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We determine the asymptotic number of labelled graphs with a given degree sequence for 

the case where the maximum degree is o(IE(G)I1/3). The previously best enumeration, by the first 
author, required maximum degree o([E(G) I1/4). In particular, if k = o(nl/2), the number of regular 
graphs of degree k and order n is asymptotically 

(nk)! exp(. k2-I k3 +O(k2/n)) .  
(nk/2)! 2nk/2(k,!) n 4 12n 

Under slightly stronger conditions, we also determine the asymptotic number of unlabelled graphs 
with a given degree sequence. The method used is a switching argument recently used by us to 
uniformly generate random graphs with given degree sequences. 

I.  I n t r o d u c t i o n  

Where  it is suitable,  we will use the no ta t ion  of [1] or [4]. For any integer 
y > 0, define [x]~ = x ( x - 1 ) . . . ( x - y + l ) .  Let k = k (n )  = ( k l , k 2 , . . . , k n )  be  
a sequence of nonnegat ive  integers with even sum. Define km~ -- max ,=  1 ki and 

= (kl + k2 + . - .  + kn) /n .  For r ~ 0, further  define Mr  = M r ( k )  = ~-'~i[ki]r and 
vr = vr (k )  = ~ i k~ / ( [ c rn ) .  I t  is easy to see tha t  1 = v 0 = v 1 < v 2 < v 3 _< . . - ,  with 
the inequalities being equalities if and  only if kl = k2 . . . . .  kn. For simplicity, 
wri te M = M1. 

Let  ~ (k )  be  the set of  all labelled simple graphs  wi th  degree sequence k, and 
define G ( k )  = I~(k)l.  We are concerned with the  a sympto t i c  value of G(k )  as 
n --~ cx~. Many  authors  have obta ined  results by restr ict ing the growth of the  
m a x i m u m  degree. Work prior  to [1] can be found summar i sed  there.  More recently, 
a comple te ly  different approach  [31 has born  fruit  for high degrees. Interestingly,  the 
result  in bo th  these ex t reme cases can be cast  in a common  form. 

Theorem 1.1. Define A = [r - 1) and  72 = nk2(u2 - 1 ) / (n  - 1) 2. Suppose that  
either o f  the following is true: 
(i) 1 <_ km~ = o(M1/4) ,  M -~ oc. 

(ii) Iki - k l  = O(nl /2+e)  and m i n { k , n  - k - 1} > c n / l o g n  for sufficiently small 
e > 0 and  any  c > 2/3. 
Then 

I i=l ki 4X2(1 - X)2-" 

AMS subject classification (1991): 05 C 30, 05 C 80 
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In this paper we will determine the asymptotic value of G(k) when k ~  = 
o(M1/3). The result will match Theorem 1.1 if some extra restrictions are imposed 
on the amount of variation amongst the degrees. The method used closely resembles 
that  of [1], the major improvement being the use of switching operations which lend 
themselves to easier analysis. In Section 6, we will consider the case of unlabelled 
graphs. 

2. The  mode l  

Consider a set of M points arranged in cells Vl, v2 , . . . ,  vn of size kl, k2 , . . . ,  kn, 
respectively. Take a partition P (called a pairing) of the M points into M/2  parts 
(called pairs) of size 2. The degree of cell i is ki. 

The multigraph G(P) associated with P has vertices Vl, V2, . . . , Vn. The edges 
of G(P) are in correspondence with the pairs of P; the pair (x, y) corresponds to 
an edge (vi, vj) if x E vi and y E vj. A loop of P is a pair whose two points lie in 
the same vertex, while a link is one involving two distinct vertices. Two pairs are 
parallel if they involve the same cells. The multiplicity of a pair is the number of 
pairs (including itself) parallel to it. A single pair is a pair of multiplicity one. A 
double pair is a set of two parallel pairs of multiplicity two, whilst a triple pair is a 
set of three parallel pairs of multiplicity three. 

If p is a point, then v(p) is the cell containing that  point. 
For l, d, t > 0, define lg t d t = ~gl d t(k) be the set of all pairings with degrees k, 

and exactly l loops, d doul)~e paars, and t triple parrs, but no loops of multlplic]ty 
greater than one nor pairs of multiplictity greater than three. 

We will make use of the following three operations on a pairing: the first two 
were introduced in [4]. 

I s Take a loop {Pl,P~} and two links {P2,P~} and {P3,P~}, such that  
five distinct celLs are involved. Replace these three pairs by {Pl,P2}, {P~,P3} and 
{pt2,pt3}. It is required that  all of the pairs created or destroyed be single. (See 
Figure 1.) 

Pl(  0 0 ) p~  

, ' ' ' N  p~ 'N ,  

! l ~* N, lr %'I ! 
P2 ~. J ~ IP3 

' e)  :,',o , P2 ~ / P3 

�9 ~ ,  �9 N 

Fig. 1. An t-switching 

II  d-switchlng: Take a double link {(pl,p~t}, {Pz, P2}}, where v(pl) = v(p2), and two 
links {pa, p~3} and {p4,P~4}, such that  six distinct cells are involved. Replace these 
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four pairs by {Pl,P3), {P2,P4}, ' ' {Pl,P3} and {P2,f4}" Other than the original double 
link, all of the pairs created or destroyed must be single. (See Figure 2.) 

Pl / 'O"~ / o ~ Pl 
I l f t 
1, ~ 1 ' 

O / P2 

~4 ', o ~ ( o ~ ~ 

I P3 ~ o I { o } P3 

I J ~ x  

', / ' ' I f , / /  
I P4 P4 {, 

r -  

._1 p3 p3 c o1,' 

Fig. ~. A d-switching 

III t-swlteh|ng: Take a triple link { {Pl , f l ) , {P2 , f2} , {P3 , f3}} ,  where v(pl) = 
v(p2) = v(p3), and three other link~ {P4,P~}, {P5,fS} and {P6,P~}, such that eight 
distinct cells are involved. Replace these six pairs by {Pl,P4}, {P2,P5}, {P3,P6}, 
{ f l , f 4 } ,  { f2 , f5}  and {f3,f6}" Other than the original triple link, all of the pairs 
created or destroyed must be single. (See Figure 3.) 

Pl  , O~ / O '  Pl  

1 
I # I p3 ,o /  ,~, p3 

' o j  I o )  p; 

P4 I O } { O } p~ 

i "~ Pl 

I I 

~i, 
'" p6 

~ "o',, p5 

~ " ~  p4 

i P , 

P3 ~ , 

p~ 

Fig. 3. A t-switching 

The inverse of an t-switching will be termed an inverse t-switching, and similarly 
with the other switching types. Note that an l-switching reduces by one the number 
of loops, without affecting the number of double or triple pairs. We will use this fact 
to estimate the relative cardJna!ities of ~l,d,t and $1-1,d,t. The numbers of double 
and triple links are similarly affected by d-switchings and t-switchings, respectively. 
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3. P r e l i m i n a r y  resul ts  

Let P be a random pairing with degrees kl, k2, . . . ,kn,  where 1 <_ k ~  = 
o(M1/3). We will begin with some elementary bounds on the probability that P 
has certain substructures. The first follows from a simple count. 

Lemma 3.1. The probability of t given pairs occurring in P is 

[M/2]t2 t 
[M]2-------~ <- (M - 2t) -t.  | 

Define P(k) to be the probability that P contains no loops, and no links of 
multiplicity greater than one. Since each labelled simple graph with degree sequence 
kl, k2, . . . ,  kn corresponds to exactly kl! k2!. . ,  kn! pairings, we have 

M! 
(1) G(k) = ( / / 2 ) !  2M/2kl !. . .  kn[ P(k)" 

Our task is thus reduced to computing P(k). We first show that  we can ignore 
pairs of high multiplicity, and bound the number of loops and other non-single links. 
Define 

Yl = max(flog M1, F4M2/M1) 
N2 = ma~(rlog M1, F2M~/M21) 

and 

N3 = max(rlog M1, rU~/M31). 
In the following lemma, and for the remainder of the paper, the notations 

"O( )" and "o( )" refer to the passage of M to infinity within the constraint that 
k3~ = o(M). The implied constants will be uniform over all free variables unless 
otherwise stated. 

Lemmn 3.2. 
N~ N2 N3 I~:,d,tl 

1 = (1 + O(k3m~x/M)) ~ ~ ~ I~0,0,01" 
P(k) /=0 d--0 t=0 

Proof. By considering all the possibilities and applying Lemma 3.1, we find that  the 
3 probability that  P contains a loop of multiplicity greater than one is O(km~/M ). 

6 2 Similarly, the probability of a link of multiplicity greater than three is O(km~/M ) = 
o ( k ~ J M ) ,  

Consider the probability that  there axe more than N1 single loops. By Lemma 
3.1, the expected number of sets of l = N1 + 1 single loops is O((M2/(2M))~/I!) = 
o((e/8) l~ = o(1/M). Similarly, the probability that there axe more than N2 
double links or more than N 3 triple links is o(1/M). The lemma follows, l 

We will estimate I$l,d,tl/l$O,O,O[ via estimates on the terms of the expansion 

[~'t,d,t[ I~Z,d,t[  I~'t,d,i[ I~l,d,OI I~l,d,Ol ]~'O,d, Ol I~'o,x,ol 
~ . . . . . . . . .  . 

I~o,o,ol I~t,d,t-ll I~,d,ol I~t-~,d,ol I~O,d,Ol I~'o,d-l,Ol I~o,o,ol 
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Each of these terms can be estimated by means of one of the three switchings. 
In the case of d-switchings, the analysis will be considerably more exacting, and 

we will need the following result adapted from [1]. 
If K is a multigraph, let e(K)  denote its number of edges (including loops, 

counting multiplicities), and let e l (K  ) denote its number of loops. If xx  ~ is an edge 
of K,  then #K(XX I) denotes its multiplicity, i.e., the number of edges parallel to xx  ~ 
including itself. If K and K I are multigraphs with the same vertex set, then K + K  p is 
the multigraph with the same vertex set such that i~g+ K, (xx I) = I~K (xx l) + DK' (xxt) 
for all {x, xt}. Similarly, 2K means K + K and K + xx  t is K with the multiplicity 
of xx  r increased by one. 

Let L be a graph on n vertices which is simple apart from a loop on each vertex, 
and let H be a multigraph on the same vertex set with the restriction that if any 
edge xx  ~ has #H(XX ~) _> 1, then xx ~ is an edge of L. Let Im~ denote the maximum 
degree of L. Define g(L, H) = g(L, H; k) to be the set of all pairings P with degrees 
k such that the following are true for all {x, xP}: 
(a) If xx  t is an edge of L, then #G(p)(xx ' )  = #g(xx t ) .  
(b) If xx I is not an edge of L, then #G(p)(XX I) <_ 1. 

In other words, G(P)  must be simple outside L and match H inside L. 

Lemma 3.3. Suppose that L is as defined above, and H and H + J satisfy the 
requirements given above for H. Let h l , h 2 , . . . , h n  be the degrees of  H, and 
let J l , j 2 , . . . , j n  be the degrees of J. Then, i f  km~(km~, + l ~ ) e ( J )  = o(M),  
e(H) = o(M),  and g(L, H) # r we have 

[$(L, H + J)] [In=l [ki - hi]j, 

I$(L, H)I 2el (J)+e(J)[M/2 - e(H)]e(j) I-[{x,z'} [IZH+J(XX')]#j(xzO 

*0 �9 

Proof. This is a special case of the combination of Theorems 3.3 and 3.6 of [1]. | 

We will use Lemma 3.3 to analyse the structure of $0,d,0. For a pairing P E 
S0d,0, let D i P  ) be the simple graph with vertices Vl, v2 , . . . ,  vn and just those edges 
which correspond in position to the d double links of P. 

Lemma 3.4. Let D = D(P)  for some P E $O,d,O, where 0 < d < N2. Let S be a 
simple graph on Vl, v2,. �9 �9 vn which is edge-disjoint from D. Let dl, d2 , . . . ,  dn be the 
degrees of D, Sl, s2 , . . . ,  sn be the degrees of S, and suppose that e( S ) k 2 ~  = o( M) .  
Then the probabi~ty that S C G(P)  when P is chosen at random from those 
P E $0,d,0 such that D(P)  = D is 

2e(S) [M/2]e(s ) 

Proof. The lemma is clearly true if si > ki - 2di for any i, so suppose that that  is 
not the case. Define the graph L which has the edges of D and S as well as a loop 
on each vertex. Then, for any J C S, Lemma 3.3 tells us that  

[~(L, 20  + J)] 
[g(L, 20)[ = f ( J ) '  
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where 
f ( j ) _ _  [In=l[ki-2di]ji e x p ( O ( k 2 ~ ( J ) ) ) ,  

2e(J) [U/2 - 2d~e(j ) 

and J l , J2 , . . .  , in  are the degrees of J.  Now, the required probability can be written 
a s  

f(s) 
~]JC_Sf(g), 

and since the denominator is 1 + O(e(S)k2~/M), the lemma follows. II 

In the following, we will find it convenient to write kv in place of ki if v = v i. 

Lemma &5. Suppose that 0 < d < N2 and Ms >_ M. Choose v E {Vl,V2,...,vn} 
and r >_ O. Then, ff P is chosen at random from ~0,d,0, cell v is incident with exactly 
r double links with probability Qv(r)/v,  Lk~/2j Qv(i), where z.~i>_ O 

2i[~i[kv]2i exp(o(ik2m~ i2k2ma x + i d k m ~  
Qv(i)= i!M~ k M + M22 / /"  

P r o o f .  Suppose that D -- D(P) for some P E ~0,d,0, and let w be a neighbour of v 
in D. Let x and x I be distinct vertices other than v, such that xx'  is not an edge of 
D. Let L be the graph with the edges of D, plus xx', plus a loop on each vertex. Let 
R = D - vw, 0 < a < 2 and 0 <_ ~ < 2, and, for vertex u, let ru denote the degree 
of u in R. Then 

I~(L, 2R) I = 2 a + B - ~ . ~ - - ~ ' ~ ' 2 ] a +  B 

where, by Lemma 3.3, 

I [kv-2rv]a[kw-2rw]a[kz-2rz]~[kx,-2rz,]~ , if W ~ {x,x'}, 
fR(a, ~; v, w, x, x I) = [kv-2rv]a[kw-2rw]a+~[k x,-2rx,]~, if w = x, and 

[kv- 2rv]a [kw - 2rw]a+~[kz- 2rx]~, if w = x'. 

For any simple graph X, let N[X] denote the number of pairings P E ~0,d,0 such 
that D(P) = X. Then N[R + vw] = I~(L, 2R + 2vw) U ~(L, 2R + 2vw + xxt)l, and 
similarly for N[R + xxt]. Thus, when N[R + vw] ~ O, 

) 
N[R + vw] IR(2, 0; v, w, x, x') 

(2) [kx -2 rx ]2 [kx , -  2rx,]2 (1 + o ( k _ ~ ) )  
= 2;w]  

since the terms involving fRO, 2; v, w, x, x') and JR(2, 1; v, w, x, x I) are small enough 
to be incorporated into the error term. 

Suppose 1 <_ i < Lkv/2J. Define ~(i)  to be the set of all simple graphs on 
V = {Vl,V2,... ,vn} with exactly d -  1 edges, of which exactly i - 1 are incident 
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with v. For R e ~(i), let X(R) denote the set of all distinct pairs {x,x '}  such that 
x # v, x' # v and xx' is not an edge of R. Similarly, let W(R) denote the set of all 
w E V such that w # v and vw is not an edge of R. 

If ni denotes the number of pairings P E $0,d,0 such that exactly i double links 
are incident with v, then 

and 

h i _  1 --~ - -  d - i + 1  E E N[R + xx'] 
Re~(i) xz'~X(R) 

1 

From (2) we find that, for any w and R E ~(i) for which the denominator is non-zero, 

N[R + vw] - 2[kv - 2rv]2 [kw - 2rw]2 M2 / / "  

(To see this, express the numerator as a sum over all ordered pairs xx ~ E V • V and 
subtract those not in .%'(R).) We can sum over w in a similar way to obtain, for any 
R E ;~(i) for which the denominator is non-zero, 

~zx'eZ(R) N[R + z z  ~] M2 (1 + O (k~M--~ ~ + ik2~ + d k ~  
~-']~we~'(R) N[R + vw] = 2[kv - 2(i - 1)]2 M2 ))"  

(Note that for M sufficiently large, both the numerator and denominator must be 
non-zero since d = o(M2/3).) Since this is uniform over R, we conclude that 

ni 

r~i- 1 

- 1)]2(1 + ik2max + dkmax ~ 2 ( d - i + l ) [ k v  2 ( i - + o / k 2 ~  

= iU2 L--M M22 / / "  

Identifying nr/no as the quantity Qv(r), we now obtain the lemma on taking the 
product over i. | 

4. Analysis of the switchings 

We now analyse each of the switching types in turn, under the assumptions of 
Section 3. 

I, emma 4.1. Suppose 0 < l < N1, 0 < d < N 2 and 1 < t < N3. Then, ff  M3 > O, 

]$1,d,tl M2 (1 (k2m=(k2max-Zl+d+t)~ 
I ~ l  = 12tM3 ~ + O \  M3 .]]. 

Proof. To simplify the consideration of equivalences, we will consider each of the 
points involved in the t-switching to be separately labelled (with the labels Pi and 

I Pi used above in the definition of a t-switching). 
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Choose an arbitrary P E ~l,d,t, and let N = N(P) be the number of t-switchings 
which can be applied to P. We can choose a triple link and its labelling in 12t 
ways, and choose three distinct labelled single links {P4,P~}, {PS,P/5} and {p6,p16} 
in [M - 21 - 4d - 6t]3 ways. Of these choices, some are not satisfactory. Unwanted 
coincidences like V(pl) = v(p4) account for O(tkm~xM 2) choices, while those like 
v(p4) = v(p5) account for O(tMM2). The forbidden cases where, for example, P 
already has a pair involving v(pl) and v(P4) account for O(tk2~M2). Overall, we 
find that  

M 

Now choose an arbitrary P~ E ~l,d,t-1, and let N t = N~(P) be the number 
of inverse t-switchings which can be applied to it. We can choose two distinct 
3-stars in [M312 ways. Of these choices, we must eliminate those not permitted. 
Unwanted coincidences, like V(pl) = v(p~), v(p4) = v(p~) or v(p4) = v(p~) account 
for O(k3~M3) choices. Cases where /~  already has a pair involving v(pl) and v(p~) 
or v(p4) and v(p~), for example, account for O(k4~M3) choices. Finally, cases where 
either of the 3-stars include loops or non-single pairs account for O(k2~(l+d+t)M3) 
choices. Overall, we find that  

ofk=~(km~,,.~l+d+ 

The error term for N I dominates that  for N, so the lemma follows on considering 
the ratio NI/N. | 
Lemma 4.2. Suppose 1 < I < N1 and 0 < d < N2. Then 

INl,d,O_______~ M2 (1 + 0 (  k2max km~'d+k2axl~ 
I~$1_l,d, OI = 21M \'-'M- + M2 ))" 

Proof. We use the same method as for Lemma 4.1. 
Let P be an arbitrary member of $1 d 0, and let N = N(P) be the number of 

t-switchings which can be applied to it. "~re' can choose and label the loop in 21 ways, 
then choose two single labelled links in [M - 21 - 4d]2 ways. This overcount needs 
to be corrected for unwanted coincidences like v(pl) = v(p'2) (O(lkm,=M) choices), 
and unwanted adjacencies like a pair involving v(pl) and v(p2) (O(lk2~M)). Thus, 

k ~ ,  + l + d 

Conversely, let pt  be an arbitrary member of $l-l,d,0, and let N I = Nr(P) be the 
number of inverse s which can be applied to it. We can choose the 2-star 
in M2 and {P2,P~3} in M ways. This overcount needs to be corrected for unwanted 
coincidences like v(p2) = v(pr2) (O(km~,M2) choices), unwanted adjacencies like a pair 
involving v(p2) and v(p~) (O(lk2~,M + k2m~,M2) choices), and unwanted involvement 
of loops or non-single pairs (O((l + d)k=,,,,M) choices). Thus 

kmaxd + k2axl~ 
, ,  
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The lemma now follows on comparing N to N t. 

I,emnm 4.3. Suppose 1 < d < N 2. Then, if M2 > O, 

- /km=(km~ + d) l~gO,d,Ol M~ [1 2 

Proof. This can be proved by precisely the same method used for the previous two 
lemmas. Details can be found in [4 I. 1 

Whilst we will use Lemma 4.3 in one special case, it is not sufficiently accurate for 
us in general. The reason is that the number of double hnks in a random pairing is in 
general much higher than the numbers of loops or triple links. However, Lemma 4.3 
is the best that can be done using uniform counts over arbitrary members of $0 d 0 
and ~0,d-l,0" In order to do better, we need to consider averages over $0,d,0 ~'(] 
~ 0 , d - l , 0 "  

Lemma 4.4. Suppose 1 < d < N 2 and M2 >_ M. Then 

I$0'd'01 M2 (1 + 4M3 8d M~ 2M22 16dM3 o(k2m~, + 
- + M + , 

Proof. Define N to be the average number of possible d-switchings, where the 
average is over all P E $0,d,0. We can choose {Pl,P'I,P2,P'2} in 4d ways and 
then {P3,P'3,P4,P'4} in at most [M - 4]2 ways. This gives us the initial overcount 
N <_ N* = 4diM - 412 = 4dM2(1 + 0(1/3/1)). However, some of these choices are 
not legal. We can divide the set of illegal choices into three families: 

XI: These are choices involving too few vertices, for example if v(pl) = v(p3) or 
v(p3) = vtp ,). 

X2: These are the choices for which the pairing already has a link involving v(pl) 
and v(p3) or the three other similar cases. However, we exclude any choice which 
belongs to X1. 

X3: These are choices for which either {P3,P~} or {P4,P~} has multiplicity two. 
However, we exclude any choice which belongs to X 1. 

In each of these three cases, we will consider the probability that randomly choosing 
one of the N* possibilities described above gives that case, where the probability is 
taken over random P. We will also bound the probability that )(2 and )(3 occur 
together. 
Case XI: The probabilty of landing in XI is easily seen to be at most O(km~./M), 
by just counting the cases. 
Case X2: Let P/ (i = 1, 2) be the probability that there is a pair {x,x ~} of 
multiplicity i such that v(x) = v(pl) and v(x I) = v(p3). Note that our conditions on 
d, km~, M and M2 imply that dk2~/M2 = o(1). From Lemma 3.5, the expected 
number of pairs of adjacent double links is O(d2M4/M~) = O(d2k~,/M2). Allowing 
km~ for the choices of p~ and M for the choice of t {P4,P4}, we find that P2 = 
O(dk3~/(MM2)) = O(km,, , / i) .  
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P1 is more involved. For any choice of D(P), Pl, P~,/)2 and p~, there are on 
average 

. r  

M:(k~ - 2~)(1 + o (  k~= + dkm~, 
\ M  M S / /  

choices for P3, P~, P4 and p~, where v = v(pl) and r is the number of double links 
incident with v. This follows from Lemma 3.4 on summing over all the possibilities. 
If K denotes the expected number of configurations included in the value of P1, then 
by Lemma 3.5, 

where 

K 2M~(1 ,k~ dkm=~ - 2r)- Q'(r) = + 0 ( - ~ +  M2 ] / Z Z r ( k v  
v r > > l  Ei>_oQv(i) 

sv(i) 

Since ~i>o Qv(i) >_ 1, 

5:~>0 sv(i) 
= 1 + o ( ~ ( Q v ( i )  - s~(0)). 

~i>O Qv( i) i>_o 

Using the inequality le x - 11 < IxlelXl, we find that 

Qv(i) - Sv(i) = 2lId - 1)i-1 [kv - 3}2i-30(eO(z) (ik 3 + dik2v + dk3vz)), 
i! M~ 

where z = ik2~,/M + (i2k2m~ + idkm~)/M2. Hence the terms of the series 
~ i> l (Qv( i )  - Sv(i)) are bounded in magnitude by those of a geometric series with 
ratio o(1), and thus by a constant multiple of the bound on the first term, that  is by 
O(km~(k,~, + d)/M2). Overall, we find that 

P 1 - - ~ - ~ + O  + M2 ).  

Any two of the eight events counted in X2 (single or double link in any of four 
positions) occur together with probability O(km~/M), so altogether we find that  X2 
occurs with probability 

aM3 

Case X3: With the help of Lemmas 3.4 and 3.5, a routine calculation gives the 
probability of this case as 8diM + O(km~/M). 

Events X2 and )/3 occur together with probability O(k~,~,/M), by similar rea- 
soning. Thus we have altogether that  
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Conversely, define N t to be the average number of possible inverse d-switchings, 
where the average is over all P E $0,d-l,0. For each choice of v = v(pl),  there are 
at most [kv]2 ways to choose Pl and P2- A similar bound holds for v(p~), and so we 
an initial overcount N I _< M 2. However, some of these choices are not legal and, as 
before, we divide these into a number of cases: 
YI: These are choices involving too few vertices, for example v(pl) = v(ptl) or 

v(p3)  = 
Y2: These are choices where there is already a link involving v(pl) and v(p~), ex- 

cluding anything in Case Y1. 
Y3: These are choices where there is already a link involving v(p3) and v(~3), or 

v(p4) and v(Pl4). Again, we exclude anything in case Y1. 
Y4: These are choices for which one or more of the pairs chosen have multiplicity 

two, except any choice in case Y1. 
These four cases can be analysed using the same method used for X1-X3. For 

cases Y2 and Y3, we can simply sum over all the possibilities using Lemma 3.4. For 
Case Y4, we need Lemma 3.5. We will merely state the probability in each case, 
leaving the details to the reader. 

Case Yl : 0(--~2 ) �9 

MM22 + 0  . 
2M 2 2 ir 

Case 114: 16dM3 d +~ 
The conjunction of any two of these cases gives no new error terms, so overall 

we have 

M M  2 M 3 - - ~ 2  2 + O \  M2 / / "  

The lemma now follows on comparing N to N'.  | 

5. C o n s o l i d a t i o n  

With the aid of the lemmas in Section 4, we can now apply Lemma 3.2 to 
estimate P(k).  As before, we assume that 1 < k3~ = o(M). 

Lemma 5.1. 

P(k)  = exp(  
2M 4M 2 2M 4 + ~ + -----~- [ - ' ~ ) ) 6 M  3 

Proof. L e t 0 _ < l _ < N 1 , 0 < d < N  2 a n d 0 < t < N  3. 
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If M3 = 0, then clearly I$l,d,t[ = 0 if t > 0. Suppose instead that  M3 > 0. By 
Lemma 4.1, 

I~t,d,ol 12 tt! M3t M3 /" 

Summing over t, we obtain 

Nt~O INl,d,t[ M2 o(km,x(k2~_..vI___+ l 

which just happens to be true also for M3 = O. 
Similarly, from Lemma 4.2, we have 

Pgl,d,oI l 2 lkm~d+k212)) M~ ex_{o[lkZ,, 
1 ~ = 2 t l ! M  l Pk ~, M + M 2  " 

Combining this with (3) and summing over I, we obtain 

N, N3 i$l,d,tl M 2 M2 km,x(k2~ + 

1=0 t=o 

Now suppose that M2 > M. From Lemma 4.4, we have that  

I~gO,d,OI M~ d /4dM 3 4d 2 dM 2 2dM~ 8d2M3 {d(k2~+ 
i$0,0,0] =4dd!M2dexp~-T+ M - M M  2 -  M3 M2 FOk --M2 d))). 

Combining this with (4) and summing over d with the help of the approximation 
d 2 ~ dM2/(4M2), we obtain 

E E E l $ 0 , 0 , 0 [  = \ z M  4 - ~  + 2M 4 4M 5 6M 3 \ /w , , "  
(5) 

d=0/=0 t=O 
In the case where 0 < M2 < M, Lemma 4.3 gives the same result to within the same 
error. In the trivial case M2 = 0 (which implies M3 = 0) Equation (5) again holds. 

The desired estimate now follows from Lemma 3.2. | 

We now have the result we have been seeking. 

Theorem 5.2. H 1 < km~ --- o(M1/3), then 

a(k) = 

= M! exp ( 
( M /2)!2M /2 kl !... kn! 

_ M! exp ( 
- -  (M/2)!2M/2kl !.'. kn! \ 

2M 4M 2 2M 4 t-4-M-5+6-M-3+O 

4 12n ~-O , 
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uniformly as M ~ co. 

Proof. The first expression follows from Lemma 5.1 and Equation (1), and the second 
from the first using the simple bound ku2 = O(km~). | 

Corollary 5.3. I f  1 <_ k = o(nl/2), the number of  labelled regular graphs of degree 
k and order n is asymptotically 

(nk)! exp(  k 2 -  1 k 3 O(k2/n)) 
(nk/2)! 2nk/2(k!) n 4 12---n + 

a s  n--.~ oo.  | 

Corollary 5.4. Define krain ---- minn=l ki. Then Theorem 1.1 holds in the additional 
c 8 8 e  

Oii) 1 < km~x = o(M 1/3) and [km~ - kmi,[ = o(min(nl/8[r 5/8, n1/6kl/2)). 

Proof. For km~, = o(Ml/3), the estimate of G(k) in Theorem 1.1 can be expanded 
9,8 

M' e x p (  k2v~ - 1 [r ( ~ ) )  
(M/2)[ 2M/2kl [...  kn[ 4 12n + O . 

n Since u2 = 1 + a2 and :/3 = 1 + 3a2 + a3, where o'r -- 1 ~i=l (k i / k  _ 1 ) r  we find 
that Theorem 1.1 holds provided 

k3(6~ + 6a22a3 - 3a4 - 2a2) = o(1). 

n 

Since IO'r{ < ( (kmax  - kraia)/k) r, the claim follows after a routine calculation. | 

Corollary 5.4 adds additional support to the following conjecture, which first 
appeared in [3]. In fact, for km~, = o(M 1/3) we can take e = 1/8. 

Conjecture. There is some absolute constant e > 0 such that the conclusion of Theo- 
rem 1.1 holds whenever 0 < k < n - l ,  [km~ - k~i~] = o(nemin{fc, n - k - 1 }  1/2) and 
rain{M, (3) - M} -~ oo as n --* oc. | 

6. Unlabelled graphs 

Under some additional constraints, Theorem 5.2 can be applied to estimate the 
number of unlabelled graphs with a given degree sequence. 

Theorem 6.1. Let k be a graphical degree sequence with no entries of value O, 
nl entries of value 1, and n2 entries of value 2. Then, under any one of the 
following conditions, the number of unlabelled simple graphs with degree sequence 
k is asymptotically G(k)/n!. 
(i) nl = O(nl/3), n2 = 0(n2/3), and km~ ~ �89 logn/loglogn; 

(ii) kmin _> 4 and km~ = o([r 



382 BRENDAN D. MCKAY, NICHOLAS C. WORMALD : GRAPHS WITH DEGREES o(nl/2) 

(~/i) kmin _~ 5 and kmax ---- o(kl/2n2/15); 
(iv) kmi~ > 6 and km~ = o(kl/2nl/4-1/(2kmi~)). 

Proof. Under each of the conditions given, a slight weakening of Theorem 2.4 and 
Corollary 3.4 of [2] shows that  the expected number of non-trivial automorphisms of 
a random member of ~}(k) is o(1), which implies the theorem. | 

Note that  Theorem 6.1 covers the case of regular graphs of degree k for all 
k = k(n) such that  3 _< k = o(nl/2). 
Acknowledgement. We wish to thank Wang Xiaoji for checking all the calculations. 
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