workflow execute on autonomously developed
and often "closed" systems, we find that the BEGin-dependency, sEazam-dependency,
BEGIN-ON-COMMIT-dependency and BEGIN-ON-aBORT dependency of [10] are the most
relevant.

We express the dependencies such as those mentioned above using the evaluator EN-
ABT.~S, such that the left hand side includes a predicate over task states and the right
hand side refers to a controllable transition. For instance, the following state dependency
specifies that the s t a r t transition of r.2 can be enabled only after L1 has entered the d o n e

state.

[Ll,done] ENABLES [L2, start]

170 N. K R I S H N A K U M A R AND A. SHETH

ENABLES 2 is defined as follows : the event(s) corresponding to the (controllable)
transition(s) identified on the right hand side is enabled if and only if the event(s) leading
to the state(s) identified by the left hand side have occurred. Other evaluators can be
incorporated into WFSL as the need arises (the main impact would be on the scheduling
algorithms within the workflow controller: see Section 7).

The approach taken above is similar to E-C-A rules [12], where the occurrence of an
event (transition) and the Satisfaction of a condition leads to an action being triggered.
However, ECA rules use events on the left hand side, in contrast to states as in our case.
There are two small differences between the two approaches. First, the semantics of
having reached a state implies additional actions of having produced the output objects
(if appropriate) and logged them; approaches using transitions between the states on the
left hand side may or may not imply such actions. Second, since several events could
lead to the same state, one can minimize the number of rules by using the state instead
of naming each event.

A value dependency may optionally be associated with a state dependency to further
constrain the latter. The data that are referred to in the value dependency can be data
items that are the output of some task, program variables that keep track of some data
items in the workflow, constants, or the results of filter evaluations. When used in a
value dependency, a filter can also be used to determine the logical success or failure
of a previously terminated task (typically a done nontransactional task or a committed
transactional task). For example, the above state dependency can be further constrained
using a program variable outvaln4 and by using a filter function called "success" which
determines whether L1 has logically (i.e., at the application level) completed successfully:

[Ll,done] & (success(Ll.outputl) = TRUE) & (outvalL4 > 5)

ENABLES [L2, start]

The usual boolean and arithmetic operators can be used in value dependencies.

5.3. Input and Output Assignments

In a workflow, each task has to get data input(s) from either the output of some other
task, constants, program variables or the input to the entire workflow (compound task).
Thus, the workflow specification includes the association of inputs and outputs of each
task to those of some other tasks. As an example, output l of task T.1 fed to ±nputl of
task 52 is specified as:

Ll.outputl -> L2.inputl;

A program variable can be assigned to in a similar fashion. Program variables in a
WFSL program can be global or local to a compound task. For the purpose of simplicity
and to avoid problems of parallel assignment due to concurrent tasks, we assume that
each program variable can be assigned to at most once during run-time and that the
value of a program variable is undefined before it is assigned to. Program variables are
different from the input and output variables of tasks, since input and output variables

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 171

of tasks can be assigned to several times, as in the case when a task is restarted at the
workflow level (see Section 5.4 for an example). We do not yet support the capability
to address different versions. Hence the WFSL program allows at most one version of a
particular task instance to be executing at any time, and any reference to a input/output
variable of a task indicates that of the latest version. A local program variable or an
instance of a task class defined within a compound task can be referred to only within
that compound task. 3

The input and output assignments of a task are given in conjunction with the intertask
dependencies, since it is crucial to determine when the outputs referred to in these as-
signments are made available. We assume that only the parts of control dependencies
that refer to the states of tasks are evaluated before the (optional) data part of the depen-
dency corresponding to the output of the state can be evaluated. Furthermore, the data
dependency is enabled only when the control dependency evaluates to true.

The following rule indicates that 52 starts when 51 completes successfully and the value
of o u t v a l L 4 is more than 5, and that the input for L2 is available when L1 transitions to
done .

[Ll,done] & (success(Ll. outputl) : TRUE) & (outvalL4 > 5)

ENABLES [L2, start] % Ll.outputl -> L2.inputl ;

5.4. Examples

We discuss two examples to demonstrate some of the workfloW specification features.
The emPhasis in this section is not on the language but how the METEOR model flexibly
allows the integration of transactional and non-transactional simple and compound tasks.
The first example shows how the repeated occurrence of an error can be handled. :The
second example shows how a transactional compound task can be constructed and placed
within another compound task.

The first example has three non-transactional tasks, a, E, and c (Figure 6). When a is
done, c is started. If a encounters a system error, then B is started. When B is done,
then i is started up again. Notice that the relationship between a and B is similar to
that between a task and the corresponding failure handling task - when the task fails, the
failure handling task takes over, and once the latter completes, the original task takes
over. The workflow fails if c fails or B fails.

The workflow specification in Figure 7 defines the control and data flow between tasks
A, B and e (the line numbers axe just for reference and are not part of the syntax). Notice
the use of a filter to massage the input to the workflow. Line 5 indicates that the workflow
can make a transition to the done state when c reaches the done state. The workflow
enters the failed state if c has failed or if B has failed (line 6), or if there was some
problem during the initiation of the tasks (line 7). Notice that the following scenario can
occur : A moves to failed, B is started and then completes, then A is started, and so o n
(the assumption is that this terminates). When we refer to a state of A on the left hand
side of any of the rules (e.g., in line 4), the reference is to the currently "active" instance
when the rule is evaluated.

172 N . K R I S H N A K U M A R A N D A . S H E T H

Initial
COMPOUND TASK "(TASK B

WORKFLOWI ~"
TASK A ~1[

9 initial ?Init ia l / ' " " ~ E x ~ u t l n g •

< : J % : xe~uting

I i~ / ,X "l~ailed Do.e
~ ' " Executing , / .." k "' : -

• ,, ,'
I k d ~ , ~ - - ~ - ,' ~

• ".. , Failed Done ""- - .'
. : " ' : / 0 Initial

• . " . . : s a r c @ , ,
Failed l~ ~, Done " ' " ' " . .'""

" " I I ""- , , , . , ' " ~ ExecutitExecuting

" i "-" "- : -c "'" Fade .-- -"* Done
", I " ' " " . _ _ t

Figure 6. Workflow Example 1: Control F l o w

We now review the second example (Figure 8). The workttow is indicated in lines 10
to 14. WORKFLOWl contains a simple non-transactional task a and a compound transaction
Bc (described in lines 1-9). BC is composed of two simple open-2pc transactions B and c
that are done as a transactional unit. If either a fails or the transactional unit aborts, then
the workflow is said to have failed. The compound task BC has rules for a (non-standard)
two-phase commit between B and e. Rule 1 generates a global transaction id, that is
assumed to be propagated to the resource managers through the B and c. After B and c
have reached the done state, the workflow designer wishes to verify some data conditions
before deciding to commit the transaction (rules 4 and 5). This shows the flexibility of
WFSL. However, if all the workflow designer wants is a standard two-phase commit
between B and C, we can provide syntactic sugar to let the designer specify this without
using the rules. Rules 13 and 14 influence the fail transition of WOR~FLOW1.

We have thereby illustrated in this section how WFSL can be used to specify workflows
that contain both transactional and non-transactional units.

5.5. Advanced Features: Dynamic aspects of workflows

Suppose a specification of a workflow includes a set of tasks and their associated depen-
dencies. It is possible that based on some predicates which may include states or outputs
of tasks or external variables, some of those tasks are executed and some others are not.
We do not consider this scenario a dynamic workflow since the specification is static

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 173

typedef ... FCIF ;

typedef struct

{

int field_one ;

char field_two;

} * SPECIAL_REC ;

const NULL = 0 ;

simpleTaskType SIMPLE_NON_TRANSACTIONAL{ ... } ;

compoundTaskType COMPOUND_NON TRANSACTIONAL{ ... } ;

simpleTaskClass A_class SIMPLE NON TRANSACTIONAL

(input@{initial} FCIF inputl , output@{done} SPECIAL_REC outputl);

simpleTaskClass B_class SIMPLE NON TRANSACTIONAL

(input@{initial} SPECIAL_REC inputl , output@{done} FCIF outputl);

simpleTaskClass C_class SIMPLE NON TRANSACTIONAL

(input@{initial} SPECIAL_REC inputl , output@{done} SPE-

CIAL_REC outputl);

Filter FCIF fI(FCIF) ;

compoundTaskClass WORKFLOWI COMPOUND_NON_TRANSACTIONAL

(input@{initial} FCIF inputl , output{done, failed} SPECIAL_REC out-

putl);

{

A_class A ; B_class B ; C_class C ;

SPECIAL_REC varl ;

1 [WORKFLOWl,executing] ENABLES [A, start] %

fl(WORKFLOWl.inputl) -> A.inputl ;

2 [A, failed] ENABLES [B,start] %

A.outputl -> B.inputl ;

3 [B,done] ENABLES [A, start] %

B.outputl -> A.inputl ;

4 [A,done] ENABLES [C,start] %

A.outputl -> C.inputl ;

5 [C,done] ENABLES [WORKFLOWI,done] %

C.outputl -> WORKFLOWl.outputl ;

6 [C,failed]) I [B, failed] ENABLES [WORKFLOWI,fail] %

A.outputl -> WORKFLOWl.outputl ;

7 [A, start_err] I [B,start_err] I [C,start_err]

ENABLES [WORKFLOWI,fail] %

NULL -> WORKFLOWl.outputl ;

}

WORKFLOWI WFI ;

Figure 7. Workflow Specification Example 1

typedef char[2000] str ;

constant int ERROR = 0; constant int PARTIAL_SUCCESS = 1 ;

simpleTaskClass A_class SIMPLE NON TRANSACTIONAL

(input@{initial} str inputl , output@{done) str outputl) ;

simpleTaskClass TID_class SIMPLENON_TRANSACTIONAL

(output@{done) int outputl) ;

simpleTaskClass B_class TRANSACTIONAL_OPEN2PC

(in-

put@{initial} int il,input@{initial) TID tl,output@{done] int outputl)

simpleTaskClass C_class TRANSACTIONAL_OPEN2PC

(input int il, TID tl ; output@{done} int outputl) ;

Filter int fl(str) ; Filter int f2(str) ;

compoundTaskClass TRANS_BC COMPOUND_TRANSACTIONAL

(input@{initial} str inputl) ;

{ B_class B ; C_class C ; TID_class genTID ;

1 [TRANS_BC,executing] ENABLES [genTID,start] ;

2 [genTID,done] ENABLES [B, start] %

fI(TRANS_BC.inputl) -> B.il, genTID.outputl -> B.tl ;

3 [TRANS BC,executing] ENABLES [C,start] %

f2(TRANS_BC.inputl) -> C.il, genTID.outputl -> C.tl ;

4 [B,done] & [C,done] & (B.outputl > C.outputl) ENABLES

[B,prepare] & [C,prepare] ;

5 [B,done] & [C,done] & (B.outputl <= C.outputl) ENABLES

[B,abort] & [C,abort] ;
!

6 [B,prepared] & [C,prepared] ENABLES [B,commit] & [C,commit] ;

7 [B,committed] & [C,committed] ENABLES [TRANS_BC,commit];

8 [B,aborted]IENABLES [C,abort] & [TRANS_BC,abort];

9 [C,aborted] ENABLES [B,abort] & [TRANS_BC,abort] ;

• . . }

compoundTaskClass WORKFLOWI COMPOUND_NONTRANSACTIONAL

(input@(initial] str inputl , output@{fa±led,done} str outputl,

output@{failed} int output2) ;

{ A_class A ; TRANS_BC BC ;

i0 [WORKFLOWI, executing] ENABLES [A, start] %

WORKFLOWI.inputl -> A.inputl;

ii [A, done] & (success(A.outputl) = TRUE) ENABLES

[BC,start] % A.outputl -> BC.inputl ;

12 [BC,committed] ENABLES [WORKFLOWI,done] %

A.outputl -> WORKFLOWI.outputl;

13 ([A,done] & (success(A.outputl) = FALSE)) I [A, failed] ENABLES

[WORKFLOWI,fail] % ERROR -> WORKFLOWI.output2 ;

14 [BC,aborted] ENABLES [WORKFLOW, fail] % A.outputl -> WORKFLOWI.outputl,

PARTIAL_SUCCESS -> WORKFLOWl.output2 ;

• . . }

Figure 8. Workflow Specification Example 2

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 175

even though the run-time behavior of the workflow is dynamic (conditional execution of
statements can be defined using predicates in intertask dependencies).

Now consider the following telecommunications example. Suppose a customer requires
a digital link between three of his locations. Usually, such a link would require the
following steps: (a) assignment of loop inventory from each location to the local central
office, (b) the assignment of the central office equipment that connects with the loop
inventory, and then (c) the assignment of trunk equipment and the associated central
office equipment that connects the central offices together. The (a) steps for all three
locations can be done independent of each other and similarly the (b) steps. The (c) step
however first involves generating a route for the trunk equipment that would connect
the central offices together. This might result in further assignments of equipment at
intermediate central offices, and for some specific digital technologies, these assignments
have to be done in a specific order (together with data flow between these assignments)
to ensure proper connectivity. Note that since the number of possible tasks in the above
example is finite, the entire workflow above can be coded up in a static specification using
appropriate pre-conditions. However, enumerating all the conditions in a workflow that
contains all possible tasks is messy and tedious, and the workflow specification is likely
to be very long and incomprehensible. In addition, note that some complex procedures
like the generation of the routes between the central offices of the customer locations
are usually done by specialized software. The approach we take below allows us to
incorporate these procedures as tasks in the workflow.

We summarize the situations under which we believe a workflow is dynamic or which
are tedious to capture using a static "all-encompassing" specification:

1. A variable number of new instances of task types are added depending upon the
values of certain data items in the workflow.

2. New flow of data are added between pre-existing tasks, between new tasks and
between pre-existing and new tasks.

3. New control and data dependencies are added.

The following features in the language support the above requirements:

1. Arrays of task type instances, and syntactic sugar to refer to all the tasks or a subset
of the tasks.

2. General control modifiers that process the current graphs representing control and
data flows (see Section 7) and their inputs to add new tasks and dependencies to
the existing graphs (in the trivial case, the entire workflow can be a control modifier
with one node, but then this is a true closed legacy application!).

We handle arrays of task instances as follows. Suppose we have a sirapleTaskType
ARRAYCONTROL:

simpleTaskClass ACF_Class ARRAY_CONTROL

(input@{initial} FCIF inputl ;

output@{done} int numouts, FCIF outputl[MAXNUM])

176 N. KRISHNAKUMAR AND A. SHETH

Class ACRCZass takes an FCIF input and produces two outputs: a number and an
array of FCIF outputs. Suppose the former is the number of instances that need to be
executed to handle the multiple outputs being generated by the task. A program fragment
indicating how the information output by an instance of class ACF_Class is used by the
workflow designer as follows. We introduce the following two predicates in the language:
(fo ra l l i in a . .b) and (exists i in a. .b) tO quantify over elements in a set, where
the semantics of these predicates are as usual.

ACF_Class ACF ; A_Class A[MAXNUM] ;

B_Class B;

1 [ACF,done] ENABLES

(forall i in {l..ACF.numouts} [A[i],start]) %

(forall i in {l•.ACF.numouts} {ACF.outputl[i] -> A[i].inputl}) ;

2 (forall i in {l..ACF.numouts} [A[i],done]) ENABLES

[B,start] %

ACF•numouts -> B.inputl,

(forall in {l..ACF.numouts] A[i].outputl -> B.inputs2[i]) ;

3 [B,done] ENABLES [WFl,done] % B.outputl -> WFl.outputl ;

4 (exists i in {l..ACF.numouts] [A, failed]) ENABLES [WFl,fail] %

Line 1 above indicates that when ACE reaches the d o n e state, multiple instances of A
are started, and each one of the outputs of ACF is input to one A. Line 2 shows how B is
enabled when all the instances of A have reached the done state• Each of the outputs of
the instances of A are fed as an array input to B, along with the number of inputs. Line
4 indicates that the enclosing wFx fails if any of the A'S reach the f a i l e d state. This
example thereby shows how one can generate multiple task instances of the same

class, such that a restricted class of new dependencies and data flow can be added

between new and pre-existing task instances.

A more complex case is when arbitrary new dependencies and data flow can be gen-
erated and inserted into the workflow program• We take the approach that this involves
application-specific code that could arbitrarily modify the entire workflow. We therefore
introduce another control class called c o n t r o l C l a s s that indicates to the workflow con-
troller that in addition to its outputs, this task produces a new workflow specification
that has to be re-interpreted by the workflow controller. There is a naming problem that
arises here. The software that generates a modification to the workflow should know
about the current workflow program, and produce a new program that includes the same
names for task instances and possibly other new names for new tasks• If this software is
pre-existing code, a translator is required to translate the current graph specification to
the format accepted by the software and a reverse translator to convert back to WFSL. It
is assumed that no changes can be made to the declaration or state of pre-existing task
instances, except involving them in more control and data dependencies. Once the con-
trol modifier finishes execution, the workflow controller reinterprets the WFSL program,

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 177

Contract (FCIF_idl,FCIF_id2)

FCIF FCIF_idI,FCIF_id2 ;

{ int temp_qms_stat, iter ;

extern int did_commit() ;/*Function determining if

contract committed*/

TASK_EXECUTING() ;

iter = MAX_TRIES ; /* Try QMS call up to MAX_TRIES

times if system failure*/

do

{ EXEC QMS send_and_recv (FCIF_idl, FCIF_id2) ;

temp_qms_stat = qms_status ;

iter-- ;

)

while (temp_qms_stat == (QMS_FAILURE I I OSS--DOWN--FAILURE) I Iiter > 0)

if (iter ==0) TASK ABORTED() ; /* Abort due to system failure */

else if (did_commit(FCIF id2) = TRUE)

TASK COMMITTED(FCIF id2) ;

else TASK ABORTED() ; /* Abort due to actual abort

of contract at OSS */

Figure 9. Contract Task

and starts executing the workflow specification as before. An example is given in the
Appendix, and more details of how this is implemented is given in Section 7.

6. TSL

In this section we briefly describe how a task program is written. A task programmer
includes the following kinds of statements in his/her task program:

1. Interface specific statements : This includes statements to identify the interface and
to handle errors at the interface or processing entity.

. Processing entity specific task statements : These are statements of the task that need
to be executed against the processing entity. For instance, these might be embedded
SQL statements for databases, or contract specifications for OSSs.

. Statements for revealing the task (structure) state to the workflow controlling en-
tity : The task programmer explicitly includes macros within the program such as
TaSK_EXECUTING(/ and TASK_DONE() to indicate to the workflow controller that the
task has reached a particular state.

178 N. KRISHNAKUMAR AND A. SHETH

We consider an example task program that submits a contract to an OSS through a
queued message system called QMS (Figure 9). QMS is accessed by a transactional
RPC call from a client. We assume that the access to QMS is made partially transparent
using Embedded QMS calls (like Embedded SQL calls). We assume a s e n d _ a n d _ r e c v

construct in Embedded QMS to send a message to QMS and block until the correlated
reply comes back, or there is a system failure. Suppose the workflow designer assumed
con t rac t to be transactional, and the contract execution at the processing entity is also
transactional. However, since the submission of the contract is through the interface,
it is possible that the task completes successfully as far as the interface is concerned
(i.e., without a system error), but the task could have committed or aborted. Thus, if
the task does return successfully, the function d id_commi t () in the task program is used
to determine whether the contract committed or aborted. Notice how the task takes into
account the system errors of the interface and the processing entity. Furthermore, the
workflow controller does not know any details of the interface that this task is using.
Existing applications which are callable can be wrapped in such task code. The details
of the TSL macros are not covered in this paper due to lack of space.

7. Architecture and Workflow Execution Support

In this section, we sketch the run-time architecture of a workflow management system
that can support the model and the languages that we have discussed. A prototype of
such a system has been implemented at Bellcore 4. The run-time components (Figure 10)
include the following (we assume a message passing architecture, but that need not be
the case):

• A workflow controller that co-ordinates the execution of the worldtow based on the
specification in WFSL. If the workflow is static (i.e., there are no arrays of tasks, or
no cont ro lClass declaration), the workflow specification in WFSL can be compiled
into a controller executable. However, if the workflow can evolve dynamically, the
workflow specification has to be interpreted.

• Task managers that are responsible for starting up the TSL programs and perform
supervisory roles during forward recovery.

• A communications infrastructure for two purposes: (a) the controller and the task
managers have to interact reliably with one another, for which we use the messaging
facilities of a TP Monitor, and (b) native interfaces that allow task manager programs
to interact with processing entities.

• Filter function libraries that enable the massaging of data from one format to another,
extract useful information from complex formatted data, and the like. Filters can be
invoked locally within the workflow controller or remotely at auxiliary systems (using
the messaging infrastructure).

• A recovery management system that logs the state of individual tasks and the inputs
and outputs of tasks for the purpose of forward recovery.

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 179

i

Task Managers

,~: Task logs

Interfaces

~: Processing Entities

Figure 10. Run-time architecture

We now discuss the execution of the workflow controller. We first deal with the
simple case when the specification is interpreted. A workflow controller is started for
each instance of a workflow. The controller first reads in the specification of the workflow
and interprets the specification. The internal data structure for the workflow is two sets
of graphs, one for data flow and one for control flow. When the workflow instance
starts, it is assumed to be in the executing state. The controller then starts evaluating
the rules and decides on a controllable transition to enable. This transition could be
for a compound task or for a simple task. The controller then determines whether the
transition is a start transition. If so, for a simple task, it needs to start (or connect to)
a task manager that runs the task program (a directory service that maps task names
to the names of executables at specific machines). For a compound task, the controller
needs to record the start of the compound task and continue to evaluate the rules of
the "started" compound task. If the transition is not a start transition, the controller
enables the appropriate transition by either sending a message to the appropriate task
manager (for a simple task) or by simply recording the transition (for a compound task).
In both cases, the enabling of the transition is logged along with the inputs associated
with that event. When the task program changes its logical state (an event), it reports the
current state through the TSL macros back to the controller, which logs it. If the event
involves a transition to a state in which data can be made available to the controller,
then the data is logged and also sent to the controller. The controller then evaluates
relevant rules (involving the event in the pre-conditions, if any) and determines which
controllable transitions can be enabled again. (Several strategies have been discussed in
the literature, e.g., [2], [33], to determine how inter-task dependencies can be evaluated.)
This continues until the workflow has logically succeeded or logically failed.

In our environment, several of the systems use closed transaction monitors with queued
message inputs, so one cannot include them in an atomic transaction [22]. Transactional

] 80 N. KRISHNAKUMAR AND A. SHETH

compound tasks in our environment are limited to transactions that run on XA-compliant
databases, i.e., the database libraries support xa calls [22]. Transactional com-
pound tasks are executed as follows. The individual databases are registered as resource
managers with the workflow controller when the task manager for each corresponding
transaction is started. The workflow controller functions as the transaction manager: the
workflow specification has the responsibility of generating a global transaction identi-
fier (t r i d) for the whole transaction and then the workflow controller co-ordinates a
two-phase commit between the involved resource managers, through the task managers.
Essentially, the macro code for the tasks (running within the task manager process) issues
the xa calls for prepare, and commit (or abort), when these controllable transitions
are enabled by the workflow controller. In case the databases are not XA-compliant but
an open transaction manager governs them, it is possible to use the gateway techniques
prescribed in [22] to interact with the database.

The next issue is that of incorporating dynamism into workflows. Our approach in-
cluded syntax for specifying the enabling of transitions of arrays of tasks, by quantifying
over a set of integers respresenting the indices of those tasks. On the start transitions of
the tasks, the workflow controller instantiates the control graph with a fixed number of
concurrently executing task instances of a particular class whose input/output behaviors
are similar. The f o r a l l and e x i s t predicates are used not only as a means of quan-
tification, but also as syntactic sugar. If a f o r a n quantifies over an entire rule (both
control and data flow), then several independent instances of the rule are assumed by
the workflow controller, for each index quantified in the f o r a l l . This allows several
instances of the same rule to fire independently of one another. For instance, consider the
following code fragment that enables the compensating transaction for A [i] if A [i I has
already committed and the compound task to which a belongs has to be compensated.
The input to compA[i] is the same as that for a [i] .

(forall i in {l..num} [WF,compensate] & [A[i],committed]

ENABLES [compA[i],start] % A[i].inputl -> compA[i].inputl ;

In this case, if nura is 2, then two rules for A [1] and A [2] respectively are assumed by
the workflow controller. This allows the two compensations to be executed independent
of one another. If the foralZ quantifies over only the control part of a rule, then the
workflow controller assumes several rules with differing control parts based on the indices
referred to in the quantification, and with same data parts. If the f o r a l l quantifies only
over the left hand side of the control part of a rule, then a logical AND of all the instances
of the left hand side is taken (logical OR for ex is t s) .

For more general dynamism, the c o n t r o l c l a s s can be used. We assume that since this
can modify the graphs of control and data flow dependencies, at most one such instance
of this class can be executing at any point of time. When such an instance is started, the
workflow controller provides as an additional input to the task a representation of the
two graphs. When the task completes execution, it provides the workflow controller with
two new graphs depicting the new control f o w and the new data flow. After instantiating
these graphs, the workflow controller resumes the evaluation of the various control and
data dependencies between tasks. The c o n t r o l C l a s s can also produce typed outputs that

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 181

can be used in the workflow. Thus after the graph has been modified, the instance is
treated as just any other task when it is done and it has outputs that can be consumed in
the workflow. (see Appendix for a dynamic workflow example).

To support forward recovery in case the workflow controller or the task managers crash,
the task states, and inputs and outputs are logged. If either the workflow controller or
the task managers fail, then when they restart, a recovery mechanism is used to recover
their states at the time of failure. Any task manager that fails and recovers must interact
with the workflow controller to resynchronize with the controller (it is possible that
another task manager has been started up in the meantime to handle the same task).
The recovery mechanisms used are documented in [27] and [11]. Notice however that
interactions between task managers and the interfaces to processing entities might not be
reliable. It is therefore possible that the same tasks may be resubmitted to a processing
entity (possibly if the task manager detects a communications failure). It is imperative
that either the task be idempotent, i.e, the task can be repeated with the same effect,
or some other mechanism prevents the task from being executed again. OSSs and their
interfaces simulate the idempotence property - any task that is submitted to the interface
has a unique identifier and the OSSs do not execute it if already executed. Consider
now a standard DBMS transaction. If the logging of the start of the task at the workflow
controller and the database access of the task is run as part of the same (top-level)
"transaction", then the task needs to be resubmitted only if it is not recorded in the
workflow controller log. If the task is non-transactional, then either the task should itself
be idempotent or the task manager must be able to verify that the resubmitted task has
or has not been done. If neither is true, human assistance would become necessary.

We now briefly address the issues related to concurrency control and enforcement of
inter-task dependencies. Traditionally, the correctness of a database system has been
defined in terms of the serializability of transactions and this has been ensured by using
the ACID properties. Appropriate concurrency control and recovery techniques are used
to implement ACID transactions. In multi-database systems, several application-specific
relaxed notions of serializability and isolation have been developed to accommodate
the semantics and architecture of the application. Our environment with its mix of
transactional and non-transactional tasks presents yet another difficult example where
serializability and isolation of workflows cannot be preserved. For transactional tasks,
the unit of atomicity and isolation is the task itself since the systems at which these tasks
execute ensure isolation at the system. Non-transactional tasks do not have any isolation
or serializability properties, so entire workflows cannot be serializable with respect to
one another. In the case of workflows which only deal with transactional tasks, we
have proposed elsewhere concurrency control and recovery mechanisms that make use
of application-specific properties like limited commutativity and relaxed isolation [26].

Another requirement is that the specification of the workflow be correct, i.e., the rules
guarantee progress and safety properties that the workflow will eventually terminate.
In [2], attributes (forcible, rejectable and deIayable) are associated with controllable
transitions to establish safety and termination properties of a workflow. Such attributes are
needed by the workflow controller for the correct enforcement of inter-task dependencies
during run-time (also see [20] and [21] for related work.)

182 N. KRISHNAKUMAR AND A. SHETH

8. Conclusions

We have discussed the issue of supporting workflow management in environments that
involve heterogeneous tasks such as applications that access remote servers, scripts,
database transactions as well as human tasks. The tasks may be submitted through a
variety of interface systems such as those based on persistent queues, RPCs, transactional
RPCs, etc. The processing entities that process the tasks include script interpreters,
application systems with their own databases, DBMSs, and humans (who may in turn
be supported by GUI interfaces and use other application software). We discussed a
workflow model and "intermediate" languages used in the METEOR project.

The language WFSL specifies the application-level issues of workflows. WFSL is
characterized by task type declarations that capture the observable behavior of the task
using task structures and data inputs and outputs, task class and instance declarations to
support specification reuse, inter-task dependencies and data exchange statements that
express task coordination and data flow requirements, and filters for data manipulation.
TSL is used to specify individual tasks while accommodating some heterogeneities related
to interfaces and processing entities in a distributed environment. TSL supports macros
that allow tasks to reveal their task structures to the workflow management system, and
also enable logging for recovery. Furthermore, task programs are designed to handle
interface or processing entity related system errors.

We have also briefy discussed a system architecture for the workflow management
aspect of METEOR. A prototype of METEOR was completed and used to demonstrate
the basic functionality to prospective clients by using a real multi-system application,
and to get further requirements. A rudimentary graphical specification interface was also
implemented. One approach to the workflow controller part of the system was discussed
in [2] and later implemented at MCC, while another was completed at Bellcore. A more
comprehensive prototype system is currently being implemented by the collaborators
in the METEOR project. We have also initiated an effort to develop a comprehensive
graphical environment for specifying, testing, simulating and maintaining the workflows.

Several issues need further work. WFSL has been extended to accommodate some ap-
plications that have dynamic workflows and need more expressiveness from the language
aspect. The extensions until now have dealt with specifying more flexible data or task
types. While we support complex value dependencies, we have restricted the "control"
aspect of WFSL (based on application needs) by using only the ENABr.ES evaluator. We
plan to extend WFSL to include more evaluators as and when the need arises and partic-
ularly when non-transactional tasks are involved. We discussed an example that showed
how a compound task can be composed of two transactional tasks with open two-phase
commit by writing rules for the commit explicitly. If this was a "vanilla" transaction,
then we could provide some syntactic sugar in WFSL to relieve the workflow designer
from specifying the rules. We are looking at examples to see what kind of syntactic
sugar might be needed. We have attempted to address some instances of heterogeneity
in our environment. Several other heterogeneities exist such as those based on transaction
and concurrency control mechanisms, semantic heterogeneity, and the like. We need to
address such issues. Support for specifying business rules and roles is also being con-

M A N A G I N G H E T E R O G E N E O U S MULTI-SYSTEM TASKS 183

sidered motivated by requirements for workflow automation in healthcare environments.
We are also investigating how a workflow in WFSL can be evaluated for the properties
of progress and safety.

Acknowledgments

The METEOR technical team at Bellcore that included the authors and Henri Weinberg
and Chris Wood, and our long time collaborator Prof. Marek Rusinkiewicz have had
significant influence on this work. Andrzej Cichocki implemented a prototype system
based on the architecture discussed in this paper, while Henri Weinberg implemented
a limited graphical workflow specification prototype. Linda Ness's technical inputs,
comments and guidance, and our past collaborations with MCC (M. Huhns, M. Singh,
C. Tomlinson and others), Ameritech and ETH, Zurich is also acknowledged• Our special
thanks to all application experts and developers at Bellcore for their participations in a
task force, for sharing their future application requirements, and for informally reviewing
our work.

Appendix

A dynamic workflow example

The following example performs service provisioning, i.e. the assignment of inventory
for a digital link between several customer locations. The input to the workflow program
is a service order. For each customer location specified, the loop inventory from the
customer location to the nearest central office facility is first assigned, and then inventory
at each central office for connecting to the assigned loop. Then a routing task figures out
what trunk lines and intermediate central offices are needed to connect all the customer
locations (~x~r~r~ is the maximum number of such locations assignable on a service order)
and their adjoining central offices together. The input is initially parsed by the LoopC
task, which determines how many customer locations need to be connected and what
their adjoining central offices are. This task also produces an appropriate FCIF output
for each loop assignment task, Loop. After assigning the loops, the Route task is started
that determines intermediate trunk lines and additional central offices. Furthermore, the
loop assignments determine in what order the trunks and central offices are assigned. In
short, Route is an instance of modifyControlClass, that adds data flow and dependencies
between the tasks. When Route is done, the central office assignments can be done. If
any of the steps abort, the workflow is compensated, i.e. all other steps in the workflow
that have committed are compensated too. Notice the complex data flow between the
tasks.

simpleTaskClass LoopCtrlClass ARRAY_CONTROL

(input@{initial} FCIF inputl,output@{done} int numouts,

output@{done} FCIF output[MAY~UM]) ;

184 N. KRISHNAKUMAR AND A. SHETH

modifyControlClass RouteClass MODIFY CONTROL

(input@{initial} FCIF inputs[MAXNUMS],

output@{done} FCIF outputs[MAXiNIIMS]);

simpleTaskClass LoopClass SIMPLE_TRANSACTIONAL

(input@{initial} FCIF inputs[MAXNUM],

output@{committed,aborted} FCIF outputl) ;

simpleTaskClass compLoopClass SIMPLE_TRANSACTIONAL ... ;

simpleTaskClass SwitchClass SIMPLE_TRANSACTIONAL ... ;

simpleTaskClass compSwitchClass SIMPLE_TRANSACTIONAL ... ;

compoundTaskClass WFI COMPOUND_NON_TRANSACTIONAL

(input@{initial} FCIF inputl , output@{done} FCIF outputs[MAXNUM])

{ LoopCtrlClass LoopC ;

LoopClass Loop[MAXNUM] ;

compLoopClass compLoop[MAXNUM] ;

SwitchClass Switch[MAXNUM] ;

compSwitchClass compSwitch[MA_X/qUM] ;

RouteClass Route ;

[WFl,executing] ENABLES [LoopC,start] % WFl.inputl -> LoopC.inputli

[LoopC,done] ENABLES (forall in {l..LoopC.numouts} [Loop[i],start])%

(forall i in {l..LoopC.numouts} LoopC.outputl[i] -> Loop[i].inputl);

(forall i in {l..LoopC.numouts}[Loop[i],committed]) ENABLES [Route,start]%

(forall i in {l..LoopC.numouts} Loop[i].outputl -> Route.inputs[i]);

[Route,done] ENABLES (forall i in {l..LoopC.numouts} [Switch[i],start])%

(forall i in {l..LoopC.numouts} Route.outputs[i] -> Switch[i].inputl) ;

(forall i in {l..LoopC.numouts} [Switch[i],committed]) -> [WFl,done] %

(forall i in {l..LoopC.numouts} Switch[i].outputl-> WFl.outputs[i]);

// Failure cases when some task aborts, and the other

// tasks have to be compensated for

[LoopC,failed] ENABLES [WFl,compensated] ; // No task to compensate

[Route,failed] ENABLES [WFi,compensate] ;

(exists i in {l..LoopC.numouts} [Loop[i],aborted] I [Switch[i],aborted])

ENABLES [WFl,compensate] ;

(forall i in {l..LoopC.numouts} [WFl,compensate] & [Loop[i],committed]

ENABLES [compLoop[i],start] % Loop[i].inputl -> compLoop[i].inputl);

(forall i in {l..LoopC.numouts} [WFl,compensate] & [Switch[i],committed]

ENABLES [compSwitch[i],start]%Loop[i].inputl -> compSwitch[i].inputl);

(foral{ i in {l..LoopC.numouts} ([compLoop[i],committed] I

[Loop[i],aborted]) & ([compSwitch[i],committed] 1 [Switch[i],aborted]))

ENABLES [WFl,compensated] ;

MANAGING HETEROGENEOUS MULTI-SYSTEM TASKS 1 8 5

Notes

1. The METEOR project was initiated at Bellcore. Current collaborators include the University of Georgia
and the Univerity of Houston.

2. ENABLES is a combination of the "--+" and "<" primitives [28]: If ex and e2 are transitions and el
leads to the state s l , then s l ENABLES e2 is equivalent to el ~ enable(e2), enable(e2) ---+ el and
el < e2, where enable(e) indicates the action of the workflow controller enabling e.

3. The ConTracts model does provide support for versioning, and also creates a new version of a context
every time a new output is produced by a task.

4. The prototype supports all key components and features discussed here, but (a) implemented limited types
of task managers, and (b) several implementation choices allowed a simple implementation but at the
expense of performance.

References

1. M. Ansari, L. Ness, M. Rusinkiewicz, and A. Sheth. Using Flexible Transactions to Support Multi-System
Telecommunication Applications. In Proc. of the 18th VLDB Conference, August 1992.

2. E Attie, M. Singh, A. Shetb, and M. Rusinkiewicz. Specifying and Enforcing Intertask Dependencies.
In Proc. of the 19th VLDB Conference, 1993.

3. E Bernstein, E Gyllstorm and T. Wimberg. STDL - A Portable Language for Transaction Processing. In
Proc. of the 19th VLDB Conference, 1993.

4. A. Biliris, S. Dar, N. Gehani, H.V. Jagadish and K. Ramamritham ASSET: A system for supporting
extended transactions. In Proc. of the 1994 ACM SIGMOD Conference on Management of Data, 1994.

5. M. Bregolin. Master's thesis, University of Houston, 1993
6. Y. Breitbart, A. Deacon, H.-J. Schek, A.Sheth, and G. Weiknm Merging Application-centric and Data-

Centric Approaches to Support Transaction-oriented Multi-system Workflows. In SIGMOD Record,
September 1993

7. O. Bukhres, J. Chen, W. Du, A. Elmagarmid and R. Pezzoli InterBase: An Exceution Environment for
Heterogeneous Software Systems. In IEEE Computer, Vol. 26 No. 8, August 1993.

8. J. Chen, O. Bukltres, and A. Elmagarmid. IPL: A Multidatabase Transaction Specification Language. In
Proc. of the 13th Intl. Conf. on Distributed Computing Systems, Pittsburgh, PA, May 1993.

9. J. Chen, Bukhres, O.A. and Sharif-Askary, J. A Customized Multidatabase Transaction Management
Strategy. In 4th International Conference on Database and Expert Systems Applications, September 6-8,
1993, Prague, Czech Republic.

10. E Chrysanthis and K. Ramamritham. A Formalism for Extended Transaction Models. In Proc. of the
17th VLDB Conference, 1991.

11. A. Cichocki. A prototype of a workflow execution controller Summer intern report and documentation,
Databases and Formal Methods Research Group, Bellcore, 1994.

12. U. Dayal, M. Hsu, and R. Ladin. Organizing Long-Running Activities with Triggers and Transactions.
In Proc. of ACM SIGMOD Conf. on Management of Data, 1990.

13. U. Dayal, M. Hsu, and R. Ladin. A Transactional Model for Long-Running Activities. In Proe. of the
17th VLDB Conference, September 1991.

14. U. Dayal and M. Shan. Issues in Operation Flow Management for Long Running Activities. In [15].
15. M. Hsu, editor. Special Issue on workflow and Extended Transaction Systems, 16 (2), June 1993.
16. A. Elmagarmid, editor. Transaction Models for Advanced Database Applications. Morgan-Kanfmann,

February 1992.
17. A. Elmagarmid, J. Chen, and O. Bukhres. Remote System Interfaces : An Approach to Overcome

Heterogeneous Barriers and Retain Local Autonomy in the Integration of Heterogeneous Systems. the
InK Journal on Intelligent and Cooperative Information Systems, 1993.

18. A.K. Elmagarmid, Y. Leu, W. Litwin, and M. Rusinkiewicz. A Multidatabase Transaction Model for
InterBase. In Proc. of the 16th VLDB Conference, 1990.

19. H. Garcia-Molina, D. Gawlick, J. Klein, K. Kleissner, and K. Salem. Coordinating Multi-transaction
Activities. Technical Report CS-TR-247-90, Princeton University, February 1990.

186 N. KRISHNAKUMAR AND A. SHETH

20. D. Georgakopoulos, M. Hornick, E Krychniak, and E Manola. Specification and Management of Extended
Transactions in a Programmable Transaction Environment. In Proc. of the Intl. Conf. on Data Engineering,
February 1994.

21. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Management: From Process
Modeling to Workflow Automation Infrastructure. in this issue.

22. J. Gray and A. Reuter. Transaction Processing: Concepts and Techniques Morgan Kaufman, 1993.
23. R. Gunthor. Extended Transaction Processing Based on Dependency Rules. In Proc. of the R1DE-IMS

'93: Intl. Workshop on Multidatabase Systems, April 1993.
24. M. Hsu, R. Obermarck, and R. Vuurboom. Integration and Interoperability of a Multimedia Workflow

Model and Execution. In [15].
25. Y. Halabi et. al. Narada: An Environment for Specification and Execution of Multi-System Applications.

In Proc. of the 2nd Intl. Conf. on Systems Integration, 1992.
26. W. Jin, L. Ness, M. Rusinkiewicz, A. Sheth. Concurrency Control and Recovery of Multidatabase Work

Flows in Telecommunication Applications. In Proc. of ACM S1GMOD Conf. on Management of Data,
May 1993.

27. W. Jin, N, Krishnaknmar, L. Ness, M. Rusinkiewicz, and A. Sheth. Multidatabase transactions in the
telecommunications environment: Modeling, Concurrency Control and Recovery Issues Bellcore Tech-
nical Memorandum, September 1993.

28. J. Klein. Advanced Rule Driven Transaction Management. In Proe. of the IEEE COMPCON, 1991.
29. N. Krishnakumar and A. Sheth. Specifying Multi-system Workflow Applications in METEOR. Comp.

Sc. Tech. Rep. TR-CS-02, Univ. of Georgia, September 1994.
30. D. McCarthy and S. Satin. Workflow and Transaction in InConcert. In [15].
31. R. Medina-Mora, H. Wong, and E Flores. ActionWorkflow TM as the Enterprise Integration Technology.

In [15].
32. M. Rnsinkiewicz, S. Osterman, A. Elmagarmid, and K. Loa, The Distributed Operational Language for

Specifying Multisystem Applications. In Proc. of the 1st Intl. Conf. on Systems Integration, 1990.
33. M. Rusinkiewicz and A. Sheth. Specification and Execution of Transactional Workflows. In Modern

Database Systems: The Object Model, Interoperability, and beyond, W. K/m, Ed., Addison-Wesley/ACM
Press, 1994.

34. E Schwenkreis. APRICOTS - A prototype implementation of a ConTract system: Management of the
control flow and the communications system In Proc. 12th Symposium on Reliable Distributed Systems,
1993.

35. A. Sheth and M. Rusinkiewicz. On Transactional Workflows, In [15].
36. C. Tomlinson et. al. Workflow Support in Carnot. In [15].
37. H. Wachter and A. Reuter. The ConTract Model. Chapter 7, In [16], 1992.
38. G. Weikum and H.-J. Schek. Concepts and applications of multilevel transactions and open nested

transactions. Chapter 13, In [16].

ActionWorkflow is a trademark of Action Technologies, Inc.

