
Distributed and Parallel Databases, 1, (1993), 53-80
© 1993 Kluwer Academic Publishers, Boston. Manufactured in the Netherlands.

A Performance Study of Three High Availability
Data Replication Strategies
HUI-I HSIAO
IBM T.J. Watson Research Center, Yorktown Heights, NY 10598

DAVID J. DEWlTT
Computer Sciences Department, University of Wisconsin, Madison, WI 53706

HHSIAO@WATSON.IBM.COM

Abstract. Several data replication strategies have been proposed to provide high data availability for
database applications. However, the trade-offs among the different strategies for various workloads
and different operating modes have not been studied before. In this paper, we study the relative
performance of three high availability data replication strategies, chained deelustering, mirrored disks,
and interleaved declustering, in a shared nothing database machine environment. In particular, we
have examined (1) the relative performance of the three strategies when no failures have occurred,
(2) the effect of load imbalance caused by a disk or processor failure on system throughput and
response time, and (3) the tradeoff between the benefit of intra query parallelism and the overhead
of activating and scheduling extra operator process. Experimental results obtained from a simulation
study indicate that, in the normal mode of operation, chained declustering and interleaved declustering
perform comparably. Both perform better than mirrored disks if an application is I/O bound, but
slightly worse than mirrored disks if the application is CPU bound. In the event of a disk failure,
because chained declustering is able to balance the workload among all remaining operational disks
while the other two cannot, it provides noticeably better performance than interleaved declustering
and much better performance than mirrored disks.

Keywords: data replication, high availability, data placement, performance, chained declustering

1. Introduction and motivation

Most da t abase m a n a g e m e n t sys tems e m p l o y a c o m b i n a t i o n of a d i sk-based log
t oge the r with per iod ic checkpoin t ing of m e m o r y - r e s i d e n t da ta to insure the
integri ty and availabili ty o f the da tabase in the event of disk or sys tem fai lures.
T h e s e t echn iques cannot , however , satisfy the availabili ty r e q u i r e m e n t s of cer ta in
da t abase appl ica t ions because the recovery t ime in the event o f a m e d i a fa i lure
can be in to lerably long and the fact, tha t dur ing the recovery per iod , da ta is
unavai lable .

To achieve a very high deg ree of da ta availability, two basic t echn iques a re
cur ren t ly be ing used. In the first, mul t ip le copies (usually two) of the s a m e da ta
i t em are s to red on disks accessible by dif ferent processors . W h e n one copy fails,
the o the r copy can con t inue to be used (if b o t h copies are upda t ed synchronous ly)
and, unless bo th copies fail s imul taneously , the fa i lure will be t r a n s p a r e n t to
users o f the sys tem and no in te r rup t ion of service will occur. E x a m p l e s of

54 HSIAO AND DEWI'IT

this mechanism include mirrored disks[2, 18], interleaved declustering [27], the
inverted file strategy [6], and chained declustering [15].

In the second approach, the data, along with the redundant error detec-
tion/correction information (usually parity bytes), is spread across an array of
disk drives. When errors are discovered the redundant information can be used
to restore the data and application programs can continue using the data with
minimal interruption. Strategies based on this approach include synchronized
disk interleaving [19], redundant array of inexpensive disks (RAID) [22], redun-
dant array of distributed disks (RADD)[25], and parity striping of disk arrays
[121.

Examples of these approaches can be found in commercial systems today.
For example, Tandem's NonStop SQL database machine uses mirrored disks,
Teradata's DBC 1012 database machine employs interleaved declustering, and
IBM's AS400 system uses a disk array.

While, traditionally, the performance of a computer system is measured both
in terms of response time and throughput, in a multiprocessor system that
provides resiliency from hardware and software failures, performance can be
measured in two different operating modes: the normal mode, with no failed
components, and the failure mode, in which one or more processors of disks have
failed. When operating without any failures, [12] demonstrates that mirrored
disks (an identical copy based strategy) provides better performance than RAID
for OLTP applications and [5] demonstrates that for small requests (less than
one track of data), a mirrored disk mechanism provides higher disk throughput
(Mbyte/sec/disk) than RAID. Since I/O requests in most database applications
almost always transfer less than one track of data, these results seem to indicate
that identical copy mechanisms will generally provide superior performance for
database applications.

In the failure mode of operation, the same conclusion holds because the
remaining copy can continue to be used and, with proper load balancing, system
performance will degrade only slightly. On the other hand, with a disk array,
when a query needs to access data on the failed disk/copy, the data must be
reconstructed on the fly. This process requires accessing all the remaining disks
in the array in order to satisfy a single disk request. In such cases, the failed disk
array will be restricted to serve only one request at a time and its performance
will degrade significantly.

Throughout this paper, We focus on multiprocessor database systems that
employ a "shared-nothing" architecture [24]. For such systems, the application
of horizontal partitioning (i.e., declustering) techniques [8, 21, 23, 27] facilitates
the successful application of inter and intraquery parallelism in the normal mode
of operation[9, 26]. However, when a failure occurs, balancing the workload
among the remaining processors and disks can become difficult, as one or more
nodes (processor/disk pairs) must assume the workload of the component that
has failed. In particular, unless the data placement scheme used allows the
workload of the failed node to be distributed among the remaining operational

DATA REPLICATION STRATEGIES 55

nodes, the system will become unbalanced and the response time for a query may
degrade significantly even though only one, out of perhaps 100 nodes, has failed.
In addition, the overall throughput of the system may be drastically reduced
since a bottleneck may form.

In spite of increasing demand for high availability in database applications, the
relative performance of various identical copy based high availability schemes
is still not well understood. In this paper, we study the performance of the
mirrored disks(MD), interleaved declustering (ID), and chained declustering
(CD) strategies using a simulation model of Gamma database machine [10].
We evaluate the performance of the three high availability strategies under a
number of different workload assumptions. In particular, we have examined
(1) the relative performance of the three mechanisms in the normal mode of
operation, (2) the effect of load imbalance caused by a disk or processor failure
on system throughput and response time, and (3) the tradeoff between the benefit
of intraquery parallelism and the overhead of activating and scheduling extra
operator processes.

The organization of the rest of the paper is as follows. In the next section,
the three high availability strategies are described. Our simulation model is
described in Section 3. The results of our simulation experiments are presented
and analyzed in Section 4. Our conclusions and future research directions are
contained in Section 5.

2. Existing high availability strategies

In this section, we briefly describe the three data replication schemes studied in
this paper: mirrored disks [2, 3], interleaved declustering [7, 27], and chained
declustering [15]. Each scheme stores two identical copies of each relation on
different disks and each is able to sustain a single node (disk or processor)
failure.

2.1. Tandem's mirrored disks architecture

In Tandem's Non Stop SQL system [26], each disk drive is connected to two I/O
controllers, and each I/O controller is connected to two processors, thus providing
two completely independent paths to each disk drive. Furthermore, each disk
drive is "mirrored" (duplicated) to further ensure data availability. Relations
are generally declustered across multiple disk drives. For example, Figure 1
shows relation R partitioned across four disks. -Ri represents the ith horizontal
fragment of the first copy of R and ri stands for the mirror image of _R/. As
shown in Figure 1, the contents of disks 1 and 2 (and 3 and 4) are identical.
Read operations can be directed (by the I/O controller) to either drive but write
operations must be directed to both drives in order to keep the contents of both

56 HSIAO AND DEWlTr

Figure 1. Data placement with tadem's mirrored disk scheme.

disks identical, causing the two disk arms to become synchronized on writes [1].

When a disk in a mirrored pair fails, the remaining disk can assume the
workload of the failed drive and, unless both disks fail simultaneously, data will
always be available. The actual impact of a failure on the performance of the
system depends on the fraction of read and write operations. If most I/Os are
reads, losing a drive may result in doubling the average I/O time because only
one disk arm is available. On the other hand, if most I/Os are write operations,
the impact of a failure may be minimal [1].

The failure of a processor will, however, almost always have a significant
negative impact on performance. Consider the failure of processor P1 in Figure
1. While the data on disks 1 and 2 will remain available, processor P2 will
have to handle all accesses to disks 1 and 2 as well as disks 3 and 4 until P1 is
repaired. If P2 is already fully utilized when the failure occurs, the response time
for queries that access data on either pair of drives may double if the system is
CPU bound.

2.2. Teradata's interleaved declustering scheme

In the Teradata database machine [27], the processors are divided into clusters
of 2 to 16 processors (one or two disk drives may be attached to each processor).
Tuples in a relation are declustered among the drives in one or more clusters
by hashing on a "key" attribute. The tuples of a relation stored on a disk are
termed a fragment. Optionally, each relation can be replicated. In this case, one
copy is designated as the primary copy and the other the backup copy.

The tuples in each primary fragment are stored on one node. For backup
fragments Teradata employs a special data placement scheme termed interleaved
declustering [7, 27]. If the cluster size is N, each backup fragment will be

DATA R E P L I C A T I O N S T R A T E G I E S 57

cluster 0
1 2

cluster 1
Node 0 3 4 5 6 7

Primary Copy R0 R I R2 R3 R4 R5 R6 R7

Backup Copy r0,0 tO. 1 r0.2 r4.0 r4.1 r4.2
rl.2 r1.0 rl.I r5.2 rS.0 rS.1
r2.1 r2.2 r2.0 r6. l r6.2 r6.0
r3.0 r3.1 r3.2 r7.0 r7.1 r7.2

Figure 2. In ter leaved decluster ing (cluster size N = 4).

subdivided into N - 1 subfragments each of which will be stored on a different
disk within the same clus ter-but not the disk containing the primary fragment.
In Figure 2, a relation R is declustered across eight disk drives and N = 4. (R~
represents the ith primary fragment whereas rld represents the j th subfragment
of the i backup fragment of R 0.

When a node failure occurs, interleaved declustering is able to do a better job
of balancing the load than the mirrored disk scheme since the workload of the
failed node will be distributed among N - 1 nodes. However, this improvement
in load balancing is not without a penalty. In particular, the probability of
data being unavailable increases proportionately with the size of the cluster [15].
During the normal mode of operation, read requests are directed to the fragments
of the primary copy and write operations update both copies. In the event of
a CPU or disk failure that renders a fragment of the primary copy unavailable,
the corresponding fragment of the backup copy will be promoted to become the
primary (active) fragment and all data accesses will be directed to it.

2.3. Chained declustering

With chained declustering [15], two physical copies (a primary and a backup) of
each relation are declustered over a set of disks such that the primary and backup
copies of a fragment are always placed on different nodes. Nodes are divided into
disjoint groups called relation-clusters and tuples of each relation are declustered
among the drives that form one of the relation-cluster. Optionally, the disks in
each relation-cluster can themselves be sub-divided into smaller groups termed
chain-clusters. A small system may consist of only one relation-cluster, while a
large system may contain several. For purposes of simplicity, in this paper we
assume that a relation-cluster contains all of the disks in the system and that it
is not subdivided into multiple chain-clusters.

The data placement algorithm for chained declustering operates as follows.
Assume that there are a total of M disks numbered from 0 to M - 1. For every
relation R, the ith primary fragment is stored on the {[i + C(R)] mod M}th
disk, and the ith backup fragment is stored on the {[i + 1 + C(R)] mod M}th 4
disk. The function C(R) allows the first fragment of relation _~ to be placed on
any disk within a relation-cluster while the 1 in the second formula is used to

5 8 HSIAO A N D DEWIT'I"

Node 0 1 2 3 4 5 6 7

Primary Copy R0 R1 R2 R3 R4 R5 R6 R7

Backup Copy r7 tO r I r2 r3 r4 r5 r6

Figure 3. Chained declustering (relation cluster s ize=8).

ensure that the primary and backup copies of a fragment are placed on different
disks. As an example, consider Figure 3 where M, the number of disks in the
relation-cluster, is equal to 8 and C(R) is 0. The tuples in the primary copy of
relation R are declustered using one of Gamma's three horizontal partitioning
strategies with tuples in the ith primary fragment (designated /~) stored on the
ith disk drive The backup copy is declustered using the same partitioning strategy
but the ith backup fragment (designated ri) is stored on (i + 1)th disk (except
r7 which is stored on 0th disk). In the figure, R/ and ri contain identical data.

With the above data placement strategy, a relation will be unavailable only if
two (logically) adjacent disks within a relation-cluster are down at the same time.
For example, suppose that node 1 has failed. If node 0 or node 2 also fails
before node 1 is repaired, then some data will be unavailable. Any subsequent
node failure other than node 0 or node 2 (i.e., nodes 3 to 7) will not compromise
the availability of data.

During normal operation, reads are directed to the fragments of the primary
copy and writes update both copies. In the case of a single node (processor or
disk) failure chained declustering is able to distribute the workload of the cluster
uniformly among the remaining operational nodes. As illustrated by Figure 4,
with a cluster size of 8, when a processor or disk fails, the load (read portion
of the workload) on each remaining node will increase by one seventh by using
both the primary and backup fragments for read operations. For example, when
node 1 fails, the primary fragment R1 can no longer be accessed and thus its
backup fragment rl on node 2 must be used for processing queries that would
normally have been directed to R1. However, instead of requiring node 2 to
process all accesses to both R2 and rl, chained declustering offloads six sevenths
of the accesses to R2 by redirecting them to r2 at node 3. In turn, five sevenths
of access to R3 at node 3 are sent to r3 instead. This dynamic reassignment
of the workload results in an increase of one seventh in the workload of each
remaining node in the cluster. Since the relation-cluster size can be increased
without compromising data availability, it is possible to make this load increase
as small as desired. Refer to [15] for a detailed description of the load balancing
algorithm.

DATA REPLICATION STRATEGIES 59

Node 0 1 2 3 4 5 6 7

Primary Copy R0 - - - / R 2 7R3 3R4 4R5 ~ 6 5R 6R7

Backup Copy lr7 --- rl 6r27 -~r35 ~r44 7r 53 7r 6"~

Figure 4. Fragment utilization with chained declustering after the failure of node 1 (relation-cluster
size=8).

3. Simulation model

3.1. Model overview

To evaluate the three availability mechanisms, we constructed a simulation model
of the Gamma database machine [10] running on a 32-node Intel iPSC/2 hyper-
cuber [16]. Figure 5 depicts the overall structure of the model. Each component
is implemented as a DeNet [20] discrete event module. The arcs in the figure
are discrete event connectors and can be thought of as a combination of a
preconstructed message path and a set of predefined message types. The role of
each component is described briefly below. (The actual model parameters that
we used can be found in Table 1).

Database manager. The database is modeled as a set of relations consisting
of a number of data pages. Both clustered and non-clustered indices can be
constructed. The system catalog is used to keep track of the relations, indices,
and, for chained declustering and interleaved declustering, the location of the
primary and backup fragments of each relation.

Terminal. This module is responsible for generating queries. A query may select
or update any number of tuples and it can be executed using either a sequential
file scan or a clustered or a nonclustered index. The model simulates a closed
system, so there can be only one outstanding request per terminal. The number
of active terminals in the system determines the multiprogramming level. When
a query is complete, a terminal waits for exactly ThinkTime seconds before
submitting another query. The simulation runs until the preselected response
time confidence interval, Confidlnt, is reached.

Query manager. Given a query request, the module examines the schema
to determine which node(s) should execute the query and then constructs an
appropriate query plan. 5 If a single node is to be used to execute the query, it

60 HSIAO AND DEWITT

N e t w ~ c k
I r a e r t a t - e - - "

D i = k
M a a a ~ ¢

D i s k - - -
D a t a b a ~

I-

HOST
1

Communication Network f

i. r2I

- - . . M a a a ~ e a "

. .~ L--
LOG SERVER

OPERATOR NODE

Figure 5. Architecture of the simulation model.

will be sent directly to the node. Otherwise, it is sent to scheduler module.

Scheduler. This module is responsible for coordinating the execution of multiple-
node queries. For each query, the scheduler traverses the tree top down
activating an operator process on each of the nodes containing relevant fragments.
After initiating the query, the scheduler waits for an "done" message from all
participating operator processes before committing the query and sending a
"query done" message to the requesting terminal.

Network manager. The network manager encapsulates the operation of the
communication network. Network packets are served in first-come, first-served
(FCFS) order by the network manager. A key parameter of this module is
PacketThreshold, which determines how many network packets can be served
simultaneously. When a packet arrives at the network manager, it is served im-
mediately if there are less than PacketThreshold packets outstanding. Otherwise,

DATA REPLICATION STRATEGIES 61

the new packet will be placed in a queue; as soon as a packet leaves the network
module, the head of the waiting queue will be removed and service for it will
begin. While being served, each packet is delayed for a time T in the network
module before it is delivered to the destination node. T is proportional to the
number of bytes in the packet which includes a packet header. The size of a
network packet ranges from several hundred bytes for control packet to several
thousand bytes for a data packet.

Network interface. This module models the sending and receiving of network
packets (messages) for an operator node. A certain amount of CPU cycles is
consumed for each message sent and received. The actual number of cycles
consumed is determined by the message type (e.g., data or control packet) and
its size.

Operator manager. The operator manager simulates Gamma's operator pro-
cesses. This module models three different types of operator processes: selection
processes, update processes, and store processes. Depending on the type of the
incoming query packet, the operator process may begin requesting data pages
from the disk manager (if it is a select or update) or it may wait for a data
packet to arrive from another processor via the network module (if it is a store).
Each operator process requests certain amount of CPU time when it initiates an
I/O request and when it processes disk or network data pages.

CPU. The CPU module models the sharing of the CPU resource among different
processes running on a node. When a process needs CPU cycles, it sends a
request to the CPU module with the number of CPU instructions needed. If
the CPU is free, the request is served immediately and a reply is sent back to
the requester after the requested CPU time has elapsed. Otherwise, the request
will be put in a CPU ready queue. A key parameter of this module is the CPU
speed in MIPS.

Disk manager and disk. The disk manager is responsible for handling I/O
requests generated by the operator manager. When a disk request is received,
the disk manager maps the logical page number generated by the operator
manager to a physical disk address (cylinder #, sector #), issues a disk I/O
request, and then waits for the completion of the request. An elevator disk
scheduling discipline is used except in the case of mirrored disks. Based on the
results in [2, 13], a combination of shortest-seek-time first 6 and FIFO scheduling
is used in the case of mirrored disks. This is also the strategy used in the Tandem

62 HSIAO AND DEWITr

NonStop SQL systems. The total time required to complete a disk access is

DiskAccessTime = SeekTime + RotationalLatency + SettleTime

+ TransferTime

The Seek Time for seeking across n tracks is modeled by the formula [2]

Seek Time(n) = SeekFactor. v ~

The rotational latency is modeled by a random function that returns uniformly
distributed values in the range of MinLatency to MaxLatency. SettleTime models
the disk head settle time after a disk arm movement. The value of transfer time
is computed by dividing the disk page size by the disk Transfer Rate.

Failure manager and log manager. The failure manager has no impact during
the normal mode of operation. In the failure mode, this module will randomly
select a node to fail and, in the case of CD, reassign active fragments for the
remaining nodes. The log manager is not actually implemented. However,
because each scheme has approximately the same overhead for generating and
storing log records, we believe that the exclusion of the log manager does not
significantly affect their relative performance.

3.2. Physical data placement in the simulation model

With the mirrored disk strategy, the contents of the two disks within a mirrored
pair are identical and a disk read request can be served by either disk in the
pair. In the Tandem Non-Stop SQL system, and our model of this architecture,
the disk with the shortest seek time is assigned to serve a disk read request. By
doing so, the expected seek distance for random reads is reduced from one third
to one sixth of the tracks [2, 13].

With chained declustering and interleaved declustering, primary fragments and
their associated indices from all relations are placed together on the outer half
of the cylinders while backup fragments are stored on the inner half. With
these two strategies, a primary fragment access scheme is used in our simulation
experiments and because the primary fragments are placed together on the outer
half of a disk drive, the expected seek distance for random read requests is
also reduced from one third to one sixth of the tracks in the normal mode of
operation.

3.3. Alternative update mechanisms for backup fragments

With chained and interleaved declustering, an update query can be processed in

DATA REPLICATION STRATEGIES 63

one of three ways. First, each update can be sent to and processed by the two
nodes on which the relevant primary and backup fragments are stored. A second
approach is to send the update query to only the node containing the primary
fragment for processing. After processing is completed, the node sends redo log
records to the backup node where they are applied. A variation of this approach
is to again direct update queries only to the nodes containing the primary
fragments. However, instead of shipping redo records, the updated disk pages
are shipped to the nodes containing the corresponding backup fragments where
they are written directly to disk. This method incurs additional communications
costs but does fewer total disk I/Os than either of first two methods. Because
the network message delay is 5.6 ms for an 8K data page (measured on the Intel
Hypercube), while the average disk service time for read requests is more than
12 ms, we selected this third method for processing update queries with chained
and interleaved declustering.

4. Experiment and results

This section presents the results of our comparison of the three availability
mechanisms under a variety of different workloads, in both the normal and
failure modes of operation. Of particular interest was how the load imbalance
caused by a disk or processor failure affects system throughput and response
time for various types of queries. Besides comparing the performance of the
different high availability strategies, two other related issues are also explored:
the impact of updating the backup copies and the trade-off between the benefit
of intra query parallelism and the overhead of activating and scheduling extra
operator processes.

4.1. Model validation

In order to evaluate the accuracy of the results produced by the simulation model,
we first configured the model to reflect, as accurately as possible, the charac-
teristics of Gamma and then ran a number of experiments without replication.
As described in [14], the model predicted the actually measured performance of
Gamma with less than a 10% margin of error.

4.2. Experimental design

Typically, system throughput and average response time are the two key metrics
used to evaluate a system. However, since our model simulates a closed system,
response time is inversely proportional to system throughput. Thus, in the
remainder of this section, throughput will be used as the main performance

64 HSIAO AND DEWITT

metric. Several additional metrics will be used to aid in the analysis of the
results obtained. The first is the disk service time, which is the average time
to serve a disk I/O request (not including the time spent waiting in the disk
queue.) The second metric is the disk utilization, which is computed by dividing
the total disk service time of disk by the experiment time. The third metric
is the CPU utilization, which is measured by dividing the total CPU busy time
by the experiment time. Finally, the average number of index and data pages
accessed per query is also examined in our experiments.

Table 1 specifies the parameter settings used for the experiments. Since the
mirrored disk scheme requires at least two disks (a mirrored pair) on each
processor, each of the 16 processors has two disks attaches. The database
consists of eight relations, each with 2 million tuples and relations are fully
declustered. The number of terminals (sources) in the model is varied from 1
to 72 and the buffer hit ratio for disk read requests is assumed to be 20%. The
cluster size (number of disks) for the interleaved declustering scheme was set to
8 as this is the maximum size recommended by Teradata to its customers.

For the five experiments, the relations in the database were declustered over
the disks in the system by hashing on the attribute used in the selection predicate
of the queries. After the tuples had been declustered, a clustered index was
constructed on the partitioning attribute. The motivation for this physical orga-
nization was to cover a broad spectrum of the performance space with only a few
queries. First, in the case of Experiment 1 (a single-tuple, indexed retrieval on
the partitioning attribute) this declustering/indexing strategy allows the query to
be directed to a single node for processing where it incurs a minimum number of
I/Os. The same is true for Experiment 4 - a single tuple update. On the other
hand, the queries in Experiment 2 (1% indexed selection on the partitioning
attribute) and in Experiment 5 (update between 10% and 50% of the tuples
selected by the query used for Experiment 2) must be sent to all processors
for execution because they both involve range selections on a hash partitioned
relation.

If the relations had instead been range partitioned on the selection attribute,
then queries 2 and 4 could have been directed to a subset of the processors,
reducing their response time and improving the overall throughput of the system.
The reason that we did not elect to use this alternative, is that we wanted
to bracket the performance space with as few queries as possible. Using range
declustering would have required us to push the simulations found in Experiments
2 and 4 to even 7 higher multiprogramming levels in order to demonstrate the
differences among the various strategies that we could observe at lower MPLs
when hash partitioning was used.

This partitioning/indexing combination chosen does, however, have a subtle
impact on the performance of the ID scheme that the reader should be aware of.
As an example consider a system consisting of four processors (P1, P2, P3, and
P4) each with one disk and assume that each disk page can hold only two tuples.

DATA REPLICATION STRATEGIES 65

Table 1. Parameter settings for performance experiments.

Parameter Setting

Number of processors 16

Disks per processor 2

Number of relations 8

Relation size 2M tuples

Tuple size 208 bytes

Multiprogramming level 1 - 72

Buffer hit ratio 20%

ID cluster size 8

CPU speed 3 MIPS

Read 8K data page 14400 instructions

Write 8K data page 25488 instructions

Intiate a disk write 2000 instructions

Seek factor 0.78

MinLatency 0 msec

MaxLatency 16.667 msec

Settle Time 2.0 msec

Transfer rate 2M bytes/see

Disk page size 8K bytes

Confidlnt within 5% (95% confidence)

Think time 0 sec

PacketThreshold 999

Assume also a relation containing 24 tuples with partitioning attribute values 1
to 24 which is hash declustered using "mod4" as the hash function. Thus, the
tuples stored at P1 will have key values 1, 5, 9, 13, 17 and 21. After the tuples
have been declustered, a clustered (i.e., sorted) index is created at each node on
the partitioning attribute. On P1, this step will place the tuples with keys 1 and
5 on page 1, 9 and 13 on page 2, and 17 and 21 on page 3. With ID, there are

66 HSIAO AND DEWlTT

two ways of making a backup copy of the tuples residing on P1. The approach
used by Teradata is to apply a second hash function to the key attribute of each
tuple, mapping each tuple on P1 to either P2, P3, or P4 (the other processors do
the same for their tuples). The advantage of this approach is that when P1 fails,
a single tuple selection query on the partitioning attribute can be routed directly
to the backup processor by using the second hash function. Its disadvantage is
that update queries must be processed in both places (incurring additional disk
I/Os and processing overhead for every single upda te -du r ing the normal as well
as the failure mode.)

The second approach for constructing the backup fragments is to distribute
duplicate copies of the pages of the primary copy among the other nodes in the
relation cluster. Thus, page 1 from P1 will be placed on P2, page 2 on P3, and
page 3 on P4. The advantage of this approach is that updates to page 1 on
P1 can be reflected on P2 by simply shipping a copy of the page to P2. The
disadvantages is that when P1 fails, single tuple selections that would normally
be handled only by P1 must now be sent to P2, P3, and P4 for processing. For
the particular database design that we have chosen, one of P2, P3 and P4 will
search their index on the backup fragments to locate the desired tuple. The
others will search their index only to find no matching tuple. We think that this
is the better of the two alternatives because the path length for updates in the
normal mode of operation is much shorter (see Section 3.3). 8

This indexing/partitioning combination also impacts the performance of ID
mechanism at low multiprogramming levels when executing the 1% selection
operation of Experiments 2 and 5 in the failure mode of operation. Each
relation consists of about 50,000 8-byte p a g e s - o r about 1500 pages/disk. Since
the relation is hash partitioned on the selection attribute, each of the 32 disks
will produce approximately 15 pages of result tuples. These 15 pages will overlap
one and occasionally two of the backup subfragments (each backup subfragment
will contain approximately 50 pages). Therefore, when a disks fails, the subquery
originally served by the failed primary fragment will be served by one or two
backup subfragments and not by all the processors in the cluster. A similar effect
also occurs with CD because the division of responsibility between the primary
and backup copies is based on attribute value ranges.

4.3. Performance results for selection queries

This section examines the relative performance of chained declustering (CD), in-
terleaved declustering (ID), and mirrored disks (MD) for three different selection
queries.

Experiment 1: Single tuple selection on the partitioning attribute
The first query tested was a single-tuple, exact-match selection on the partitioning
attribute using an index. Since the selection is on the partitioning attribute the

DATA REPLICATION STRATEGIES 67

Throughput (Queries/Second)

4504011 C ~ ID

i- MD
350

300-

2,50"

200-

150"

100'

50'

8 16 24 32 40 48 56 64 72
Multiprogramming Level

B
Throughput (Qucrie 's/Second)

450'

4O0 CD

250 S / MD

5O

8 16 24 32 40 48 56 64 72
Mulfiprogramming Level

Figure 6. Single tuple selection: (A) normal mode, (B) failure mode.

query can be directed to a single node for execution. Figure 6a shows the average
throughput obtained by each scheme in the normal mode of operation. All three
schemes provide approximately the same performance when the multiprogram-
ming level (MPL) is less than 24. With 32 disks and less than 24 outstanding
disk requests, the chance that there is more than one request in a disk queue is
very small. Hence, the order in which requests are serviced is likely to be the
same for all three schemes and thus so are their disk service times.

When the MPL is greater than 24, the probability of more than one request
waiting in the disk queue becomes higher, in turn, increasing the effectiveness
of the elevator disk scheduling algorithm used by the CD and ID mechanisms.
Consequently, their average seek distance becomes smaller than that of the MD
mechanism. For example, at a MPL of 72, the average disk seek (service) time
for CD is 7.19 ms (21.62 ms), whereas it is 8.31 ms (22.74 ms) with MD. As a
result, CD and ID provide about the same level of throughput and they both
process more queries per second than MD when MPL > 48. Henceforth, we
shall refer to this effect as the disk scheduling effect.

In the failure mode of operation (Figure 6b), all three schemes suffers little
(or no) performance degradation at low multiprogramming levels (MPL < 4)
because the processors and disk are under utilized. As the MPL increases,
however, the impact of a disk failure becomes more and more significant. When
MPL > 24, the throughput of the MD scheme levels off because the remaining
disk in the failed mirrored pair is fully utilized and becomes a bottleneck. On the
other hand, with the CD and ID schemes the throughput continues to increase
because both mechanisms do a better job of distributing the workload originally
served by the failed disk (henceforth referred to as the load balancing effect).

68 HSIAO AND DEWrrT

Comparing Figures 6a, b one can see that, at a MPL of 72, the decrease in
throughput due to a disk failure with CD is about 10%, while it is about 20%
with ID. In contrast, the decrease in throughput with mirrored disks is higher
than 40%.

The performance differences between the ID and CD mechanisms in Figure 6b
is the result of differences in their disk utilizations when a failure occurs 9. For
example, with the ID scheme, at a MPL of 72, the average utilization of the
remaining disks in the cluster that suffered a disk failure is around 95% while
the utilization of the drives in the other clusters is about 60%. On the other
hand for CD, the disk utilization of each of the remaining drives is around 70%
at a MPL of 72. With respect to CPU utilization, it is less than 40% for all
three mechanisms. One interesting observation is that for CD and ID, the CPU
utilization is proportional to the number of pages processed by a node which, in
turn is proportional to the number of operational disks it has.

E~eriment 2: I% selection query using a clustered index
This experiment considers the performance of three mechanisms while executing
an indexed selection query with a 1% selectivity factor. The source relation is
assumed to be hash partitioned and thus each query must be sent to all active
nodes for processing. With all three schemes, each node produces 1250 result
tuples that are returned to the submitting terminal. To process this query using
the MD mechanism in the normal mode of operation, each processor will read
two or three index pages 1° and 35 data pages. In the case of CD or ID, each
processor will read two or three index pages and 18 data pages from each of its
two disks. Both read and process two more index pages and one more data page
than with MD because their primary and backup fragments are distributed across
both disk drives. In addition, twice as many operator processes are activated
with CD and ID. While the CD and ID schemes incur this extra disk overhead,
they also benefit from the corresponding higher degree of intraquery parallelism
(henceforth referred to as query parallelism effect) until the CPU becomes a
bottleneck at higher multiprogramming levels.

The results obtained are presented in Figures 7a, b. In the normal mode
of operation, CD and ID provide more throughput than MD until the MPL is
greater than 12 at which point the CPU becomes 100% utilized, n On the other
hand, with the MD scheme, a CPU bottleneck does not form and, the throughput
does not level off until the MPL reaches 24. Ultimately, at a MPL of 48, the
MD scheme provides about 5% more throughput. Figure 7a illustrates that
there is a trade-off between the benefit of a higher intraquery parallelism and
the overhead of scheduling more operator processes and processing more index
pages. If a system will be consistently operated under high CPU utilization (i.e.,
its applications are CPU bound), then the partitioning strategy/data placement
algorithm used with CD and ID should be modified to use only 16 instead of
32 fragments (by treating the two disks attached to a processor as one "logical"
unit).

DATA REPLICATION STRATEGIES 69

Throughput (Queries/Second)
3

M D

~ o - ¢j

~ . - ~ ~ - o C D

ID

Throughput (Queries/Second)
3'

CD

ID

MD

8 16 24 32 40 48 8 16 24 32 40 48
Multiprogramming Level Multiprogramming Level

Figure Z 1% Selection: (A) normal mode, (B) failure mode.

Figure 7b shows the throughput of the three mechanisms in the event of a
disk failure. At a MPL of 1, the throughput provided by CD and ID drops by
almost 40%. As discussed in Section 4.2, the principal cause of this drop is that
with both schemes the workload of the failed disk ends up being handled by a
single disk which ends up servicing twice as many requests as the other disks.
In addition, when CD and ID are operating in the failure mode, the average
seek distance is longer because both the primary and backup copies are being
accessed. At higher MPLs, since there are multiple outstanding queries, all
generating I/O requests, the work of the failed disk becomes evenly distributed
among the remaining disks in the failed cluster. Consequently, the performance
degradation with CD and ID will be less drastic. Indeed, as demonstrated by
Figure 7b, when the MPL > 12, the reduction in throughput is about 3.5% with
CD and about 8% with ID.

With the MD scheme, there is little or no performance degradation at a MPL
of 1 because the other disk in the mirrored pair is idle in normal mode and can
assume the workload without penalty. However, at MPL of 2 the utilization of
this mirrored pair rises to 95% while the remaining disks remain 30% uti l ized-
causing the overall throughput of the MD mechanism to level off. At a MPL
of 4, the remaining disk in the failed mirrored pair is fully utilized and truly
becomes a bottleneck. Consequently, the MD throughput levels off when MPL
>_ 4. With the CD and ID schemes, on the other hand, the throughput continues
to increase until a MPL of 12 is reached. At this point, the CPU is fully utilized
and becomes the bottleneck.

70 HSIAO AND D E W l T r

Earperiment 3: 0.1% selection query using a nonclustered index
In this experiment, we assume that the qualified attribute of a query is different
from the partitioning attribute. In this case, a range selection query using a
nonclustered index will have to be sent to all active nodes for processing in both
the normal and failure modes of operation. In the normal mode of operation,
a 0.1% selection query reads two or three index pages and 63 data pages from
each disk with the CD and ID schemes whereas it reads two or three index
pages and 125 data pages from each mirrored pair of disks with the MD scheme.
With all three schemes, 125 tuples are selected at each node and the results are
returned to the user/application program.

Figure 8 shows the throughput of this query. As shown in Figure 8a, both CD
and ID provide higher throughput than MD throughout the entire experiment
in the normal mode of operation. At a MPL of 1, CD and ID provide about
90% more throughput than MD does in the normal mode of operation. This
is due to the query parallelism effect as explained in Experiment 2. In this
experiment, the throughput difference between MD and the other two schemes
at a MPL of 1 is higher than it is in Experiment 2 and the difference is close
to 100%. There are two reasons for the bigger throughput difference in this
experiment: First, the query type in this experiment is I/O bound, whereas it
is CPU bound in Experiment 2. Doubling the number of disks serving a query
will thus cut the response time by one half (doubling the throughput) here.
With CPU bound applications, however, the response time of a query is affected
mainly by the CPU utilization and the degree of overlap between CPU execution
and disk execution. Second, a node reads and processes about 128 pages for
each query in this experiment, whereas it reads and processes only 37 pages per
query in Experiment 2. The reading and processing of two extra index pages
and one extra data page per query account for about 2% of the overhead in this
experiment, whereas they account for more than 8% of the extra CPU overhead
in Experiment 2.

At a high MPL (e.g., MPL > 12), disks are more likely to be active at the same
time and the throughput difference between MD and the other two schemes in
this region is due partly to query parallelism effect and partly to the disk scheduling
effect. As indicated in Figure 8a, both CD and ID provide significantly (about
39%) higher throughput than MD at a MPL of 48.

Figure 8b shows the throughput of all three schemes in the event of a disk
failure. With CD, the query response time at a MPL of 1 increases by 100% due
to the uneven distribution of the workload (as explained in Experiment 2) and
the throughput decreases correspondingly by about 50%. With the ID scheme,
the workload of the failed disk is distributed evenly 12 among the remaining disks
in the failed ID cluster. As a result, at a MPL of 1 the increase in workload
on disks in the failed ID cluster is only 14%. The increased workload together
with the higher disk seek time in the failed ID duster results in about a 16%
drop in throughput at a MPL of 1. With the MD scheme, as in Experiment 2,

DATA REPLICATION STRATEGIES 71

A

Throughput (Queries/Second)

2.0"

1 . 6 "

1.2"

0 . 8 ¸

0.4

B

Throughput (Querie~Second)
2,0

1 . 6

CD
1.2

~r" ~ - - - - ~o- 0 . 8 '

(
0 . 4 '

CD

~ - . - MD

k 16 A 3'2 4b 48 k ;~ A 3'2 40
Multiprogramming Level Multiprogramming Level

Figure 8. 0.1% Selection: (A) normal mode (B) failure mode.

there is no performance degradation at a MPL of 1 when a disk failure occurs.
As a result, at a MPL of 1, MD provides slightly higher throughput than CD
while ID provides significantly higher throughput than CD.

Table 2. Percentage difference in throughput and disk service time.

Percentage difference in

MPL Throughput Disk service time

1 90.0 +7

2 45.6 -10

4 34.5 -5

12 33.6 +21

24 35.3 +27

48 38.5 +34

At a MPL of 2, one of the MD disks becomes a bottleneck and the throughput
levels off. On the contrary, the throughput with both CD and ID continues to
increase as the MPL is pushed higher, mostly as the result of improved load

72 HSIAO AND DEWITT

balancing. Figure 8b also shows that ID continues to provide higher throughput
than the CD scheme up to a MPL of 4. When MPL > 4, however, the benefit of
the CD's superior load balancing begins to dominate. As indicated in Figure 8b,
CD starts to provide even higher throughput than ID when the MPL is greater
than 12. At a MPL of 48, the throughput with CD is about 10% and 200%
higher than with ID and MD, respectively.

Table 2 shows the percentage difference in throughput and disk service time
between MD and the other two schemes in the normal mode of operation.
The second column shows how much more throughput the CD and ID schemes
provide than the MD scheme, while the third column shows how much more
time a disk with the MD scheme takes to serve a disk request than it does
with CD or ID. (In the third column, a negative sign is used to indicate that
a disk with MD takes less time to serve a request than it does with CD or
ID.) As indicated in the table, at one end of the spectrum (MPL = 1), the
throughput difference results mainly from the difference in the degree of intra
query parallelism (query parallelism effect). At the other end of the spectrum
(MPL -- 48), the throughput difference results mainly from the difference in disk
service times due to the different disk scheduling disciplines (disk scheduling
effect).

4.4. Performance results for update queries

For an update query, each time a data item is updated, the change must be
reflected in both the primary and the backup copies of the data item. Since in the
case of both CD and ID, the page containing the backup copy of the item is on
a disk that is connected to a different processor, each update incurs CPU cycles
for packaging, sending, and receiving the page over the communications network,
as well as a wire delay in the communication network (henceforth referred to
as the remote update overhead). While no extra CPU cycles are required with
the MD mechanism, the write to the mirrored pair ends up synchronizing both
disk arms and the average seek distance becomes 0.47n, where n is the number
of cylinders [2]. This is 0.14n higher than the average seek distance of a single
disk. Henceforth, we shall refer to this effect as the synchronizing write overhead.

Two query types are studied in this section: a single tuple update query using
a clustered index, and a query that selects 1% of the tuples using a clustered
index and then updates between 10% and 50% of the selected tuples. Since the
relations are hash partitioned, the first query will be sent to a single processor
while the second will be sent to all processors.

In our experiments, an update transaction is not committed until both the
primary and backup copies have been updated. In addition, we assume that the
attribute being updated is not the partitioning attribute and is not indexed.

DATA REPLICATION STRATEGIES 73

Throughput (Queries/Second)
250 CD
200 ~ t~

150- ~ /

100

50

8 16 24 32 40 48 56 64 72
Multiprogramming Level

Throu hput(QueneslSecond)
25O

CD
200 t~

150

i 0 0 / " f

5O,

8 16 24 32 40 48 56 64 72
Multiprogramming Level

Figure 9. Single tuple update: (A) normal mode, (B) failure mode.

Experiment 4: Single tuple update query
The results of this experiment are contained in Figures 9a, b. All three schemes
provide comparable performance at low multiprogramming levels. Since the
system resources (CPU, disk, and network) are under utilized, the overhead of
updating the backup copies is not a significant factor. As the MPL is pushed
higher, differences among the schemes begin to emerge. In particular, with MD
the overhead of synchronizing disk writes starts to limit the overall performance
of the system. On the other hand, the overhead of a remote update with CD .
and ID is not significantly affected by the MPL (unless, of course, the CPU or
network becomes a bottleneck). As a result, the CD and ID schemes provide
noticeably higher throughput when the MPL is greater than 24 in the normal
mode of operation.

Figure 9b shows the throughput of the three mechanisms in the event of a disk
failure. When the MPL is less than 24, the performance of the CD and MD
strategies are not significantly affected because both the CPU and disk are under
utilized and the load increase that results from the failure is not significant. ID's
performance is affected slightly more because it reads and processes more index
pages in the failure mode.

As the MPL is pushed higher, the load balancing effect becomes more important
and the differences in performance become more significant. For example, at a
MPL of 72, Figures 9a, b show that the throughput drops by only 3.3% with the
CD strategy, by 14.9% with the ID strategy, and by 9.2% with the MD strategy.

With the MD strategy, the remaining operational disk in the failed mirrored
pair must assume the entire workload of the pair. However, unlike the single
tuple selection case, the decrease in throughput is only about 10%. There are

74 HSIAO AND DEWITT

two major reasons for this behavior. First, since writes always go to both disks,
the failed disk must assume only the read requests originally handled by the
failed disk. Each query reads three pages and update one page. Given two such
queries, each disk in a mirrored pair is responsible for three disk reads and two
disk writes (assuming that the workload is uniformly distributed between the two
disks). When a disk failure occurs, the remaining disk in the failed pair will be
responsible for six disk reads and two disk writes, resulting in a 60% increase
in the number of disk requests. With a 20% buffer hit ratio for read requests
(the number used in our experiments), the increase in disk requests decreases
further to roughly 54%. Second, in a failed mirrored pair, there is no longer
any need to synchronize the two disk arms. Consequently, the remaining disk
can process write requests much more efficiently, offsetting some of the impact
of the increase in the number of disk requests.

The update query used in this experiment is I/O bound. If an update query is
CPU bound, the MD scheme may provide better performance than CD and ID
in the normal mode of operation. This is because the remote update overhead
incurred by CD and ID consumes extra CPU cycles while the synchronizing write
overhead associated with MD increases the disk service time.

Experiment 5: 1% selection with X% update using a clustered index
In this experiment, we again assume that the relation being updated is hash
partitioned 13 and that the query has to be sent to all operational nodes for
processing. The query in this experiment uses a clustered index to sequentially
read 1% of the tuples, randomly updating X% of the ones read. Figures 10a,
b show, respectively, the throughput of the three replication mechanisms in the
normal and failure modes for update frequencies of 10%, 30%, and 50%. In the
normal mode of operation, CD and ID provide significantly higher throughput
than MD except at a MPL of 1. At a MPL of 1, both the CD and ID schemes
provide higher throughput than the MD scheme when X is equal to 10, whereas
MD provides higher throughput than CD and ID when X is equal to 30 or 50.
Two factors interact to cause this switch. First, at a MPL of 1 both CD and ID
benefit from the effect of intraquery parallelism (see Experiment 2). Second,
with ID and CD, as the update frequency is increased, more and more disk
contention occurs between reads/writes of the primary fragments and writes to
the backup fragments. At an update frequency of 10% the query parallelism
effect dominates, and CD and ID provide better overall throughput. However,
at an update frequency of 30% or 50%, the overhead of a longer disk service
time dominates and MD has the best performance. For example, at a MPL of
1, the average disk service times for CD/ID is 19.1 ms when X = 10 and 23.0
ms when X = 50 (the corresponding disk service times for MD are 16.5 ms and
18.2 ms, respectively).

Beginning with a MPL of 2, the update portion of the query begins to cause
disk contention with MD as well, resulting in a higher disk service time. Like

DATA REPLICATION STRATEGIES 75

Throughput (Queries/Second)
3.0

2.5

2.0

B
Throughput (Queries/Second)

1.5

!.0

0.5"

3.0

C D _ I 0 ~ _ : o 2.5

_30 2.0-

F / . . - < :
--- ~ - - -- - - n - - ~ I D _ 5 0 ! . 0 "

0.5'

C D _ I 0

~ I D 10

. /S. . -~- ¢o_~0-

it~ 7- 7- : ~o_30
M D _ 5 0

8 12 16 20 24 4 8 12 16 20 24
ultiprogramming Level Multiprogramming Level

Figure 10. 1% Selection with X% update: (A) normal mode, (B) failure mode.

the previous case with CD and ID, the higher the update percentage is, the
more severe the disk contention will be. In addition, having to synchronize the
disk heads when performing each write, also increases the average service time.
For example, at a MPL of 2, the average disk service time with MD is 19.4 ms.
when X = 10 and 22.8 ms. when X = 50.

When X = 10, the throughput of MD continues to increase until a MPL of
4 at which point one or more of the disks becomes fully utilized and forms a
bottleneck. The continued increase in disk service times with MD results in a
slight decrease in throughput from MPLs of 4 to 12. When MPL > 12, the
throughput with MD levels off. With X -- 30 and 50, throughput decreases
slightly from MPLs of 2 to 4 and levels off after MPL > 4. With both CD and
ID, the throughput increases significantly from a MPL of 1 to 4 for all three
update levels. When MPL > 4, the rate of increase drops significantly because
the disks are nearly 100% utilized. The small increase in throughput is mainly
due to a decrease in disk service time as the result of the elevator scheduling
algorithm employed by the disk controller. At a MPL of 24, CD and ID provide,
respectively, 46%, 55%, and 57%, more throughput at X = 10, 30, and 50 than
the MD scheme.

Figure 10b shows the throughput provided by the three mechanisms in the event
of a disk failure. Overall, CD and ID provide significantly better performance
for all update frequencies at all multiprogramming levels except I because they
both do a better job of balancing the load in the event of a disk failure. With
MD, as the MPL is increased beyond 1, the failed mirrored pair becomes the
bottleneck. While CD and ID exhibit a fairly significant drop in performance at
a MPL of 1 (when compared with their normal performance), at a MPL of 24,

76 HSIAO AND DEWITT

the drop is less than 5% with CD and less than 10% for ID.

4.5. Varying CPU speed and~or page size

In addition to the experiments presented in the previous two sections, we also
studied the effect of increasing the CPU speed from 3 to 14 MIPS and decreasing
the page size from 8 kbytes to 4 kbytes. Except for the 1% selection using a
clustered index (Experiment 2), the other queries remained I/O bound and
the relative performance of the different replication schemes did not change
significantly. On the other hand, in the case of Experiment 2, the query becomes
I/O bound with a 14 MIP CPU and MD no longer performs better than CD or
ID at high MPLs in the normal mode of operation.

5. Conclusions

In this paper, we have studied the performance of the chained declustering,
interleaved declustering, and mirrored disk schemes using a simulation model
of Gamma database machine. In particular, we have examined (1) the relative
performance of the three strategies in the normal mode of operation, (2) the
effect of the load imbalance caused by a disk or processor failure on system
throughput and response time for various types of queries, and (3) the trade-off
between the benefit of intraquery parallelism and the overhead of activating and
scheduling extra operator processes.

Experiments were conducted using both read-only selection queries and up-
date queries requiring both reads and writes. For selection queries, chained
declustering and interleaved declustering were shown to perform comparably in
the normal mode of operation. Both performed better than mirrored disks if
an application is I/O bound (due to disk scheduling), but slightly worse than
mirrored disks if the application is CPU bound. In the event of a failure chained
declustering was able to balance the workload among the remaining disks, while
interleaved declustering was able to redistribute the workload within the failed
cluster; mirrored disks cannot do any load redistribution, so the mirror image
of the failed disk had to process all requests originally served by the failed
disk. As a result, chained declustering provided slightly better performance than
interleaved declustering and much better performance than mirrored disks in a
failure mode of operation.

To update the backup copy of a data item, chained and interleaved declustering
incur the CPU overhead of packaging and sending the updated data to the remote
node where the backup copy is stored. In addition, the remote node consumes
extra CPU cycles to receive the network packet (containing the updated page)
and to initiate an extra disk write operation to write the updated page to disk.
With mirrored disks, both copies of a data item are stored on disks attached

DATA REPLICATION STRATEGIES 77

to the same processor. Consequently, no extra CPU cycles are needed for
updating the backup copy. However, with mirrored disks each write operation
ends up synchronizing the read/write heads of both disks in the mirrored pair
[2]. Therefore, the disk service time for a write becomes the maximum service
time of two writes. In addition, both disk arms in a mirrored pair will be at
the same cylinder after each write operation, effectively reducing the number of
disk arms available for serving the next read request to one. Consequently, with
mirrored disks, the average disk service time per request is longer for update
queries than for select queries.

For update queries, the relative performance of the three schemes depends on
the relative performance of the processor and the disk drive (because chained
declustering and interleaved declustering incur CPU overhead while mirrored
disks incurs overhead in disk service time). In the normal mode of operation, if
an update query is I/O bound, chained declustering and interleaved declustering
perform better than mirrored disks. On the other hand, if an update query is
CPU bound, the mirrored disk mechanism will perform better. Since advances in
CPU technology have occurred much faster than those of disk drive technology
[11, 17], we believe that future database applications will more likely be disk
bound.

When failures occur in the mirrored disk scheme, a bottleneck forms at the
failed mirrored pair; throughput is then limited by the rate at which the failed
pair can service requests. On the other hand, with chained declustering the
workload of a failed disk is again evenly redistributed among the remaining
disks. Consequently, chained declustering provides much higher throughput than
mirrored disks in the event of a failure. The relative performance of chained
declustering and interleaved declustering (ID) in the event of a disk failure
depends on the query type and the size of an ID cluster. With an ID cluster
size of 8, our experiments showed that chained declustering can provide as much
as 14% more throughput than interleaved declustering for a single tuple update
query and as little as a 3% improvement for a 1% update query. It is very
important, however, to keep in mind that with an ID cluster size of 8, besides
providing lower throughput, the interleaved declustering scheme is 3.5 times
more likely to have data unavailable than the chained declustering scheme [15].

Our future work includes studying the performance trade-offs of the three
replication schemes with skewed data access and the possibility of dynamic load
balancing for the chained declustering scheme. Without data replication, data
partitioning (or declustering) is commonly used with multiprocessor multidisk
database machines to break hot spots and achieve load balancing. Hot spots,
however, may be dynamic in nature, and the database may need to be reorganized
periodically. With chained declustering, a query (subquery) can be processed at
the node storing either the primary or backup copy of the matching tuples. In
addition, the work of a node may be shifted to its neighbor without physically
moving data because nodes are "chained" together through the primary and
backup copies of a fragment, these two characteristics of the chained declustering

78 HSIAO AND DEWITT

scheme provide a good opportunity for dynamic load balancing [4] when a hot
spot changes over time. Consequently, a reorganization of the database may not
be required.

Acknowledgments

We would like to thank Mike Carey for his invaluable help while developing
the simulation model of Gamma and in interpreting the results obtained. This
research was partially supported by the Defence Advanced Research Projects
Agency under contract N00039-86-C-0578, by the National Science Foundation
under grants DCR-8512862, by a Digital Equipment Corporation External Re-
search Grant, and by a research grant from the Tandem Computer Corporation.

No~s

1. Some examples of such applications are stock market trading, air defense
systems, air traffic control systems, airline reservation-type systems, bank-
ing(OLTP), etc.

2. In addition, pages read from all disks would have to be "XOR'd" together to
reconstruct the failed data.

3. Data will be unavailable if any two nodes in a cluster fail.
4. A generalized formula is {[i + k + C(R)]mod M) where 0 < k < M and the

greatest common divisor of M and k, GCD(M, k), is equal to 1.
5. The actual plan generated may differ depending on the mode of operation

(normal or failure).
6. The disk with the shortest seek time is chose to serve a disk request.
7. As it was, the simulation model is so detailed that it ran "forever" (each data

point ran for more than four days on a # VAX-III).
8. This design does not preclude the use of record-level locking. Basically, an

updated page is sent to the appropriate backup node when the buffer pool
manager on the primary site forces the updated page to disk.

9. ID can distribute the workload of the failed disk only among the remaining
disks in the cluster containing the failed drive while CD is able to evenly
redistribute the workload among the remaining 31 disks.

10. Normally, two index pages are read. However, when the range of the selection
predicate overlaps the range of two leaf pages, three index pages will be read.

11. In our simulation model (and in Gamma), the processor is responsible for
transferring data from I/O channel's FIFO buffer to main memory. Without
this overhead, the CPU bottleneck would form at a higher MPL.

12. It is programmed that way in the simulation model.
13. The results will be the same if the relation is range partitioned and the

clustered index is constructed on a nonpartitioning attribute.

DATA REPLICATION STRATEGIES 79

References

1. D. Bitton, "Arm scheduling in shadowed disks," in COMPCON, IEEE Press, 1989.
2. D. Bitton and J. Gray, "Disk shadowing," in Proc. 14th Int. Conf. Very Large Data Base, Los

Angeles, CA, 1988.
3. A. Borr, "Transaction monitoring in encompass [TM]: Reliable distributed transaction processing,"

in Proc. 7th Inter. Conf. Very Large Data Base, 1981.
4. M. Carey and H. Lu, "Load balancing in a locally distributed database system," in Proc. ACM-

SIGMOD Int. Conf. Management of Data, 1986.
5. E Chen, G. Gibson, K. Katz, and D. Patterson, '~m evaluation of redundant arrays of disks using

an amdahl 5890," in Proc. ACM SIGMETRICS Conf., 1990.
6. G. Copeland, W. Alexander, E. Boughter, and T. Keller, "Data placement in bubba," in Proc.

ACM-SIGMOD Int. Conf. Management of Data, 1988.
7. G.Copeland and T. Keller, "A comparison of high-availability media recovery techniques," in Proc.

ACM-SIGMOD Int. Conf. Management of Data, 1989.
8. D. DeWitt, R. Gerber, G. Graefe, M. Heytens, K. Kumar, and M. Muralikrishna, "GAMMA-A

high performance dataflow database machine," in Proc. 12th Int. Conf. Very Large Data Base, 1986.
9. D. DeWitt, S. Ghandeharizadeh, and D. Schneider, ' ~ performance analysis of the gamma

database machine," in Proc. ACM-SIGMOD Int. Conf. Management of Data, 1988.
10. D. DeWitt, S. Ghandeharizadeh, D. Schneider, A. Bricker, H. Hsiao, and R. Rasmussen, "The

gamma database machine project," IEEE Trans. Knowledge Data Eng., vol. 2, no 1, 1990.
11. E Frank, '~dvances in head technology," presentation at Challenges in Disk Technology Short

Course, Insitute for Information Storage Technology, Santa Clara University, Santa Clara, CA,
1987.

12. J. Gray, B. Horst, and M. Walker, "Parity striping of disk arrays: Low-cost reliable storage with
acceptable throughput," in Proc. 16th Int. Conf. Very Large Data Base, 1990.

13. J. Gray, H. Sammer, and S. Whifford, "Shortest seek vs shortest service time scheduling of
mirrored disc reads" Tandem Computers, 1988.

14. H. Hsiao, "Performance and availability in database machines with replicated data," Computer
Sciences Technical Report#963, University of Wisconsin-Madison, 1990.

15. H. Hsiao and D. DeWitt, "Chained declustering: A new availabilty strategy for muitiprocessor
database machines," in Proc. 6th Int. Conf. Data Engineering, Los Angeles, CA, 1990.

16. Intel Corporation, iPSC/2 User's Guide, Intei Corporation Order No. 311532-002, 1988.
17. B. Joy, Presentation at ISSCC'85 panel session, Feb. 1985.
18. J. Katzman, "A fault-tolerant computing system," in Proc. 11th Hawaii Conf. System Sciences, 1978.
19. M. Kim, "Synchronized disk interleaving," IEEE Trans. Compu., vol. C-35, no.ll, 1986.
20. M. Livny, "DeNet user's guide," Version 1.5, Computer Sciences Department, University of

Wisconsin-Madison, 1989.
21. M. Livny, S. Khoshafian, and H. Boral, "Multi-disk management," in Proc. ACM S1GMETRICS

Conf., Alberta, Canada, 1987.
22. D. Patterson, G. Gibson, and R. Katz, "A case for redundant arrays of inexpensive disks(RAID),"

in Proc. ACM-SIGMOD Int. Conf. Management of Data, Chicago, 1988.
23. D. Ries and R. Epstein, "Evaluation of distribution criteria for distributed database systems,"

UCB/ERL Technical Report M78/22, UC Berkeley, May 1978.
24. M. Stonebraker, "The case for shared nothing," in Database Eng., vol. 9, no.l, 1986.
25. M. Stonebraker and G. Schloss, "Distributed RAID-a new multiple copy algorithm," in Proc. 6th

Int. Conf. Data Engineering, Los Angeles CA, 1990.
26. Tandem Database Group, "Nonstop SQL, a distributed high-performance, high-reliabilty imple-

mentation of SQL," in Workshop on High Performance Transaction Systems, Asilomar, CA, 1987.
27. Teradata, "DBC/1012 database computer system manual release 2.0," Document No. C10-0001-02,

Teradata Corp., 1985.

