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Abstract. Several data replication strategies have been proposed to provide high data availability for 
database applications. However, the trade-offs among the different strategies for various workloads 
and different operating modes have not been studied before. In this paper, we study the relative 
performance of three high availability data replication strategies, chained deelustering, mirrored disks, 
and interleaved declustering, in a shared nothing database machine environment. In particular, we 
have examined (1) the relative performance of the three strategies when no failures have occurred, 
(2) the effect of load imbalance caused by a disk or processor failure on system throughput and 
response time, and (3) the tradeoff between the benefit of intra query parallelism and the overhead 
of activating and scheduling extra operator process. Experimental results obtained from a simulation 
study indicate that, in the normal mode of operation, chained declustering and interleaved declustering 
perform comparably. Both perform better than mirrored disks if an application is I/O bound, but 
slightly worse than mirrored disks if the application is CPU bound. In the event of a disk failure, 
because chained declustering is able to balance the workload among all remaining operational disks 
while the other two cannot, it provides noticeably better performance than interleaved declustering 
and much better performance than mirrored disks. 
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1. Introduction and motivation 

Most  da t abase  m a n a g e m e n t  sys tems e m p l o y  a c o m b i n a t i o n  of  a d i sk-based  log 
t oge the r  with per iod ic  checkpoin t ing  of  m e m o r y - r e s i d e n t  da ta  to insure  the  
integri ty and availabili ty o f  the  da tabase  in the  event  of  disk or  sys tem fai lures.  
T h e s e  t echn iques  cannot ,  however ,  satisfy the  availabili ty r e q u i r e m e n t s  of  cer ta in  
da t abase  appl ica t ions  because  the  recovery  t ime  in the  event  o f  a m e d i a  fa i lure  
can  be  in to lerably  long and the  fact,  tha t  dur ing the  recovery  per iod ,  da ta  is 
unavai lable .  

To achieve  a very  high deg ree  of  da ta  availability, two basic  t echn iques  a re  
cur ren t ly  be ing  used.  In  the  first, mul t ip le  copies  (usually two)  of  the  s a m e  da ta  
i t em are  s to red  on disks accessible by dif ferent  processors .  W h e n  one  copy  fails, 
the  o the r  copy  can con t inue  to be  used (if b o t h  copies  are  upda t ed  synchronous ly)  
and,  unless bo th  copies  fail s imul taneously ,  the  fa i lure  will be  t r a n s p a r e n t  to  
users  o f  the  sys tem and no in te r rup t ion  of  service will occur.  E x a m p l e s  of  
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this mechanism include mirrored disks[2, 18], interleaved declustering [27], the 
inverted file strategy [6], and chained declustering [15]. 

In the second approach, the data, along with the redundant error detec- 
tion/correction information (usually parity bytes), is spread across an array of 
disk drives. When errors are discovered the redundant information can be used 
to restore the data and application programs can continue using the data with 
minimal interruption. Strategies based on this approach include synchronized 
disk interleaving [19], redundant array of inexpensive disks (RAID) [22], redun- 
dant array of distributed disks (RADD)[25], and parity striping of disk arrays 
[121. 

Examples of these approaches can be found in commercial systems today. 
For example, Tandem's NonStop SQL database machine uses mirrored disks, 
Teradata's DBC 1012 database machine employs interleaved declustering, and 
IBM's AS400 system uses a disk array. 

While, traditionally, the performance of a computer system is measured both 
in terms of response time and throughput, in a multiprocessor system that 
provides resiliency from hardware and software failures, performance can be 
measured in two different operating modes: the normal mode, with no failed 
components, and the failure mode, in which one or more processors of disks have 
failed. When operating without any failures, [12] demonstrates that mirrored 
disks (an identical copy based strategy) provides better performance than RAID 
for OLTP applications and [5] demonstrates that for small requests (less than 
one track of data), a mirrored disk mechanism provides higher disk throughput 
(Mbyte/sec/disk) than RAID. Since I/O requests in most database applications 
almost always transfer less than one track of data, these results seem to indicate 
that identical copy mechanisms will generally provide superior performance for 
database applications. 

In the failure mode of operation, the same conclusion holds because the 
remaining copy can continue to be used and, with proper load balancing, system 
performance will degrade only slightly. On the other hand, with a disk array, 
when a query needs to access data on the failed disk/copy, the data must be 
reconstructed on the fly. This process requires accessing all the remaining disks 
in the array in order to satisfy a single disk request. In such cases, the failed disk 
array will be restricted to serve only one request at a time and its performance 
will degrade significantly. 

Throughout this paper, We focus on multiprocessor database systems that 
employ a "shared-nothing" architecture [24]. For such systems, the application 
of horizontal partitioning (i.e., declustering) techniques [8, 21, 23, 27] facilitates 
the successful application of inter and intraquery parallelism in the normal mode 
of operation[9, 26]. However, when a failure occurs, balancing the workload 
among the remaining processors and disks can become difficult, as one or more 
nodes (processor/disk pairs) must assume the workload of the component that 
has failed. In particular, unless the data placement scheme used allows the 
workload of the failed node to be distributed among the remaining operational 
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nodes, the system will become unbalanced and the response time for a query may 
degrade significantly even though only one, out of perhaps 100 nodes, has failed. 
In addition, the overall throughput of the system may be drastically reduced 
since a bottleneck may form. 

In spite of increasing demand for high availability in database applications, the 
relative performance of various identical copy based high availability schemes 
is still not well understood. In this paper, we study the performance of the 
mirrored disks(MD), interleaved declustering (ID), and chained declustering 
(CD) strategies using a simulation model of Gamma database machine [10]. 
We evaluate the performance of the three high availability strategies under a 
number of different workload assumptions. In particular, we have examined 
(1) the relative performance of the three mechanisms in the normal mode of 
operation, (2) the effect of load imbalance caused by a disk or processor failure 
on system throughput and response time, and (3) the tradeoff between the benefit 
of intraquery parallelism and the overhead of activating and scheduling extra 
operator processes. 

The organization of the rest of the paper is as follows. In the next section, 
the three high availability strategies are described. Our simulation model is 
described in Section 3. The results of our simulation experiments are presented 
and analyzed in Section 4. Our conclusions and future research directions are 
contained in Section 5. 

2. Existing high availability strategies 

In this section, we briefly describe the three data replication schemes studied in 
this paper: mirrored disks [2, 3], interleaved declustering [7, 27], and chained 
declustering [15]. Each scheme stores two identical copies of each relation on 
different disks and each is able to sustain a single node (disk or processor) 
failure. 

2.1. Tandem's mirrored disks architecture 

In Tandem's Non Stop SQL system [26], each disk drive is connected to two I/O 
controllers, and each I/O controller is connected to two processors, thus providing 
two completely independent paths to each disk drive. Furthermore, each disk 
drive is "mirrored" (duplicated) to further ensure data availability. Relations 
are generally declustered across multiple disk drives. For example, Figure 1 
shows relation R partitioned across four disks. -Ri represents the ith horizontal 
fragment of the first copy of R and ri stands for the mirror image of _R/. As 
shown in Figure 1, the contents of disks 1 and 2 (and 3 and 4) are identical. 
Read operations can be directed (by the I/O controller) to either drive but write 
operations must be directed to both drives in order to keep the contents of both 
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Figure 1. Data placement with tadem's mirrored disk scheme. 

disks identical, causing the two disk arms to become synchronized on writes [1]. 

When a disk in a mirrored pair fails, the remaining disk can assume the 
workload of the failed drive and, unless both disks fail simultaneously, data will 
always be available. The actual impact of a failure on the performance of the 
system depends on the fraction of read and write operations. If most I/Os are 
reads, losing a drive may result in doubling the average I/O time because only 
one disk arm is available. On the other hand, if most I/Os are write operations, 
the impact of a failure may be minimal [1]. 

The failure of a processor will, however, almost always have a significant 
negative impact on performance. Consider the failure of processor P1 in Figure 
1. While the data on disks 1 and 2 will remain available, processor P2 will 
have to handle all accesses to disks 1 and 2 as well as disks 3 and 4 until P1 is 
repaired. If P2 is already fully utilized when the failure occurs, the response time 
for queries that access data on either pair of drives may double if the system is 
CPU bound. 

2.2. Teradata's interleaved declustering scheme 

In the Teradata database machine [27], the processors are divided into clusters 
of 2 to 16 processors (one or two disk drives may be attached to each processor). 
Tuples in a relation are declustered among the drives in one or more clusters 
by hashing on a "key" attribute. The tuples of a relation stored on a disk are 
termed a fragment. Optionally, each relation can be replicated. In this case, one 
copy is designated as the primary copy and the other the backup copy. 

The tuples in each primary fragment are stored on one node. For backup 
fragments Teradata employs a special data placement scheme termed interleaved 
declustering [7, 27]. If the cluster size is N, each backup fragment will be 
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cluster 0 
1 2 

cluster 1 
Node 0 3 4 5 6 7 

Primary Copy R0 R I R2 R3 R4 R5 R6 R7 

Backup Copy r0,0 tO. 1 r0.2 r4.0 r4.1 r4.2 
rl.2 r1.0 rl.I r5.2 rS.0 rS.1 
r2.1 r2.2 r2.0 r6. l r6.2 r6.0 
r3.0 r3.1 r3.2 r7.0 r7.1 r7.2 

Figure 2. In ter leaved decluster ing (cluster size N = 4). 

subdivided into N - 1 subfragments each of which will be stored on a different 
disk within the same clus ter-but  not the disk containing the primary fragment. 
In Figure 2, a relation R is declustered across eight disk drives and N = 4. (R~ 
represents the ith primary fragment whereas rld represents the j th subfragment 
of the i backup fragment of R 0. 

When a node failure occurs, interleaved declustering is able to do a better job 
of balancing the load than the mirrored disk scheme since the workload of the 
failed node will be distributed among N -  1 nodes. However, this improvement 
in load balancing is not without a penalty. In particular, the probability of 
data being unavailable increases proportionately with the size of the cluster [15]. 
During the normal mode of operation, read requests are directed to the fragments 
of the primary copy and write operations update both copies. In the event of 
a CPU or disk failure that renders a fragment of the primary copy unavailable, 
the corresponding fragment of the backup copy will be promoted to become the 
primary (active) fragment and all data accesses will be directed to it. 

2.3. Chained declustering 

With chained declustering [15], two physical copies (a primary and a backup) of 
each relation are declustered over a set of disks such that the primary and backup 
copies of a fragment are always placed on different nodes. Nodes are divided into 
disjoint groups called relation-clusters and tuples of each relation are declustered 
among the drives that form one of the relation-cluster. Optionally, the disks in 
each relation-cluster can themselves be sub-divided into smaller groups termed 
chain-clusters. A small system may consist of only one relation-cluster, while a 
large system may contain several. For purposes of simplicity, in this paper we 
assume that a relation-cluster contains all of the disks in the system and that it 
is not subdivided into multiple chain-clusters. 

The data placement algorithm for chained declustering operates as follows. 
Assume that there are a total of M disks numbered from 0 to M -  1. For every 
relation R, the ith primary fragment is stored on the {[i + C(R)] mod M}th 
disk, and the ith backup fragment is stored on the {[i + 1 + C(R)] mod M}th 4 
disk. The function C(R) allows the first fragment of relation _~ to be placed on 
any disk within a relation-cluster while the 1 in the second formula is used to 
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Node 0 1 2 3 4 5 6 7 

Primary Copy R0 R1 R2 R3 R4 R5 R6 R7 

Backup Copy r7 tO r I r2 r3 r4 r5 r6 

Figure 3. Chained  declustering (relation cluster s ize=8).  

ensure that the primary and backup copies of a fragment are placed on different 
disks. As an example, consider Figure 3 where M, the number of disks in the 
relation-cluster, is equal to 8 and C(R) is 0. The tuples in the primary copy of 
relation R are declustered using one of Gamma's three horizontal partitioning 
strategies with tuples in the ith primary fragment (designated /~) stored on the 
ith disk drive The backup copy is declustered using the same partitioning strategy 
but the ith backup fragment (designated ri) is stored on (i + 1)th disk (except 
r7 which is stored on 0th disk). In the figure, R/ and ri contain identical data. 

With the above data placement strategy, a relation will be unavailable only if 
two (logically) adjacent disks within a relation-cluster are down at the same time. 
For example, suppose that node 1 has failed. If node 0 or node 2 also fails 
before node 1 is repaired, then some data will be unavailable. Any subsequent 
node failure other than node 0 or node 2 (i.e., nodes 3 to 7) will not compromise 
the availability of data. 

During normal operation, reads are directed to the fragments of the primary 
copy and writes update both copies. In the case of a single node (processor or 
disk) failure chained declustering is able to distribute the workload of the cluster 
uniformly among the remaining operational nodes. As illustrated by Figure 4, 
with a cluster size of 8, when a processor or disk fails, the load (read portion 
of the workload) on each remaining node will increase by one seventh by using 
both the primary and backup fragments for read operations. For example, when 
node 1 fails, the primary fragment R1 can no longer be accessed and thus its 
backup fragment rl on node 2 must be used for processing queries that would 
normally have been directed to R1. However, instead of requiring node 2 to 
process all accesses to both R2 and rl, chained declustering offloads six sevenths 
of the accesses to R2 by redirecting them to r2 at node 3. In turn, five sevenths 
of access to R3 at node 3 are sent to r3 instead. This dynamic reassignment 
of the workload results in an increase of one seventh in the workload of each 
remaining node in the cluster. Since the relation-cluster size can be increased 
without compromising data availability, it is possible to make this load increase 
as small as desired. Refer to [15] for a detailed description of the load balancing 
algorithm. 



DATA REPLICATION STRATEGIES 59 

Node 0 1 2 3 4 5 6 7 

Primary Copy R0 - - - / R 2  7R3 3R4 4R5 ~ 6 5R 6R7 

Backup Copy lr7 --- rl 6r27 -~r35 ~r44 7r 53 7r 6"~ 

Figure 4. Fragment utilization with chained declustering after the failure of node 1 (relation-cluster 
size=8). 

3. Simulation model 

3.1. Model overview 

To evaluate the three availability mechanisms, we constructed a simulation model 
of the Gamma database machine [10] running on a 32-node Intel iPSC/2 hyper- 
cuber [16]. Figure 5 depicts the overall structure of the model. Each component 
is implemented as a DeNet [20] discrete event module. The arcs in the figure 
are discrete event connectors and can be thought of as a combination of a 
preconstructed message path and a set of predefined message types. The role of 
each component is described briefly below. (The actual model parameters that 
we used can be found in Table 1). 

Database manager. The database is modeled as a set of relations consisting 
of a number of data pages. Both clustered and non-clustered indices can be 
constructed. The system catalog is used to keep track of the relations, indices, 
and, for chained declustering and interleaved declustering, the location of the 
primary and backup fragments of each relation. 

Terminal. This module is responsible for generating queries. A query may select 
or update any number of tuples and it can be executed using either a sequential 
file scan or a clustered or a nonclustered index. The model simulates a closed 
system, so there can be only one outstanding request per terminal. The number 
of active terminals in the system determines the multiprogramming level. When 
a query is complete, a terminal waits for exactly ThinkTime seconds before 
submitting another query. The simulation runs until the preselected response 
time confidence interval, Confidlnt, is reached. 

Query manager. Given a query request, the module examines the schema 
to determine which node(s) should execute the query and then constructs an 
appropriate query plan. 5 If a single node is to be used to execute the query, it 
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Figure 5. Architecture of the simulation model. 

will be sent directly to the node. Otherwise, it is sent to scheduler module. 

Scheduler. This module is responsible for coordinating the execution of multiple- 
node queries. For each query, the scheduler traverses the tree top down 
activating an operator process on each of the nodes containing relevant fragments. 
After initiating the query, the scheduler waits for an "done" message from all 
participating operator processes before committing the query and sending a 
"query done" message to the requesting terminal. 

Network manager. The network manager encapsulates the operation of the 
communication network. Network packets are served in first-come, first-served 
(FCFS) order by the network manager. A key parameter of this module is 
PacketThreshold, which determines how many network packets can be served 
simultaneously. When a packet arrives at the network manager, it is served im- 
mediately if there are less than PacketThreshold packets outstanding. Otherwise, 
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the new packet will be placed in a queue; as soon as a packet leaves the network 
module, the head of the waiting queue will be removed and service for it will 
begin. While being served, each packet is delayed for a time T in the network 
module before it is delivered to the destination node. T is proportional to the 
number of bytes in the packet which includes a packet header. The size of a 
network packet ranges from several hundred bytes for control packet to several 
thousand bytes for a data packet. 

Network interface. This module models the sending and receiving of network 
packets (messages) for an operator node. A certain amount of CPU cycles is 
consumed for each message sent and received. The actual number of cycles 
consumed is determined by the message type (e.g., data or control packet) and 
its size. 

Operator manager. The operator manager simulates Gamma's operator pro- 
cesses. This module models three different types of operator processes: selection 
processes, update processes, and store processes. Depending on the type of the 
incoming query packet, the operator process may begin requesting data pages 
from the disk manager (if it is a select or update) or it may wait for a data 
packet to arrive from another processor via the network module (if it is a store). 
Each operator process requests certain amount of CPU time when it initiates an 
I/O request and when it processes disk or network data pages. 

CPU. The CPU module models the sharing of the CPU resource among different 
processes running on a node. When a process needs CPU cycles, it sends a 
request to the CPU module with the number of CPU instructions needed. If 
the CPU is free, the request is served immediately and a reply is sent back to 
the requester after the requested CPU time has elapsed. Otherwise, the request 
will be put in a CPU ready queue. A key parameter of this module is the CPU 
speed in MIPS. 

Disk manager and disk. The disk manager is responsible for handling I/O 
requests generated by the operator manager. When a disk request is received, 
the disk manager maps the logical page number generated by the operator 
manager to a physical disk address (cylinder #, sector #), issues a disk I/O 
request, and then waits for the completion of the request. An elevator disk 
scheduling discipline is used except in the case of mirrored disks. Based on the 
results in [2, 13], a combination of shortest-seek-time first 6 and FIFO scheduling 
is used in the case of mirrored disks. This is also the strategy used in the Tandem 
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NonStop SQL systems. The total time required to complete a disk access is 

DiskAccessTime = SeekTime + RotationalLatency + SettleTime 

+ TransferTime 

The Seek Time for seeking across n tracks is modeled by the formula [2] 

Seek Time(n) = SeekFactor. v ~  

The rotational latency is modeled by a random function that returns uniformly 
distributed values in the range of MinLatency to MaxLatency. SettleTime models 
the disk head settle time after a disk arm movement. The value of transfer time 
is computed by dividing the disk page size by the disk Transfer Rate. 

Failure manager and log manager. The failure manager has no impact during 
the normal mode of operation. In the failure mode, this module will randomly 
select a node to fail and, in the case of CD, reassign active fragments for the 
remaining nodes. The log manager is not actually implemented. However, 
because each scheme has approximately the same overhead for generating and 
storing log records, we believe that the exclusion of the log manager does not 
significantly affect their relative performance. 

3.2. Physical data placement in the simulation model 

With the mirrored disk strategy, the contents of the two disks within a mirrored 
pair are identical and a disk read request can be served by either disk in the 
pair. In the Tandem Non-Stop SQL system, and our model of this architecture, 
the disk with the shortest seek time is assigned to serve a disk read request. By 
doing so, the expected seek distance for random reads is reduced from one third 
to one sixth of the tracks [2, 13]. 

With chained declustering and interleaved declustering, primary fragments and 
their associated indices from all relations are placed together on the outer half 
of the cylinders while backup fragments are stored on the inner half. With 
these two strategies, a primary fragment access scheme is used in our simulation 
experiments and because the primary fragments are placed together on the outer 
half of a disk drive, the expected seek distance for random read requests is 
also reduced from one third to one sixth of the tracks in the normal mode of 
operation. 

3.3. Alternative update mechanisms for backup fragments 

With chained and interleaved declustering, an update query can be processed in 
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one of three ways. First, each update can be sent to and processed by the two 
nodes on which the relevant primary and backup fragments are stored. A second 
approach is to send the update query to only the node containing the primary 
fragment for processing. After processing is completed, the node sends redo log 
records to the backup node where they are applied. A variation of this approach 
is to again direct update queries only to the nodes containing the primary 
fragments. However, instead of shipping redo records, the updated disk pages 
are shipped to the nodes containing the corresponding backup fragments where 
they are written directly to disk. This method incurs additional communications 
costs but does fewer total disk I/Os than either of first two methods. Because 
the network message delay is 5.6 ms for an 8K data page (measured on the Intel 
Hypercube), while the average disk service time for read requests is more than 
12 ms, we selected this third method for processing update queries with chained 
and interleaved declustering. 

4. Experiment and results 

This section presents the results of our comparison of the three availability 
mechanisms under a variety of different workloads, in both the normal and 
failure modes of operation. Of particular interest was how the load imbalance 
caused by a disk or processor failure affects system throughput and response 
time for various types of queries. Besides comparing the performance of the 
different high availability strategies, two other related issues are also explored: 
the impact of updating the backup copies and the trade-off between the benefit 
of intra query parallelism and the overhead of activating and scheduling extra 
operator processes. 

4.1. Model validation 

In order to evaluate the accuracy of the results produced by the simulation model, 
we first configured the model to reflect, as accurately as possible, the charac- 
teristics of Gamma and then ran a number of experiments without replication. 
As described in [14], the model predicted the actually measured performance of 
Gamma with less than a 10% margin of error. 

4.2. Experimental design 

Typically, system throughput and average response time are the two key metrics 
used to evaluate a system. However, since our model simulates a closed system, 
response time is inversely proportional to system throughput. Thus, in the 
remainder of this section, throughput will be used as the main performance 
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metric. Several additional metrics will be used to aid in the analysis of the 
results obtained. The first is the disk service time, which is the average time 
to serve a disk I/O request (not including the time spent waiting in the disk 
queue.) The second metric is the disk utilization, which is computed by dividing 
the total disk service time of disk by the experiment time. The third metric 
is the CPU utilization, which is measured by dividing the total CPU busy time 
by the experiment time. Finally, the average number of index and data pages 
accessed per query is also examined in our experiments. 

Table 1 specifies the parameter settings used for the experiments. Since the 
mirrored disk scheme requires at least two disks (a mirrored pair) on each 
processor, each of the 16 processors has two disks attaches. The database 
consists of eight relations, each with 2 million tuples and relations are fully 
declustered. The number of terminals (sources) in the model is varied from 1 
to 72 and the buffer hit ratio for disk read requests is assumed to be 20%. The 
cluster size (number of disks) for the interleaved declustering scheme was set to 
8 as this is the maximum size recommended by Teradata to its customers. 

For the five experiments, the relations in the database were declustered over 
the disks in the system by hashing on the attribute used in the selection predicate 
of the queries. After the tuples had been declustered, a clustered index was 
constructed on the partitioning attribute. The motivation for this physical orga- 
nization was to cover a broad spectrum of the performance space with only a few 
queries. First, in the case of Experiment 1 (a single-tuple, indexed retrieval on 
the partitioning attribute) this declustering/indexing strategy allows the query to 
be directed to a single node for processing where it incurs a minimum number of 
I/Os. The same is true for Experiment 4 - a  single tuple update. On the other 
hand, the queries in Experiment 2 (1% indexed selection on the partitioning 
attribute) and in Experiment 5 (update between 10% and 50% of the tuples 
selected by the query used for Experiment 2) must be sent to all processors 
for execution because they both involve range selections on a hash partitioned 
relation. 

If the relations had instead been range partitioned on the selection attribute, 
then queries 2 and 4 could have been directed to a subset of the processors, 
reducing their response time and improving the overall throughput of the system. 
The reason that we did not elect to use this alternative, is that we wanted 
to bracket the performance space with as few queries as possible. Using range 
declustering would have required us to push the simulations found in Experiments 
2 and 4 to even 7 higher multiprogramming levels in order to demonstrate the 
differences among the various strategies that we could observe at lower MPLs 
when hash partitioning was used. 

This partitioning/indexing combination chosen does, however, have a subtle 
impact on the performance of the ID scheme that the reader should be aware of. 
As an example consider a system consisting of four processors (P1, P2, P3, and 
P4) each with one disk and assume that each disk page can hold only two tuples. 
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Table 1. Parameter settings for performance experiments. 

Parameter Setting 

Number of processors 16 

Disks per processor 2 

Number of relations 8 

Relation size 2M tuples 

Tuple size 208 bytes 

Multiprogramming level 1 - 72 

Buffer hit ratio 20% 

ID cluster size 8 

CPU speed 3 MIPS 

Read 8K data page 14400 instructions 

Write 8K data page 25488 instructions 

Intiate a disk write 2000 instructions 

Seek factor 0.78 

MinLatency 0 msec 

MaxLatency 16.667 msec 

Settle Time 2.0 msec 

Transfer rate 2M bytes/see 

Disk page size 8K bytes 

Confidlnt within 5% (95% confidence) 

Think time 0 sec 

PacketThreshold 999 

Assume also a relation containing 24 tuples with partitioning attribute values 1 
to 24 which is hash declustered using "mod4" as the hash function. Thus, the 
tuples stored at P1 will have key values 1, 5, 9, 13, 17 and 21. After the tuples 
have been declustered, a clustered (i.e., sorted) index is created at each node on 
the partitioning attribute. On P1, this step will place the tuples with keys 1 and 
5 on page 1, 9 and 13 on page 2, and 17 and 21 on page 3. With ID, there are 
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two ways of making a backup copy of the tuples residing on P1. The approach 
used by Teradata is to apply a second hash function to the key attribute of each 
tuple, mapping each tuple on P1 to either P2, P3, or P4 (the other processors do 
the same for their tuples). The advantage of this approach is that when P1 fails, 
a single tuple selection query on the partitioning attribute can be routed directly 
to the backup processor by using the second hash function. Its disadvantage is 
that update queries must be processed in both places (incurring additional disk 
I/Os and processing overhead for every single upda te -du r ing  the normal as well 
as the failure mode.) 

The second approach for constructing the backup fragments is to distribute 
duplicate copies of the pages of the primary copy among the other nodes in the 
relation cluster. Thus, page 1 from P1 will be placed on P2, page 2 on P3, and 
page 3 on P4. The advantage of this approach is that updates to page 1 on 
P1 can be reflected on P2 by simply shipping a copy of the page to P2. The 
disadvantages is that when P1 fails, single tuple selections that would normally 
be handled only by P1 must now be sent to P2, P3, and P4 for processing. For 
the particular database design that we have chosen, one of P2, P3 and P4 will 
search their index on the backup fragments to locate the desired tuple. The 
others will search their index only to find no matching tuple. We think that this 
is the better of the two alternatives because the path length for updates in the 
normal mode of operation is much shorter (see Section 3.3). 8 

This indexing/partitioning combination also impacts the performance of ID 
mechanism at low multiprogramming levels when executing the 1% selection 
operation of Experiments 2 and 5 in the failure mode of operation. Each 
relation consists of about 50,000 8-byte p a g e s - o r  about 1500 pages/disk. Since 
the relation is hash partitioned on the selection attribute, each of the 32 disks 
will produce approximately 15 pages of result tuples. These 15 pages will overlap 
one and occasionally two of the backup subfragments (each backup subfragment 
will contain approximately 50 pages). Therefore, when a disks fails, the subquery 
originally served by the failed primary fragment will be served by one or two 
backup subfragments and not by all the processors in the cluster. A similar effect 
also occurs with CD because the division of responsibility between the primary 
and backup copies is based on attribute value ranges. 

4.3. Performance results for selection queries 

This section examines the relative performance of chained declustering (CD), in- 
terleaved declustering (ID), and mirrored disks (MD) for three different selection 
queries. 

Experiment 1: Single tuple selection on the partitioning attribute 
The first query tested was a single-tuple, exact-match selection on the partitioning 
attribute using an index. Since the selection is on the partitioning attribute the 
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Figure 6. Single tuple selection: (A) normal mode, (B) failure mode. 

query can be directed to a single node for execution. Figure 6a shows the average 
throughput obtained by each scheme in the normal mode of operation. All three 
schemes provide approximately the same performance when the multiprogram- 
ming level (MPL) is less than 24. With 32 disks and less than 24 outstanding 
disk requests, the chance that there is more than one request in a disk queue is 
very small. Hence, the order in which requests are serviced is likely to be the 
same for all three schemes and thus so are their disk service times. 

When the MPL is greater than 24, the probability of more than one request 
waiting in the disk queue becomes higher, in turn, increasing the effectiveness 
of the elevator disk scheduling algorithm used by the CD and ID mechanisms. 
Consequently, their average seek distance becomes smaller than that of the MD 
mechanism. For example, at a MPL of 72, the average disk seek (service) time 
for CD is 7.19 ms (21.62 ms), whereas it is 8.31 ms (22.74 ms) with MD. As a 
result, CD and ID provide about the same level of throughput and they both 
process more queries per second than MD when MPL > 48. Henceforth, we 
shall refer to this effect as the disk scheduling effect. 

In the failure mode of operation (Figure 6b), all three schemes suffers little 
(or no) performance degradation at low multiprogramming levels (MPL < 4) 
because the processors and disk are under utilized. As the MPL increases, 
however, the impact of a disk failure becomes more and more significant. When 
MPL > 24, the throughput of the MD scheme levels off because the remaining 
disk in the failed mirrored pair is fully utilized and becomes a bottleneck. On the 
other hand, with the CD and ID schemes the throughput continues to increase 
because both mechanisms do a better job of distributing the workload originally 
served by the failed disk (henceforth referred to as the load balancing effect). 
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Comparing Figures 6a, b one can see that, at a MPL of 72, the decrease in 
throughput due to a disk failure with CD is about 10%, while it is about 20% 
with ID. In contrast, the decrease in throughput with mirrored disks is higher 
than 40%. 

The performance differences between the ID and CD mechanisms in Figure 6b 
is the result of differences in their disk utilizations when a failure occurs 9. For 
example, with the ID scheme, at a MPL of 72, the average utilization of the 
remaining disks in the cluster that suffered a disk failure is around 95% while 
the utilization of the drives in the other clusters is about 60%. On the other 
hand for CD, the disk utilization of each of the remaining drives is around 70% 
at a MPL of 72. With respect to CPU utilization, it is less than 40% for all 
three mechanisms. One interesting observation is that for CD and ID, the CPU 
utilization is proportional to the number of pages processed by a node which, in 
turn is proportional to the number of operational disks it has. 

E~eriment 2: I% selection query using a clustered index 
This experiment considers the performance of three mechanisms while executing 
an indexed selection query with a 1% selectivity factor. The source relation is 
assumed to be hash partitioned and thus each query must be sent to all active 
nodes for processing. With all three schemes, each node produces 1250 result 
tuples that are returned to the submitting terminal. To process this query using 
the MD mechanism in the normal mode of operation, each processor will read 
two or three index pages 1° and 35 data pages. In the case of CD or ID, each 
processor will read two or three index pages and 18 data pages from each of its 
two disks. Both read and process two more index pages and one more data page 
than with MD because their primary and backup fragments are distributed across 
both disk drives. In addition, twice as many operator processes are activated 
with CD and ID. While the CD and ID schemes incur this extra disk overhead, 
they also benefit from the corresponding higher degree of intraquery parallelism 
(henceforth referred to as query parallelism effect) until the CPU becomes a 
bottleneck at higher multiprogramming levels. 

The results obtained are presented in Figures 7a, b. In the normal mode 
of operation, CD and ID provide more throughput than MD until the MPL is 
greater than 12 at which point the CPU becomes 100% utilized, n On the other 
hand, with the MD scheme, a CPU bottleneck does not form and, the throughput 
does not level off until the MPL reaches 24. Ultimately, at a MPL of 48, the 
MD scheme provides about 5% more throughput. Figure 7a illustrates that 
there is a trade-off between the benefit of a higher intraquery parallelism and 
the overhead of scheduling more operator processes and processing more index 
pages. If a system will be consistently operated under high CPU utilization (i.e., 
its applications are CPU bound), then the partitioning strategy/data placement 
algorithm used with CD and ID should be modified to use only 16 instead of 
32 fragments (by treating the two disks attached to a processor as one "logical" 
unit). 
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Figure Z 1% Selection: (A) normal mode, (B) failure mode. 

Figure 7b shows the throughput of the three mechanisms in the event of a 
disk failure. At a MPL of 1, the throughput provided by CD and ID drops by 
almost 40%. As discussed in Section 4.2, the principal cause of this drop is that 
with both schemes the workload of the failed disk ends up being handled by a 
single disk which ends up servicing twice as many requests as the other disks. 
In addition, when CD and ID are operating in the failure mode, the average 
seek distance is longer because both the primary and backup copies are being 
accessed. At higher MPLs, since there are multiple outstanding queries, all 
generating I/O requests, the work of the failed disk becomes evenly distributed 
among the remaining disks in the failed cluster. Consequently, the performance 
degradation with CD and ID will be less drastic. Indeed, as demonstrated by 
Figure 7b, when the MPL > 12, the reduction in throughput is about 3.5% with 
CD and about 8% with ID. 

With the MD scheme, there is little or no performance degradation at a MPL 
of 1 because the other disk in the mirrored pair is idle in normal mode and can 
assume the workload without penalty. However, at MPL of 2 the utilization of 
this mirrored pair rises to 95% while the remaining disks remain 30% uti l ized-  
causing the overall throughput of the MD mechanism to level off. At a MPL 
of 4, the remaining disk in the failed mirrored pair is fully utilized and truly 
becomes a bottleneck. Consequently, the MD throughput levels off when MPL 
>_ 4. With the CD and ID schemes, on the other hand, the throughput continues 
to increase until a MPL of 12 is reached. At this point, the CPU is fully utilized 
and becomes the bottleneck. 
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Earperiment 3: 0.1% selection query using a nonclustered index 
In this experiment, we assume that the qualified attribute of a query is different 
from the partitioning attribute. In this case, a range selection query using a 
nonclustered index will have to be sent to all active nodes for processing in both 
the normal and failure modes of operation. In the normal mode of operation, 
a 0.1% selection query reads two or three index pages and 63 data pages from 
each disk with the CD and ID schemes whereas it reads two or three index 
pages and 125 data pages from each mirrored pair of disks with the MD scheme. 
With all three schemes, 125 tuples are selected at each node and the results are 
returned to the user/application program. 

Figure 8 shows the throughput of this query. As shown in Figure 8a, both CD 
and ID provide higher throughput than MD throughout the entire experiment 
in the normal mode of operation. At a MPL of 1, CD and ID provide about 
90% more throughput than MD does in the normal mode of operation. This 
is due to the query parallelism effect as explained in Experiment 2. In this 
experiment, the throughput difference between MD and the other two schemes 
at a MPL of 1 is higher than it is in Experiment 2 and the difference is close 
to 100%. There are two reasons for the bigger throughput difference in this 
experiment: First, the query type in this experiment is I/O bound, whereas it 
is CPU bound in Experiment 2. Doubling the number of disks serving a query 
will thus cut the response time by one half (doubling the throughput) here. 
With CPU bound applications, however, the response time of a query is affected 
mainly by the CPU utilization and the degree of overlap between CPU execution 
and disk execution. Second, a node reads and processes about 128 pages for 
each query in this experiment, whereas it reads and processes only 37 pages per 
query in Experiment 2. The reading and processing of two extra index pages 
and one extra data page per query account for about 2% of the overhead in this 
experiment, whereas they account for more than 8% of the extra CPU overhead 
in Experiment 2. 

At a high MPL (e.g., MPL > 12), disks are more likely to be active at the same 
time and the throughput difference between MD and the other two schemes in 
this region is due partly to query parallelism effect and partly to the disk scheduling 
effect. As indicated in Figure 8a, both CD and ID provide significantly (about 
39%) higher throughput than MD at a MPL of 48. 

Figure 8b shows the throughput of all three schemes in the event of a disk 
failure. With CD, the query response time at a MPL of 1 increases by 100% due 
to the uneven distribution of the workload (as explained in Experiment 2) and 
the throughput decreases correspondingly by about 50%. With the ID scheme, 
the workload of the failed disk is distributed evenly 12 among the remaining disks 
in the failed ID cluster. As a result, at a MPL of 1 the increase in workload 
on disks in the failed ID cluster is only 14%. The increased workload together 
with the higher disk seek time in the failed ID duster results in about a 16% 
drop in throughput at a MPL of 1. With the MD scheme, as in Experiment 2, 
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Figure 8. 0.1% Selection: (A) normal mode (B) failure mode. 

there is no performance degradation at a MPL of 1 when a disk failure occurs. 
As a result, at a MPL of 1, MD provides slightly higher throughput than CD 
while ID provides significantly higher throughput than CD. 

Table 2. Percentage difference in throughput and disk service time. 

Percentage difference in 

MPL Throughput Disk service time 

1 90.0 +7 

2 45.6 -10 

4 34.5 -5 

12 33.6 +21 

24 35.3 +27 

48 38.5 +34 

At a MPL of 2, one of the MD disks becomes a bottleneck and the throughput 
levels off. On the contrary, the throughput with both CD and ID continues to 
increase as the MPL is pushed higher, mostly as the result of improved load 
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balancing. Figure 8b also shows that ID continues to provide higher throughput 
than the CD scheme up to a MPL of 4. When MPL > 4, however, the benefit of 
the CD's superior load balancing begins to dominate. As indicated in Figure 8b, 
CD starts to provide even higher throughput than ID when the MPL is greater 
than 12. At a MPL of 48, the throughput with CD is about 10% and 200% 
higher than with ID and MD, respectively. 

Table 2 shows the percentage difference in throughput and disk service time 
between MD and the other two schemes in the normal mode of operation. 
The second column shows how much more throughput the CD and ID schemes 
provide than the MD scheme, while the third column shows how much more 
time a disk with the MD scheme takes to serve a disk request than it does 
with CD or ID. (In the third column, a negative sign is used to indicate that 
a disk with MD takes less time to serve a request than it does with CD or 
ID.) As indicated in the table, at one end of the spectrum (MPL = 1), the 
throughput difference results mainly from the difference in the degree of intra 
query parallelism (query parallelism effect). At the other end of the spectrum 
(MPL -- 48), the throughput difference results mainly from the difference in disk 
service times due to the different disk scheduling disciplines (disk scheduling 
effect). 

4.4. Performance results for update queries 

For an update query, each time a data item is updated, the change must be 
reflected in both the primary and the backup copies of the data item. Since in the 
case of both CD and ID, the page containing the backup copy of the item is on 
a disk that is connected to a different processor, each update incurs CPU cycles 
for packaging, sending, and receiving the page over the communications network, 
as well as a wire delay in the communication network (henceforth referred to 
as the remote update overhead). While no extra CPU cycles are required with 
the MD mechanism, the write to the mirrored pair ends up synchronizing both 
disk arms and the average seek distance becomes 0.47n, where n is the number 
of cylinders [2]. This is 0.14n higher than the average seek distance of a single 
disk. Henceforth, we shall refer to this effect as the synchronizing write overhead. 

Two query types are studied in this section: a single tuple update query using 
a clustered index, and a query that selects 1% of the tuples using a clustered 
index and then updates between 10% and 50% of the selected tuples. Since the 
relations are hash partitioned, the first query will be sent to a single processor 
while the second will be sent to all processors. 

In our experiments, an update transaction is not committed until both the 
primary and backup copies have been updated. In addition, we assume that the 
attribute being updated is not the partitioning attribute and is not indexed. 
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Figure 9. Single tuple update: (A) normal mode, (B) failure mode. 

Experiment 4: Single tuple update query 
The results of this experiment are contained in Figures 9a, b. All three schemes 
provide comparable performance at low multiprogramming levels. Since the 
system resources (CPU, disk, and network) are under utilized, the overhead of 
updating the backup copies is not a significant factor. As the MPL is pushed 
higher, differences among the schemes begin to emerge. In particular, with MD 
the overhead of synchronizing disk writes starts to limit the overall performance 
of the system. On the other hand, the overhead of a remote update with CD . 
and ID is not significantly affected by the MPL (unless, of course, the CPU or 
network becomes a bottleneck). As a result, the CD and ID schemes provide 
noticeably higher throughput when the MPL is greater than 24 in the normal 
mode of operation. 

Figure 9b shows the throughput of the three mechanisms in the event of a disk 
failure. When the MPL is less than 24, the performance of the CD and MD 
strategies are not significantly affected because both the CPU and disk are under 
utilized and the load increase that results from the failure is not significant. ID's 
performance is affected slightly more because it reads and processes more index 
pages in the failure mode. 

As the MPL is pushed higher, the load balancing effect becomes more important 
and the differences in performance become more significant. For example, at a 
MPL of 72, Figures 9a, b show that the throughput drops by only 3.3% with the 
CD strategy, by 14.9% with the ID strategy, and by 9.2% with the MD strategy. 

With the MD strategy, the remaining operational disk in the failed mirrored 
pair must assume the entire workload of the pair. However, unlike the single 
tuple selection case, the decrease in throughput is only about 10%. There are 
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two major reasons for this behavior. First, since writes always go to both disks, 
the failed disk must assume only the read requests originally handled by the 
failed disk. Each query reads three pages and update one page. Given two such 
queries, each disk in a mirrored pair is responsible for three disk reads and two 
disk writes (assuming that the workload is uniformly distributed between the two 
disks). When a disk failure occurs, the remaining disk in the failed pair will be 
responsible for six disk reads and two disk writes, resulting in a 60% increase 
in the number of disk requests. With a 20% buffer hit ratio for read requests 
(the number used in our experiments), the increase in disk requests decreases 
further to roughly 54%. Second, in a failed mirrored pair, there is no longer 
any need to synchronize the two disk arms. Consequently, the remaining disk 
can process write requests much more efficiently, offsetting some of the impact 
of the increase in the number of disk requests. 

The update query used in this experiment is I/O bound. If an update query is 
CPU bound, the MD scheme may provide better performance than CD and ID 
in the normal mode of operation. This is because the remote update overhead 
incurred by CD and ID consumes extra CPU cycles while the synchronizing write 
overhead associated with MD increases the disk service time. 

Experiment 5: 1% selection with X% update using a clustered index 
In this experiment, we again assume that the relation being updated is hash 
partitioned 13 and that the query has to be sent to all operational nodes for 
processing. The query in this experiment uses a clustered index to sequentially 
read 1% of the tuples, randomly updating X% of the ones read. Figures 10a, 
b show, respectively, the throughput of the three replication mechanisms in the 
normal and failure modes for update frequencies of 10%, 30%, and 50%. In the 
normal mode of operation, CD and ID provide significantly higher throughput 
than MD except at a MPL of 1. At a MPL of 1, both the CD and ID schemes 
provide higher throughput than the MD scheme when X is equal to 10, whereas 
MD provides higher throughput than CD and ID when X is equal to 30 or 50. 
Two factors interact to cause this switch. First, at a MPL of 1 both CD and ID 
benefit from the effect of intraquery parallelism (see Experiment 2). Second, 
with ID and CD, as the update frequency is increased, more and more disk 
contention occurs between reads/writes of the primary fragments and writes to 
the backup fragments. At an update frequency of 10% the query parallelism 
effect dominates, and CD and ID provide better overall throughput. However, 
at an update frequency of 30% or 50%, the overhead of a longer disk service 
time dominates and MD has the best performance. For example, at a MPL of 
1, the average disk service times for CD/ID is 19.1 ms when X = 10 and 23.0 
ms when X = 50 (the corresponding disk service times for MD are 16.5 ms and 
18.2 ms, respectively). 

Beginning with a MPL of 2, the update portion of the query begins to cause 
disk contention with MD as well, resulting in a higher disk service time. Like 
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Figure 10. 1% Selection with X% update: (A) normal mode, (B) failure mode. 

the previous case with CD and ID, the higher the update percentage is, the 
more severe the disk contention will be. In addition, having to synchronize the 
disk heads when performing each write, also increases the average service time. 
For example, at a MPL of 2, the average disk service time with MD is 19.4 ms. 
when X = 10 and 22.8 ms. when X = 50. 

When X = 10, the throughput of MD continues to increase until a MPL of 
4 at which point one or more of the disks becomes fully utilized and forms a 
bottleneck. The continued increase in disk service times with MD results in a 
slight decrease in throughput from MPLs of 4 to 12. When MPL > 12, the 
throughput with MD levels off. With X -- 30 and 50, throughput decreases 
slightly from MPLs of 2 to 4 and levels off after MPL > 4. With both CD and 
ID, the throughput increases significantly from a MPL of 1 to 4 for all three 
update levels. When MPL > 4, the rate of increase drops significantly because 
the disks are nearly 100% utilized. The small increase in throughput is mainly 
due to a decrease in disk service time as the result of the elevator scheduling 
algorithm employed by the disk controller. At a MPL of 24, CD and ID provide, 
respectively, 46%, 55%, and 57%, more throughput at X = 10, 30, and 50 than 
the MD scheme. 

Figure 10b shows the throughput provided by the three mechanisms in the event 
of a disk failure. Overall, CD and ID provide significantly better performance 
for all update frequencies at all multiprogramming levels except I because they 
both do a better job of balancing the load in the event of a disk failure. With 
MD, as the MPL is increased beyond 1, the failed mirrored pair becomes the 
bottleneck. While CD and ID exhibit a fairly significant drop in performance at 
a MPL of 1 (when compared with their normal performance), at a MPL of 24, 
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the drop is less than 5% with CD and less than 10% for ID. 

4.5. Varying CPU speed and~or page size 

In addition to the experiments presented in the previous two sections, we also 
studied the effect of increasing the CPU speed from 3 to 14 MIPS and decreasing 
the page size from 8 kbytes to 4 kbytes. Except for the 1% selection using a 
clustered index (Experiment 2), the other queries remained I/O bound and 
the relative performance of the different replication schemes did not change 
significantly. On the other hand, in the case of Experiment 2, the query becomes 
I/O bound with a 14 MIP CPU and MD no longer performs better than CD or 
ID at high MPLs in the normal mode of operation. 

5. Conclusions 

In this paper, we have studied the performance of the chained declustering, 
interleaved declustering, and mirrored disk schemes using a simulation model 
of Gamma database machine. In particular, we have examined (1) the relative 
performance of the three strategies in the normal mode of operation, (2) the 
effect of the load imbalance caused by a disk or processor failure on system 
throughput and response time for various types of queries, and (3) the trade-off 
between the benefit of intraquery parallelism and the overhead of activating and 
scheduling extra operator processes. 

Experiments were conducted using both read-only selection queries and up- 
date queries requiring both reads and writes. For selection queries, chained 
declustering and interleaved declustering were shown to perform comparably in 
the normal mode of operation. Both performed better than mirrored disks if 
an application is I/O bound (due to disk scheduling), but slightly worse than 
mirrored disks if the application is CPU bound. In the event of a failure chained 
declustering was able to balance the workload among the remaining disks, while 
interleaved declustering was able to redistribute the workload within the failed 
cluster; mirrored disks cannot do any load redistribution, so the mirror image 
of the failed disk had to process all requests originally served by the failed 
disk. As a result, chained declustering provided slightly better performance than 
interleaved declustering and much better performance than mirrored disks in a 
failure mode of operation. 

To update the backup copy of a data item, chained and interleaved declustering 
incur the CPU overhead of packaging and sending the updated data to the remote 
node where the backup copy is stored. In addition, the remote node consumes 
extra CPU cycles to receive the network packet (containing the updated page) 
and to initiate an extra disk write operation to write the updated page to disk. 
With mirrored disks, both copies of a data item are stored on disks attached 
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to the same processor. Consequently, no extra CPU cycles are needed for 
updating the backup copy. However, with mirrored disks each write operation 
ends up synchronizing the read/write heads of both disks in the mirrored pair 
[2]. Therefore, the disk service time for a write becomes the maximum service 
time of two writes. In addition, both disk arms in a mirrored pair will be at 
the same cylinder after each write operation, effectively reducing the number of 
disk arms available for serving the next read request to one. Consequently, with 
mirrored disks, the average disk service time per request is longer for update 
queries than for select queries. 

For update queries, the relative performance of the three schemes depends on 
the relative performance of the processor and the disk drive (because chained 
declustering and interleaved declustering incur CPU overhead while mirrored 
disks incurs overhead in disk service time). In the normal mode of operation, if 
an update query is I/O bound, chained declustering and interleaved declustering 
perform better than mirrored disks. On the other hand, if an update query is 
CPU bound, the mirrored disk mechanism will perform better. Since advances in 
CPU technology have occurred much faster than those of disk drive technology 
[11, 17], we believe that future database applications will more likely be disk 
bound. 

When failures occur in the mirrored disk scheme, a bottleneck forms at the 
failed mirrored pair; throughput is then limited by the rate at which the failed 
pair can service requests. On the other hand, with chained declustering the 
workload of a failed disk is again evenly redistributed among the remaining 
disks. Consequently, chained declustering provides much higher throughput than 
mirrored disks in the event of a failure. The relative performance of chained 
declustering and interleaved declustering (ID) in the event of a disk failure 
depends on the query type and the size of an ID cluster. With an ID cluster 
size of 8, our experiments showed that chained declustering can provide as much 
as 14% more throughput than interleaved declustering for a single tuple update 
query and as little as a 3% improvement for a 1% update query. It is very 
important, however, to keep in mind that with an ID cluster size of 8, besides 
providing lower throughput, the interleaved declustering scheme is 3.5 times 
more likely to have data unavailable than the chained declustering scheme [15]. 

Our future work includes studying the performance trade-offs of the three 
replication schemes with skewed data access and the possibility of dynamic load 
balancing for the chained declustering scheme. Without data replication, data 
partitioning (or declustering) is commonly used with multiprocessor multidisk 
database machines to break hot spots and achieve load balancing. Hot spots, 
however, may be dynamic in nature, and the database may need to be reorganized 
periodically. With chained declustering, a query (subquery) can be processed at 
the node storing either the primary or backup copy of the matching tuples. In 
addition, the work of a node may be shifted to its neighbor without physically 
moving data because nodes are "chained" together through the primary and 
backup copies of a fragment, these two characteristics of the chained declustering 
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scheme provide a good opportunity for dynamic load balancing [4] when a hot 
spot changes over time. Consequently, a reorganization of the database may not 
be required. 
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No~s 

1. Some examples of such applications are stock market trading, air defense 
systems, air traffic control systems, airline reservation-type systems, bank- 
ing(OLTP), etc. 

2. In addition, pages read from all disks would have to be "XOR'd" together to 
reconstruct the failed data. 

3. Data will be unavailable if any two nodes in a cluster fail. 
4. A generalized formula is {[i + k + C(R)]mod M)  where 0 < k < M and the 

greatest common divisor of M and k, GCD(M, k), is equal to 1. 
5. The actual plan generated may differ depending on the mode of operation 

(normal or failure). 
6. The disk with the shortest seek time is chose to serve a disk request. 
7. As it was, the simulation model is so detailed that it ran "forever" (each data 

point ran for more than four days on a # VAX-III). 
8. This design does not preclude the use of record-level locking. Basically, an 

updated page is sent to the appropriate backup node when the buffer pool 
manager on the primary site forces the updated page to disk. 

9. ID can distribute the workload of the failed disk only among the remaining 
disks in the cluster containing the failed drive while CD is able to evenly 
redistribute the workload among the remaining 31 disks. 

10. Normally, two index pages are read. However, when the range of the selection 
predicate overlaps the range of two leaf pages, three index pages will be read. 

11. In our simulation model (and in Gamma), the processor is responsible for 
transferring data from I/O channel's FIFO buffer to main memory. Without 
this overhead, the CPU bottleneck would form at a higher MPL. 

12. It is programmed that way in the simulation model. 
13. The results will be the same if the relation is range partitioned and the 

clustered index is constructed on a nonpartitioning attribute. 
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