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I Integral Equations 
and Operator Theory 

P O S I T I V E  C A R A T H E O D O R Y  I N T E R P O L A T I O N  O N  T H E  P O L Y D I S C  

HUGO J. W O E R D E M A N  

The positive Carath6odory interpolation problem in the Agler-Herglotz class on 
the polydisc is solved, along with a several variable version of the Naimark  dila- 
tion theorem. In addition, the positive Carath6odory interpolation problem for 
general holomorphic functions is discussed and numerical results are presented. 

1 I n t r o d u c t i o n  

Given a set of indices A = {0 , . . .  , n l )  x . . .  x {0 , . . .  ,n~} C Z d, and complex numbers ck, 
k E A, with Co E R, one may consider the following problems: 

1. Carathdodory inte~olation problem: find an a~alytic function r : ]~  -+ C so tha t  
Re r  > 0, z E ~ (that is, r belongs to the Carathdodory class), r = co and 

= 2ck, k e A \ {0}. k! 

2. Moment problem: Find a positive measure cr on T d with moments  3(k) := fv~zkd~ = 
ck, k EA.  

3. Autoregressive filter problem: find a polynomial p(z) = ~-]~keAp~z k with p(z) ~ O, 
z e ~d (p(z) is stable), so that  the Fourier coefficients ] '(k) of f ( z )  := p0 satisfy 

IpCz)l 2 
7(k) = e A. 

Here we used the notations z k = (zl, . . .  , zd)(kl,...,k~) := z~t �9 .. Zd ~ ,  r = 0--~i-~ �9 �9 �9 O--~d~ ~ , ~  Ok~ ~ and 

k! = ( k ~ , . . . ,  k~)! := h i ! - - ,  kd!. 
In the classical one-variable case (d = 1) there is a tight connection between these 

three problems. The Riesz-Herglotz representation of functions in the Carath6odory class 
connects the problems 1 and 2, so that  they are only solvable simultaneously. Next,  i~ 
p(z) is a solution to 3, then f (z)d#(z) ,  where/~ is the normalized Lebesgue measure,  is a 
solution to 2. Finally, if 2 has an strictly positive absolutely continuous solution f ( z )d#  (with 
f ( z )  > 0 on T),  then a combination of the max imum entropy principle and the  Riesz-Fejer 
factorization l emma  shows that  it has in fact a solution of the form ~ d / ~ ,  with p a stable 
polynomial,  thus providing a solution for 3. In fact, as is well-tmown,-1 and 2 are solvable if 
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and only if T >_ 0 and 3 is solvable if and only if T > 0, where T is the finite Toeplitz matrix 
c~ n T = ( "-i)i,i=0. There is a vast literature on this subject, and as a guide to it we refer to the 

books [17], [3], [14], and [12]. 
When d > 1 one may again observe that if p is a solution to 3 then we have that  

o" = t-~ld# is a solution to 2 In addition, it follows from Theorem 1 in [19] that  a solution II 
to 1 gives a solution to 2. In contrast to the single variable case none of the other directions 
hold (even in the strict positive case). Consider the following examples. 

E x a m p l e  1. L e t A =  {0,1} 2 and c00= 1, clo = c o t  = c l l  = 0 . 9 .  T h e n 2 h a s a  
solution namely 0.1d/~ § 0.95(1,1), where d/~ is the normalized Lebesgue measure on T 2 and 
$p is the Dirac mass at the point p. Furthermore, with these data problem 1 does not have 
a solution as 

09  g 09  

0.9 0.9 0.9 

is not positive semidefinite when x = 0. The autoregressive filter problem does have a 
solution as with the choice x = 0.81 the conditions of Theorem 1.1 in [16] are satisfied. 

E x a m p l e  2. Let A = {0,1} 2 and coo = 1, Cl0 = 0.3, Cot = 0.7 and cn  = 0.8. One 
may check that  the matrix 

07  i g 03  

0.8 0.3 0.7 

is positive definite e.g. when x = 0. By Theorem 5.10 in [15] therefore a (strictly positive) 
solution to problem 2 exists. When x = c,o~, = 0.21 the matrix has determinant equal to 

coo 

5s9 and is therefore not positive definite. Hence by Theorem 1.1 in [16] it follows that  
250000 

no solution to.3 exists for these data. Finally, a solution to problem 1 does exist as we shall 
see in Section 4. 

In this paper we shall address the d-variable Carath~odory interpolation problem. 
The two-variable autoregressive filter problem was solved in [16] where a necessary and suffi- 
cient condition for the existence of a solution was given in terms of the existence of a solution 
of a matrix completion problem. Numerical solutions to the autoregressive filter problem 
were presented in [11]. For the moment problem the connection with its dual problem of 
representing trigonometric polynomials as sums of squares, is very useful. This connection 
allowed [10] and [23] to construct examples of so-called "non-extendable patterns". Subse- 
quent results may be found in [24], [15], [5] and [2@ 

The paper is organized as follows. In Section 2 we use the results of [1] and [8] to 
obtain a solution to the Carath~odory problem in the class of functions introduced by Agler. 
We thus completely solve the Carath~odory problem in case d = 2 and give sufficient condi- 
tions in case d >_ 3. In Section 3 we record some necessary conditions for the Carath~odory 
problem. Finally in Section 4 we briefly discuss some numerical results. 
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2 Carath6odory interpolat ion in the Agler-Herglotz  
class 

Based on ideas in [1] and [8] we address in this section the Carath~odory interpolation 
problem in the Agler-Herglotz class. Other related papers in the area are [2], [13] and [22]. 

We first remind the reader of a class of functions introduced by J. Agler [t]. 
Let $ be a Hilbert space, and s denotes the space of bounded linear operators on s 
We denote No = {0,1, 2 , . . .  }. Let r be a holomorpkic/:(s function defined on 
the polydisc D d = {(zl , . . .  ,za) : Iz, I < 1,i = 1 , . . .  ,d}, and let r  = F~k~NgCkz k, 
(~1, ,~)(k,,...,k,) := ~ k~ �9 .. ""za , Ck E /:(E), be its series expansion. For a commut- 
ing collection of strict contractions R = (RI, . . .  , Ra) E /:(K:) a we may define r = 
r  Rd) to be an operator in / : ($)  | s -- f_.($ | K:) by r = ~er~0~r | R k, 

where (RI , . . .  , p~)(kt!...,ka) := R~ . . .  R~. We say that r is Agler-Herglotz if Re r > 0 for 
all commuting collections of strict contractions R = (R~, . . . ,  Rd). Here Re A = ](A + A*) 
denotes the real part of the operator A. We shall denote the class of Agler-Herglotz L(E)- 
valued functions on ~ by Ad($). By taking Rj = zjI one sees immediately that r E Ad($) 
implies that Re r > 0, z E D a. The converse holds when d = 1, 2 (see [1], which is based 
on a result by Ando [4]), but not when d _ 3 (follows from the results of either [21] or 
[25], and performing a Cayley transform). It was shown in [1] that a holomorphic r with 
r = �89 belongs to An(S) if and only if there exists a Hilbert space 7-/= 7"ll @-'-  $ 7-In, 
aa isometry V : $ --+ 7-/and a unitary U : 7 / -+  7-/so that 

1 
r = ~I  + V*tr ( I -  Z(z)U)-IZ(z)Y,z e ~ ,  (2.1) 

where (Z(z))(ei=lh,) := ei_,(z,h,) 
We next state our interpolation problem. Let g be the partial order on No d defined 

by (kl, . . .  ,kd) < (/1,"" ,/d) if and only if ki < Ii, i = 1, . . .  ,d. A subset K of N0 a will be 
called lower-inclusive if k E K and l _< k imply I E K. Given a finite lower-inclusive subset 
K of No d and operators Ck E L($), k E K, the Carathdodory interpolation problem asks for 
a r e Y~t($) so that ek = Ck, k e K, where r = ~keNg r kzk- 

Before we can state our main result, we first have to recall the notion of words. Let 
Ax,. . .  , Aa be operators on 7-/. An expression of the form 

w 

A~a . . .A~I~ . . .A? ' . . .A~  ~d 

P is called a word in (A1, . . . ,  An) of multilength (~jP=I ?ZJ 1 , ' ' "  , Ej----1 nJd)" Typically, factors 
with an exponent 0 axe left out, and subexpressions A~A~ are contracted to Ai r~-q. Words 
axe equal when after leaving out factors with a zero exponent and contracting as above, the 
expressions are equal. So, for example, there axe exactly three different words in (A, B) of 
multilength (2,1), namely A2B, ABA, and B~A. Notice that even though it may happen 
that these three operators are equal (e.g., when A and B commute), the words are considered 
to be different. When w is a word in (A1, . . . ,  Ad), its multilength is denoted by rnl(w)(E NOd). 
For k E No d we denote the set of all words of multilength k in ( A t , . . . ,  Ad) by Wk(A1,. . . ,  Ad). 
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Let K be a finite subset of No d with cardinality [K[. We let o eIKI denote the Hilbert 
space of [Kl-tuples ( = ((k)~er~ with I1r :=  II kll ( < oo, since K is finite). Notice 
that instead of indexing the coordinates of the tuples by 1, . . .  , IKI, we prefer to index 
them with the elements of K. This will be convenient when we define operators on E IKI. 
If Fk E L(~), k E K, the notation F = col (Fk)~ex stands for the operator F : s --+ Et/<I 
defined by F{ = (F~)~eK. Next, for T E g(/C) we denote by MT the conjugacy operator 
M r ( X )  = T X T *  on Z:(/C). Note that X >_ 0 implies that M r ( X )  >_ O. Finally, denote by e~, 
i = 1, . . .  , d, the ith standard vector in Nod, and let 5~ denote the Kronecker delta function 
on ~0 d. 

Theorem 2.1. Given a nonempty finite lower-inclusive set K C Ng and operaiors C~ E 
s  k 6 K ,  with Co = ~1,1 the following are equivalent: 

(i) there exists a r = ~keNg Ck zk E An(E) so that Ck = Ck, k E K ;  

(ii) there exist positive semidefinite operators G1,. .. , Gd on s so that 
H i r  MTj)(G,) > 0, i = 1 , . . . ,  d, and 

X + X * = G I + . . . + G a .  (2.2) 

(t(J)~ where "(j) = I i f  Here X = (Ck-j)k,jr C~ = 0 for  k r K ,  and Tj = ~ ~,l) ,leK, ~k,l 

k = l + ej and AJ) = 0 othevtoise; ~ k,l 

(iii) there ezis t positive definite operators F1,... , ra  E Z:($ IKI) so that 

E C *  .Aft C ~ *  ~- r 1 - T 1 F 1 T ~  Jff . . .  dl- r d  - -  T d r d T ~ ,  (2.3) 

where 

and Tj is as in (ii). 

C = col E = col ( 0k) eK, 

( iv)  there exists a Hilbert space H = 741 (~ . . . ~ Ha, an isometry V : E --~ H and a unitary 
U E Z (H)  so that Ck = V*()-~wew~(t]pL,...,r]p~ ) w)V ,  k E K \ {0}, where Pi is the 
orthogonal projection in g (H)  with image Hi, i = 1 , . . .  , d. 

Proof.  For the equivalence of (ii) and (iii) observe that T! KI = 0, and thus for all j = 1, . . .  , d 
we have that I - MTj is invertible on s163 But then the equalities d IIj:l(  - M )(X + 
X*)  = EC* + CE* and Fi = I l j r  MTj)(GI), i =  1 , . . . ,  d, yield the equivalence. 

Next, the equivalence of (i) and (iv) follows directly from writing equation (2.1) in its 
series expansion. A tedious but straightforward computation will show that for k E NOd \ {0} 
we have that Ck = W(~,oewk(up1,.,.up,~ ) w)V.  

It remains to show the equivalence of (i) and (iii). First suppose that (i) holds, and 
write q~ as in (2.1). Identify glKI with H~(D a, S, K) := {f(z) = Ek~K A zk, z E De: A E g}. 
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We may view Tj : H2(Dd ,$ ,K)  --+ H2(]I~,$,K)  as the restriction of the multiplication 
operator with symbol z~, namely 

(T j f ) ( z )  = Pg( z j f ( z ) ) ,  

where PK is the projection P g ( ~ g k z  k) = ~ k e g g k Z  k. Likewise, X (as defined in (ii)) may 
be viewed as the restriction of the multiplication operator with symbol r namely 

( X f ) ( z )  = PK(r  

Define 
~t = [~tl . . .  fld]: 7-/1 ~ - ' -  ~ 7/d --+ H~(~ d, $, K) 

by ~t(~)(z) = PK(V*U(I  - Z(z)U)-I~) .  Since K is finite, this indeed defines a bounded 
operator. Then (analogous as in Lemma 3.2 in [8]) one easily checks that 

[T1~1 --- Td~d] (~)(~) = PK(V*U(Z-- Z(~)U)-'Z(~)~). (2.4) 

Letting I'i = ~ifl~ we get that 

CE* + EC* = F1 - T1F1T~ + . . .  + P,~ - T,~FaT~. 

For the last equality, let h E H 2 ( ~ , $ , K )  and x E $ (which we may also view as the 
constant function in H~([Ir C) with value x). Then, using (2.1) and (2.4), we get that 

<h, ~ + P~(V*U(Z- Z(z)U)-~z(~)v~))~(~,~,x} 

( l  h(o), x)e + (V*(Ft~T;h @. . .  ~ fl*aT~h), x)e, 

and thus we have that 

(X'h)(0) = 2h(0) + Y~(~]~T;h e " "  �9 ~t~T~h). (2.5) 

Moreover, again using (2.4), we get that 

(h, f~)H'(~,e ,g)  = (h, PK(V*U(I  - Z U ) - I ( I  - Z U  + ZU)~))H=(~,e,K) = 

(U'Vh(O),  ~)~ + (U* ( gt;T;h @. . .  @ ~t*aT,~h ), ~)n,e...en.,. 

Thus 

a~h e . . .  �9 a*~h = U'rh(O)  + U ' ( a ; T ; h  ~ . . .  ~ a'dT~n). 

Equations (2.5) and (2.6) yield that 

(2.6) 

(2.7) 
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Notice tha t  when 

we get that 

(7: 
Ilall ~ - Ilxll 2 = (v 'x  + v*vy ,  v*~ + v ' v w  - I1~112 = 

2Re (U'z,  U'Vy> + <y, y> = 2Re (V*x -t- ~y, y) = 2Re (b, y), 

where we used that U is unitary and that V is isometric. Thus from (2.7) we obtain that 

2Re ( (X 'h) (0) ,  h(0)) = ttaihll ~ + . . .  + tln~hll ~ - ( l ln ;Sthl l  ~ + . . .  + I I~S~hl lb .  

It is straightforward to check that this is equivalent to the statement that 

CE* + EC* = (S - M r , ) ( r , )  + . . -  + (S - Mr~)(rd). 

Next,  suppose tha~ F~ exist as (iii). Equation (2.3) implies that 

2Re ((X'h)(0),  h(0)) = IIr',nhll ~ - l l rV~T ;h l l ~+ . . .  + IIr~nhll 2 -  t lrY~T;hllL 

for all h 6 H 2 ( ~ ,  8, K).  But then 

d d 

limb(o) + (x'h)(O)ll ~ + Z IldnWll *= limb(o)- (x'h)(o)ll ~ + E IIr/~hll ~" 
i = I  i=1 

Thus the map  

(r~ nTfhe...ery=T;h] (r~l=he...ery2hh 
~h(o) + (x*h)(o) ) ~ \ ~h(o) - ( x * h ) ( o ) )  

defines am isometry from {r'/2T{h e . . .  �9 rY2T,~h �9 (�89 + (X'h)(0)) : h e M }  into 
A//@ . . .  A~ ~3 E, where 7V/ = H2(D d, $, K). Extend the isometry to a uni tary operator b/ 
on ~ i  @ "'" @ 7-/a �9 E. By composing F~/2 with the embeddings of A/ / in to  7"/~, we obtain 
m~ppings @i : AA --4 ~ i  (i = 1 , . . .  ,d) such that  

: t, �89 + ( x * h ) ( o ) )  -+ \�89 - ( x * ~ ) ( o ) )  

Decompose 

w (u; ,  u; ,~ (n,  e .  �9 n~) �9 E -+ (n ,  �9 �9 n~) �9 E. 

Let ~ E E, and consider it as a constant function. Then, since T*~ = O and (X*~)(0) = i 

we get that US=(@) = 0. But, since this holds for all f 6 8 we get that Un = 0. Let now 

V = -ZTi= and U = Ull -gli2gl=i. Then it is not hard to check that V is an isometry, U is 

unitary, and V'U : ~,~21- Furthermore, 

~ s )  l (x*h)(o) ) 
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Define, as before, 

f~ = [f~l " '" ftd] : 7tl ~ ' "  ~ 7/d --+ H2(II fl, g,  K)  

by f~(~)(z) = P K ( V * U ( I -  Z ( z ) U ) - X ( ) .  Then (2.6) holds. Combining (2.6) and (2.8) we get 
tha t  

U"( (fl~ - ffh ) T ; h  e " "  @ ( f ~  - r  ) = ( f ~  - e l ) h  ( 9 . . .  e (I2~ - r h e A//. 

Thus 
d d 

~-~(f~7 - +i)*(f~* - +i) - ~ T,(f~; - e , )*( f t ;  - ei)T~" = O. 
i = l  i=1 

Apply now Lemma 2.2 in [8] (note that  TiN = 0 for N > IKI) to get tha t  a7 = r 
i = 1 , . . .  , d. Consequently, if we let 

1 r = 5 i  + v * v ( z  - Z(z )U)-~z(~)v ,  

then for ~ 6 g and h 6 A4 we have that  

<h, Tr = (h, ( 1 I  + V ' U ( I  - Z ( z ) U ) - ~ Z ( z ) V ) ( )  = 

(h, 1~) + ( v * ( e ~ T ; h  @ . . .  ~B e a T ; h ) ,  ~) = 

(�89 ~> + <-~-h(o)+ (x-h)(o), ~) = ((x'h)(o), r = (h, xr 

And thus 
( T ; h ,  S T ' . . .  S 3 ~ )  = ( T ~ S T "  . . . S3~*h, ~> = 

(X*T~"*--.  T ~ ' h ,  ~) -- ( X ' h ,  S'~ ~ . . .  S ' ~ ) .  

But now it follows that  r has the required properties. O 
The process of extracting an isometry out of the given data  as was done in the 

proof of (iii) -+ (i) is sometimes referred to as a "lurking isometry" technique (see, e.g., [7]). 
A possible al ternative approach to the above problem is to use the results in [8] directly in 
combination with a Cayley transform. 

Notice tha t  the equivalence of (iii) and (iv) in Theorem 2.1 may  be interpreted as a 
multivariable version of the Naimark dilation theorem on a finite index set. Recall tha t  the 
NMmark dilation theorem states that  a sequence of operators Ck 6 / : ( E ) ,  k = 1 , 2 , . . . ,  may  
be represented as Ca = V * U k V  with V : E --+ 7-I an isometry and U : 7-/--+ 7-I a unitazy, if 
and only if for all k 6 N0 the lower triangular Toeplitz operator mat r ix  k (Ci_])i,i=0, where 
Co = �89 and C-1 = C-2 . . . . .  0, has a positive semidefinlte real part .  The same is true 
for a finite collection of operators Ck 6 s  k = 1, 2 , . . . ,  n. Theorem 2.1 now extends the 
classical result to the case of a finite lower inclusive subset of N0 a. 

By combining the results in [1] and [19] we can, in addition, s tate the following 
two-variable generalization of the Naimark dilation theorem. 
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Corol lary 2.2. Consider the doubly indexed sequence of operators {Ck}keN] on a Hilbert 
space E with Co = I .  Define C-k = C~, k E l~oo, and Ck = O, k E Z 2 \ (l~o o -l~oo ). 
Then the sequence {Ck}k~r~ is positive definite in the sense that for every finite K C Z 2 the 
operator matrix (C~-z)k,tEK is positive semidefinite, if  and only if  there exists a HiIbert space 
74 = 741 @ 742, an isometry V : s --+ 74 and a unitary U E L(7-I) so that 

C~ = V*( ~ w)V, k e K \ {0}, (2.9) 
weWk(UPl,UP2) 

where Pi is the orthogonal projection in L(74) with image 7ti, i = 1,2. 
Proof.  By Corollary 1 in [19] the sequence 1-I 2 , {Ck}ker~02\{0} are the Taylor coeffl- 

dents of a Carath6odory function r if and only if {Ck}ker~ is a positive definite sequence. 
By [1] the function r belongs to the Caxath~odory class if and only if it may be represented 
as in (2.1), yielding the description (2.9). t:] 

3 Carath odory I n t e r p o l a t i o n  for  h o l o m o r p h i c  f u n c -  

t i o n s  

In this section we explore the Carath~odory interpolation problem in the class 
/Plg(C) of holomorphic s163 functions r defined on D ~ with positive real part, i.e., 
Re r >_ 0 for all z E ~I~. We shall confine ourselves to the situation where K(d)(n) is the 
subset of No d consisting of points x = ( x l , . . .  ,Xd) satisfying Ix[ := ~ i d l  xl < n. 

We have the following necessary condition. Denote 

K} = ((xl,. . . ,  e N0 : x, + . . .  + = j}. 

Further, for j = 1, . . .  ,d let Sj :. H2(Dd,C) -+ H2(Iifl,C) be the multiplication operator 
with symbol zj, namely 

( S J ) ( z )  = z j f ( z ) .  

For k = ( k , , . . .  ikd) we let S k denote the operator S~' . . .  Sa k, on H2(Dd,C). 

T h e o r e m  3.1. Let n E N and /'f(a)(n) "~ K (d) Given are operators Ck E s  = "-'j=o j �9 

k E K(a)(n), with Co = �89 If  there exists f ( z )  = ~ k e N g A z  k E Ma($ )  with A = Ck, 
k E N,  then the operator 

r := (r._q)~,q= o (3.1) 

has positive semidefinite real part. Here rp = ~keK(p~) Ck | S ~. When n = 1 the converse is 

also valid. 

P r o o f  of Theorem 3.1. First suppose that f E/Vial(g) exists with fk = Ck, k e K(a)(n). 
We can find unitary liftings Ui : K: -+ KS of Si so that U1,.. .  , Ud commute. Let now 
g(w) = ~j=o wJ(~keKJ~ fk | Uk), w e D, where U k = U~ I- .-  Ua ka. Then g e AJI(g | KS), 

and thus by the classical one-variable result we get that P + F* > 0. 
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Let now n = 1 and suppose that  P + F* > 0. We let e i , . . . ,  ea denote the s tandard 
basis in No d. Since P + P* > 0 it follows that  I[ ~"~fi=l ziC,, 1[ < 1 for all z = (z~ , . . . ,  za) 6 D d. 
But then 

d d 

s(~) := ~-s + ( s - ~ , c ~ , ) - '  ~ ~,co,, z e ~ ,  
2 

/=1 /=1 

has the required properties, o 
We observe that  even in the case n = 1 the condition on Ck, k E K(d)(n), in The- 

orem 3.1 is much weaker than the condition in Theorem 2.1. In fact, the following data  
provides an example  for which the Carathgodory interpolation problem is solvable in .A//d(~) 
but  not in Ad(~). 

E x a m p l e .  Let 7-/be a Hilbert space of dimension more than one, and U1 and (/2 be non- 
commuting uni tary operators on 7-/. Put  E = 7-I @ 7-/and let T/, i = 1, 2, 3, be the palrwise 
commuting contractions that  were introduced in [21], i.e., 

(0 00) ' 
where 17/is the identi ty operator on 7-/. By the main result in [18], there exist an n E N and 
n • n matrices A1, A2 and Aa so that  

IIA1 | T1 + A2 | T: + Aa | Tall > 1 > max I[zlA1 + z2A2 + zsAa[[. (3.2) 
- -  z l , z 2 , z s E T  

Let now C(0,o,o) = 1 ~I ,  C(1,0,o) = A1, C(O,l,O) - A2, and C(0,o,l) = As. The  right hand inequality 
in (3.2) implies that  the condition in Theorem 3.1 is satisfied. Thus the Caxath~odory 
interpolation problem with data  Ck, k E K(a)(1), has a solution in ,~43(~). The left hand 
inequality in (3.2) implies, however, that  the Carathdodory interpolation problem with data  
Ck, k E K(a)(1), does not have a solution in As(C). Indeed, if a solution r E .As(~) exists, 
then the single variable function 

f(z) := r zT2, zTs) 

should have the proper ty  that  Re f ( z )  >_ 0 for z E D. In particular, 

dd~(O) = AI | TI + A2 | T2 + Aa | T3 

should be a contraction, which contradicts (3.2). 

Though the Caxathdodory interpolation problems in Md(g)  and r are in gen- 
era2 different, there axe also cases when the Caxath~odory interpolation problem in both 
classes axe only solvable simultaneously. This happens for instance when E = C and n = 1. 

_ "1 The following P r o p o s i t i o n  3.2.  Given are complex numbers ck, k G K(a)(1), with Co - ~. 
are equivalent. 
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(i) There exist f ( z )  = ~ k ~ u g A z  ~ E Ad(C)with A = ck, k E/((a)(1).  

(ii) The~e e~ist f (~)  = E ~ g A ~  ~ ~ Ad~(C) with A = c~, ~ ~ K(~(1). 

(iii) ~id=~ [c~,[ < 1, where ca , . . . ,  ed is the standard basis in Nao . 

P r o o f .  We will prove (i) --~ (it) --+ (iii) -+ (i). 
Since Ae(C) C A/td(C), the implication (i) --+ (it) follows. 
Suppose that  (it) holds. Choose complex numbers ai, i = 1 , . . .  , d, of modulus 1 so 

that  ~c~, > 0, and let g(w) = f ( ~ l w , . . . ,  ~dW), W E D. Then Re g(w) > 0 for w E D, and 
by the one-variable results we get that Ig'(0)t _< 1. But this yields ~i=1 Ic~,I < 1. 

Suppose that  (iii) holds. Consider the functions gl(zl)  = ~ ~lc~,l + c o ,  z l ,  . . .  , 

ga-~(=a-~) = ' ga(za) }(1 I~o,t- Ice,_,l) + ~,,=a. By the one- ~lc~,_,l + % z a - 1 ,  = - . . .  - 

variable result, there exist for i = 1 , . . . ,  d functions fi  E AI(C) so that  fi(0) = gi(0) and 
f[(0) = g[(0). But then f ( z )  = f~(z~) + . . .  + fd(zd) is a function satisfying (i). [] 

Notice that  the proof of (iii) ~ (i) in Proposition 3.2 goes through for operators Ca,. 
That  is, if ~ = z  lice, II --- 1, then there exists a solution to the Carath~odory interpolation 
problem in An(E) with given data Co = 1 ~I, C , , , . . . ,  C,a. Clearly, the condition E i ~ l  llC~,ll _<_ 
1 is not necessary in general as one can start with a Hilbert space 7-/of dimension greater than 
or equal to d >__ 2, a unitary U : ~ --+ ~ ,  and nontrivial orthogonal projections P1, . . .  , Pd 
on 7s with @~=,l~an_ P / =  7-/, and put Cr = U Pi. Then �89 I + ( I - E,a=, z ,C, , ) - '  E,=ld ziC~, e 
~4a(n) but Y'~ia__l IICe, II = d > 1. 

There are many questions that remain. For instance, are in the scalar case the 
finite data Carath~odory interpolation problems in Add(C) and An(C) different? In other 
words, does there exist a finite lower-inclusive set K and data ck 6 C, k 6 K,  for which the 
Cazathdodory interpolation problem is solvable in Ada(C) but  not in Jla(C)? Another open 
problem is the question whether the condition F + F* > 0 in Theorem 3.1 is also sufficient 
for the existence of a solution in A~d(g)? By Theorem 10 in [6] this condition F + F" >_ 0 is 
necessary and sufficient for a positive measure cr to exist with moments ~(0) = I,  ~(k) = Ck, 
k e g(d)(n)  \ {0}, ~(k) = C;, k e --g(d)(n) \ {0}, and a(k) = 0, k e {k C Z a \  l~o a : - n  < 
kl + . . .  + ka _< n}. In order to get a solution to the Carath~odory interpolation problem 
we need by Theorem 1 in [19] that ~(0) = I,  ~(k) = Ck, k E g(d)(n) \ {0}, ~(k) = C;, 
k E - g ( a ) ( n )  \ {0}, and ~(k) = 0, k E Z d \  No d. It should be noted that Theorem 10 in [6] 
may  also be used for index sets other than K(a)(n), namely any set 0 E K C NOd that  lies on 
one side of a hyperplane. 

4 N u m e r i c a l  R e s u l t s  

The condition in Theorem 2.1(iii) may be checked numerically by semidefinite program- 
ming. Using Matlab's LMIlab we performed a few experiments. We briefly describe three of 
them. 

Let K --- {0, 1, 2 }  2 aald Coo = 1/2, COl = 0, co2 = 0, clo = 1/2x/2, c~1 = 1/2, c12 = 
--1/4V~, c2o = 1/2, c2~ = 1/2x/~ and c2~ = --1/4. In order to build the matrices, we order 
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K using 

and 

the lexicographical  order. Using LMIlab we find the matrices 

�9 7437 .1813 -.1282 .5259 .5000 -.2629 .3718 .6165 -.1218 ~ 
.1813 .1282 -.0906 .1282 .1813 -.0641 .0906 .1922 .0000 

-.1282 -.0906 .0641 -.0906 -.1282 .0453 -.0641 -.1359 -.0000 
�9 5259 .1282 -.0906 .3718 .3536 -.1859 .2629 .4359 -.0861 
�9 5000 .1813 -.1282 .3536 .3782 -.1768 .2500 .4442 -.0609 

-.2629 -.0641 .0453 - .1859 -.1768 .0930 -.1315 -.2180 .0431 
�9 3718 .0906 -.0641 .2629 .2500 -.1315 .1859 .3082 -.0609 
�9 6165 .1922 -.1359 .4359 .4442 -.2180 .3082 .5320 -.0861 

-.1218 .0000 -.0000 -.0861 -.0609 .0431 -.0609 -.0861 .0305 

�9 2563 -.1813 .1282 .1813 -.0000 -.0906 .1282 .0906 -.1282 ~ 
- .1813 .1282 -.0906 -.1282 .0000 .0641 -.0906 -.0641 .0906 
�9 1282 -.0906 .0641 .0906 -.0000 -.0453 .0641 .0453 -.0641 
�9 1813 -.1282 .0906 .3718 -.1723 .0578 .2629 .0641 -.1768 

-.0000 .0000 -.0000 -.1723 .1218 -.0861 -.1218 -.0000 .0609 
-.0906 .0641 -.0453 .0578 -.0861 .0930 .0408 -.0320 .0022 
�9 1282 -.0906 .0641 .2629 -.1218 .0408 .1859 .0453 -.1250 
�9 0906 -.0641 .0453 .0641 -.0000 -.0320 .0453 .0320 -.0453 

-.1282 .0906 -.0641 -.1768 .0609 .0022 -.1250 -.0453 .0945 

for Yt and F2, respectively. The corresponding U 

, U =  

and V are 

V =  

0.8543 
-0 .1178 
0.4141 

-0 .2913)  

0.7061 0.0036 0.6952 
-0.0012 0.7054 0.1318 
0.6947 0.1346 -0.7066 
0.1368 -0.6959 0.0006 

The  project ions P1 and P2 are the projections onto span{el ,  e2} 
tively, where e l , . . .  , e4 is the s tandard  basis in C 4. The example 

v = , u = \112v~ - 1 / 2 v ~ ) ' P 1  = \1 /2  1/22'1'2 

0.1341 
- 0 . 6 9 6 4 |  
0.0014 ] " 

-0.7050/ 

and spaa{es,  e4}. respec- 
was constructed using 

( 1/2 -1/2h 
= \ - 1 / 2  1/2 / 

In an a t t emp t  to create a scalar valued example for which the Carath6odory in- 
terpola t ion has a solution in A~s(C) but  not in As(C) we tr ied the  following based on 

1-r where Varapoloulos '  example  [25]. Let f ( z )  = ~kev, g f kzk :--- ~ ,  

l~z  2 _ 2 2 r  = g~ 1 * z~ + zg) - g ( ~ l ~  + z ~ 3  + ~1z3), 

and take the  given da ta  {fk, k E K(3)}. Based on our algori thm, though, we found tha t  the 
Cara thdodory interpolat ion problem is solvable in As(C).  Clearly f was not  the solution as 

f r .4~(c). 
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Lastly, when we perform the algorithm on the data in Example 2 of the introduction, 
we obtain after rounding the following positive semidefinite matrices: 

and 

0.3000 0.4000 -0.1000 0.0952 
0.4000 0.5523 -0.1523 0.1125 | 

-0.1000 -0.1523 0.0523 -0.0173J ' 
0.0952 0.1125 -0.0173 0.0603 ] 

/'0.7000 0.3000 0.4000 0.704s\ 
= 10.3000 0.1477 0.1523 0.2s75 / 

F2 [0.4000 0.1523 0.2477 0.4173J" 
\0.7048 0.2875 0.4173 0.7397/ 

In order to see that the matrices are positive semidefinite one may note that ( -1 ,  1, 1, 0) T 
belongs to the kernel of both. Furthermore, after omitting the third column and row in both 
matrices the determinants of the leading principal submatrices in exact arithmetic are 

3 569 106167 7 1 3 3 9  993207 
10' 100000' 976562500' 10' 100000' 3906250000' 

yielding the positive semidefiniteness of both F1 and F2. Next, one may easily check that 

EC* + CE* - F1 + T1F1T~ - F2 + T2F2T~ = 0 

where C, E, T1 and T2 are as in Theorem 2.1. Thus the Caxath6odory interpolation problem 
is solvable for this data set. By adding a small enough e > 0 to coo one may even construct 
an example for which the autoregressive filter problem is not solvable but a solution r to 
the Carath6odory interpolation problem exists with infze~ Re r > 0. 
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