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T W O  T A P E S  V E R S U S  O N E  F O R  
O F F - L I N E  T U R I N G  M A C H I N E S  

W O L F G A N G  MAASS,  GEORG SCHNITGER, ENDRE SZEMERI~DI 

AND GYIDRGY TURAN 

A b s t r a c t .  We prove the first superlinear lower bound for a concrete, 
polynomial time recognizable decision problem on a Taring machine with 
one work tape and a two-way input tape (also called off-line 1-tape 
Turing machine). 

In particular, for offline Turing machines we show that two tapes 
are better than one and that three pushdown stores are better than two 
(both in the deterministic and in the nondeterministic case). 

Key  words, off-line 1-tape Turing machines; two tapes; lower bounds; 
time; nondeterminism. 

Subject  classifications. 68Q05, 68Q25. 

1. I n t r o d u c t i o n  

A 1-tape off-line Turing machine (see Hennie 1965, p.166) is a Turing machine 
(TM) with one work tape and an additional two-way input tape, i.e., an input 
tape with end markers on which the associated read-only input head can move 
without restriction in both directions. These TM's are used as the standard 
model for the analysis of the space complexity of TM-computations. In addi- 
tion, they are of interest as an intermediate model between the relatively slow 
1-tape TM without input tape and the relatively powerful 2-tape TM. 

No non-trivial lower bounds are known for the recognition of polynomial 
time computable languages on 2-tape Turing machines. On the other hand, 
lower bound arguments for concrete languages on restricted TM's have pro- 
gressed from 1-tape TM's without input tape (Hennie 1965, Rabin 1963) to 
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1-tape TM's with a 1-way input tape (i.e., the input head is not allowed to 
back up) in Duris et al. (1983), Li & Vitanyi (1988), Li et al. (1986), and Maass 
(1985). However, noone has been able to prove a superlinear time bound for 
the computation of any concrete, polynomial time recognizable language on 
the 1-tape off-line model. 

Some progress has recently been made with respect to lower time bounds for 
the computation of funct ions on 1-tape off-line TM's. Optimal lower bounds 
for matrix transposition on this model have been shown both for the regular 
version (Maass & Schnitger 1986) and the more powerful model with an ad- 
ditional two-way output tape (Dietzfelbinger & Maass 1986). Unfortunately, 
these new lower bound arguments can not be applied to decision problems since 
they utilize the information content of the output. We present in this paper a 
different lower bound technique for 1-tape off-line TM's that yields a superlin- 
ear lower bound for a concrete decision problem (the problem of deciding for 
two given matrices A and B whether B is the transpose of A). Our technique is 
based on graph theoretic separation arguments coupled with information theo- 
retic reasoning. This allows us to separate complexity classes for 2-tape TM's 
and 1-tape off-line TM's, both in the deterministic and the nondeterministic 
case. It also yields the first separation between off-line TM's with three and 
off-line TM's with two pushdown stores. 

Our lower bound argument is based on a combinatorial analysis of compu- 
tation graphs for off-line 1-tape TM's. It turns out that in spite of the fact that 
these graphs are in general not planar (because of the presence of the input 
tape) one can suppress those edges that are caused by the movement of the in- 
put head and represent instead the positions of the input head as labels for the 
nodes of a planar graph. We then cut the resulting labeled planar graph into 
a large number of small pieces and analyze how much communication about 
different input segments has to be exchanged between these pieces. 

The language SMT (sparse matrix  transposition) which separates the above 
mentioned complexity classes is defined as follows. We say that a boolean 
matrix A = (ai,j)l<_ij<m is sparse if ai,. i ~ 0 implies that both i and j are 
multiples of [log2m ] . We code each boolean matrix A by a string over {0, 1, *} 
that lists the entries of A in row-wise order, with * used as separation marker 
between successive rows. Let code(A) denote the above coding of matrix A. 
Finally, let A t denote the transpose of A. Then, 

SMT = {code(A)**code(B) I A t = B ,  where A and B are sparse boolean 
rn x m matrices for some m E N }. 

In the following, n denotes the input size. 
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THEOREM 1.1. The language SMT can be accepted by a deterministic ~Ihr- 
ing machine with two work tapes (even without a special input tap@ in time 
O(n). SMT cannot be accepted by" any nondeterministic t-tape off-line Turing 
machine in time o(nlog2n ). 

COROLLARY 1.2. A linear time deterministic 2-tape Turing machine, wit~ or 
without special input tape, cannot be simulated by a nondeterministic !-tape 
off-line Turing machine in time o(nlog2n ). 

REMARK 1.3. 

(a) Both in the deterministicand nondeterministic case, fox" off-iine TM's, this 
yields the t~rst superlinear lower bound for the simulation of two tapes 
by one. The best known upper bound is Of ,~2 ) (Dietzfelbinger 1989), 

~log  n / 

improving the upper bound of Hartmanis and Stearns (see Hopcroft & 
U11man 1979). 

(b) One can easily construct from SMT and its complement a language L 
that is accepted by a deterministic 2-tape TM in linear time, but where 
neither L nor its complement can be accepted by a nondeterministic i- 
tape off-line TM in time o(nlog2n ). 

Our techniques also allow us to separate off-line Turing machines with three 
pushdown stores and those with two pushdown stores. 

THEOREM 1.4. SMT can be accepted in linear time by a deterministic off iine 
Turing machine with three pushdown stores (no input tape required), but SMT 
can not be accepted by a nondeterministic off-line Turing machine with two 
pushdown stores in time o(nlog2n ). 

The next section describes linear time decision procedures for 2-tape Turing 
machines and Turing machines with three pushdown stores. The proof of The- 
orem 1.1 is given in section 3. Section 4 contains a graph-theoretical lemma 
which is required for the proof of Theorem 1.1. 

2. Recogniz ing  S M T  in Linear T i m e  wi th  two Tapes  

In order to check with a 2-tape TM whether a given input x E {0, ~, *}* beiongs 
to SMT, one first checks whether x has the form code(A)**code(B) for two 
sparse m x m matrices A and B. Obviously, this can be done in linear time 
(i.e., in t ime O(m2)). 
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If the input passes this test, then in linear time, the sparse m x m matrices 
A and B are collapsed to (m/log2m) • (m/log2m) matrices A' and B'. More 
precisely, 

A'[i,j] = (j, i, A[i log 2 ra , j  log~ m]) and B'Ii,j  ] = (i,j, BIi log 2 m , j  log 2 ra]). 

Next, we observe that a 2-tape TM can sort s keys in time O(s log~ s) 
assuming that all keys consist of at most O(log 2 s) bits. This is achieved, for 
instance, by simulating a non-recursive version of Mergesort. If we now sort 
the triples of A' lexicographically (in time O((m/log 2 ra) 2 log~ ra) = O(m2)), 
then we obtain the (row-wise representation of the) matrix A" with 

A"[i, j] = (i, j, A[j log m, i log ra]). 

But A" represents the collapsed version of A ~ and it now suffices to check 
whether A" equals B'. 

Thus, SMT can be accepted in linear time overall. Observe that the above 
algorithm also runs 'in linear time for TM's with three pushdown stores (since 
three pushdowns already allow an efficient implementation of Mergesort). 

3 .  A L o w e r  B o u n d  f o r  1 - T a p e  o f f - l i n e  T u r i n g  m a c h i n e s  

Assume that there exists a nondeterministic off-line 1-tape TM M which rec- 
ognizes SMT in time n. c(n) where c(n) = o(log2n ). We will now show that 
such a machine M cannot exist. 

Fix some sufficiently large n of the form n = 2ra(ra + 1) + 2 (so n is the 
length of the input string code(A)**code(B) for boolean r a x  m matrices A 
and B). For simplicity we write c for c(n) and we omit the floor and ceiling 
notation. 

Let k0 = (m/log2m) 2 and let X0 be the set of all 2 k~ inputs of length n 
belonging to SMT. For each input I E )2o fix an accepting computation C,r of 
M which runs in at most n - c steps. 

Now, let us fix some input I E )2o. Consider partitions of both the input 
and the work tape of M into blocks of b = 2(m + 1)log2m adjacent cells. There 
are b different partitions of both tapes which result from shifting all block 
boundaries by an equal number of cells. At each step of computation Ci, M 
crosses a block boundary for at most two different partitions. Therefore, we 
wilt be able to find one partition PI such that the heads of M cross block 
boundaries at most 2nc/b times during Ci. 
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Next choose a set X1 C_ X0 with 1321 I = iXol/b = 2k~ so that the tape 
partitions PI are identical for all I C X1. 

Let kl = C1 n �9 c- logan where C1 is a positive constant. Another counting b 
argument shows that there exists a subset X2 of X1 of size at least 

121[ 2k0 -kl 

2 kl b 

so that the following data are identical for all I E X2, 

o the time steps when a head of M crosses a block boundary of PI during 
computation C~, 

o the state of M at each such crossing, 

o the precise location and the direction of movement for each head of M 
at each such crossing. 

The time interval between two successive crossings of block boundaries of 
P /wi l l  be called in the following a time block of computation CI. Note that all 
computations CI for I C X2 are "block-oblivious", i.e., the same tape blocks 
are examined during corresponding time blocks for each such computation. Let 
us fix one input I C X2. 

Let G = (V, E) be the "block computation graph" of the computation CI. 
Each node of G represents a time block of CI, thus IV[ _< 2nc/b, The pair 
(vl, v2) is an edge of G if and only if (for CI) during time block v2 the work 
head of M visits a tape block that it had last visited during time block vlo 
Observe that the graph G captures the work tape/ t ime dependence for all 
inputs I C X2 since their computations are block-oblivious. 

This graph G does not reflect the complete information flow of the computa- 
tion CI because it ignores the input tape of M. However, G has an important 
advantage that will be exploited extensively in the following. It is a planar 
graph, since the work tape of M can be simulated by two pusbdown stores 
(Paul et aI. 1983). 

Before exploiting the planarity, we capture the actions of the read-only 
head. Label every node v of G with the index of the input tape block which 
has been visited during time block v. Next, se!ect n/4b tape blocks from the 
left half of the input tape and the same number from the right half such that 
each such block appears at most 8c times as a label in G. Let Z (resp. Z') be 
the set of nodes corresponding to the chosen blocks from the left (resp. right) 
half. 
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By a repeated application of the planar separator theorem of Lipton & Tar- 
jan (1979), the graph G can be cut into relatively few pieces with few edges 
connecting the pieces. We would then like to combine the pieces into two dis- 
joint groups, with each group only accessing parts of the input not accessible to 
the other. This leads us to a problem of Communication Complexity. Namely 
the language SMT, restricted to inputs in X~, has to be recognizable by ex- 
changing a number of bits not larger than the product of O(b) and the number 
of edges connecting the two groups. Lemma 3.1 allows us to carry out the 
graph-theoretical part of the above process. 

LEMMA 3.1. Let G = (V,E)  be a planar graph, Z and Z' be disjoint sets of 
s labels, and a : V -4 Z U Z' be a (partial) labeling" of G such that each labeJ 
occurs at most k times. Then, there are subsets Zo C Z, Zs C Z' and V* C_ V 
such that the following conditions hold: 

(a) [Zol = IZgl > s/(gk),  

(b) IV'! = O(k tv/ T) and 

(c) after removing V*, none of the remaining connected components contain 
labels from both Zo and Z~. 

The proof of Lemma 3.1 is given in the next section. If we apply Lemma 
3.1 with s = n/4b and k = 8c, we obtain subsets Z0 and Z~ of size 

r~ 
Z - -  - -  

4.b.98~ 

and a subset V* of size O(8cx [ / ~ )  = O ( ~ ) .  The input blocks in z0 (z;) 
will only appear as labels in connected components that do not contain an 
input block from Z~ (Zo) as a label. 

Now we can remove the influence of nodes in V* on our communication 
problem. For any I E X~ and any time block v of computation CI one needs 
O(b) bits to describe the contents of the currently visited block on the work 
tape and the index of the input block visited during v. This description, for all 
the nodes of V',  costs us not more than k2 = C 2 ~  bits (for some positive 
constant C2). Thus, we can select a set )(3 C_ X2 of 2k~ inputs I so 
that for all nodes v of V* and for al! I C Xa, the corresponding block contents 
and input block addresses are identical. 
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Since each input block has length 2(m + 1)log2m , a block belonging to Zo 
holds for input I=code(A)**code(A  t ) at least one complete row ri of matrix 
A whose index i is a multiple of log2m. Analogously, each block of Z~ holds 
at least one complete column cj of A where j is a multiple of log2~n. Thus, 
with z equal to the size of Z0 (and Z~), we obtain a sequence (i~, o~ iz) of row 
numbers and a sequence (jl, ..., j~) of column numbers which are multiples of 
log2m and which define for every input I=code(A)**code(A  t) C X3 a z x z 
submatrix A'. Moreover, all matrix elements of A that belong to A' appear on 
the input tape exclusively in those tape blocks that belong to Ze or Z~. 

Observe that it is sufficient to show that there are two different inputs 
I=code (A)**code (A  ~ ) and J=code(B)**code(B~ ) in Xz  whose matrices A and 
B agree outside of the considered submatrix. This follows by a conventional 
cut-and-paste argument. We combine these inputs I and J to a new input 
code(A)**code(B ~ ) that is accepted by M. This is done by first "cutting" the 
accepting computations CI and Cj at the nodes of V* and the~l by replacing 
in CI those disconnected subgraphs of the computation graph where ~he input 
head visits a block of Zs by the corresponding subgraphs of C j,  

In order to show that there are two different inputs I, J in ~ that agree 
outside of the considered submatrix we prove that the cardinality of Xa is 
larger than 2 k~ which is the number of sparse boolean matrices that differ 
in an entry not contained in the considered z • z submatrix. Since IX31 = 
2k0-k~-k~-tog~b, it suffices to show that kl + k~ + log.~b = o(z2). 

Since b = 0(mlog2m ) and n = O(m2), we have 

kl + log2b = C~ n .  c .  log2n 
b 

+ l o a f , :  = 

But, /c2 = C 2 ~ .  Thus, k2 = O(n 4/s) and it suffices to show tha.:: n 4/s = 
o(zb. 

7~ r~ 

Since z - 4. b. 9 sc and c(n) = o(log2n), we get z ~ = ,O(916~log2n ) _  and z 2 

grows faster than n 4/5, as required. This proves Theorem ~.1. Q 
For Theorem 1.4 we have to show that SMT can be recognized by a deter- 

ministic off-line Turing machine with three pushdown stores in linear time, but 
SMT cannot be recognized by a nondeterministic off-line Turing machine with 
two pushdown stores. 

We already discussed the linear time recognition in the previous section. 
Observe that our lower bound argument only utilizes the planarity of the com- 
putation graph. Since the computation graph of a two-pushdown Turing ma- 
chine is planar (Paul et al. 1983), our lower bound also applies to this machine 
model. [] 
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4. Separating Planar Graphs 
For the proof of Lemma 3.1, we need the following result of Savage (1984)o To 
describe it, we have to introduce partition trees. A binary tree T (where every 
interior node has exactly two children) is a partition tree for the set V if its 
nodes are labeled with subsets of V (i.e., node w is labeled with V~,), the root 
has label V and for every interior node w of T (V~,0, V~I) is a partition of V~. 

FACT 4.1. Let G = (V,E)  be a planar graph, V' C_ V, and 1 <_ p <_ IYq. 
Then, there is a partition tree Tp of V with p leaves such that 

IV'l 4tV'l (a) for every leaf ~, T <- Iv 'N V~l <_ , 
P 

(b) for every node w there is a set S~ C_ V such that IS~l = O ( I ~ / ~ )  and no 
edges join V~, an d V - (V~ U S~). 

We also need a result of Babai et al. (1990) which generalizes a result of 
Alon & Maass (1988) from sequences to trees. 

FACT 4.2. Let T be a binary tree, Z and Z' be disjoint sets of size s, and fl be 
a partial labeling of the nodes of T by elements of Z U Z' such that each label 
occurs at most k times. Then, there are subsets Zo C Z and Z~ C Z' and a set 
F of edges of T such that 

(a) IZol = I z ; I  _> ~, 

(5) IF] <_ 2k - 1, and 

(c) after removing the edges of F from T none of the remaining components 
contain labels from both Zo and Z~. 

Now, to prove Lemma 3.1, apply Fact 4.1 to G with V ~ being the set of 
labeled nodes and p = IV~I. Let Tp be the partition tree guaranteed by Fact 
4.1. For each leaf w of Tp, the set V~ contains at least one node from V t. As 
there are [W[ many leaves, each leaf contains exactly, one labeled node. Label 
the leaf w with the label of this node. 

Now apply Fact 4.2 to Tp. Consider the separating edge set F of Tp. For 
each edge e C F let a ,  be the endpoint of e farther away from the root. Set 

V * =  M S ,  o, 
eEF 
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where the sets S~ are given by Fact 4.1, part (b). Furthermore, let Z0 and Z~ 
be the sets provided by Fact 4.2. It follows directly that these sets satisfy the 
requirements. Thus, Lemma 3.1 is proved. [] 
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