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Bayesian Kriging--Merging Observations and 
Qualified Guesses in Kriging I 

Henning Omre z 

Frequently a user wants to merge general knowledge o f  the regionalized variable under study with 
available observations. Introduction o f  fake observations is the usual way of  doing this. Bayesian 
kriging allows the user to specify a qualified guess, associated with uncertainty, for the expected 
surface. The method will provide predictions which are based on both observations and this qual- 
ified guess. 
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1° INTRODUCTION 

In evaluation of spatial phenomena, both interpolation between, and extrapo- 
lation beyond, a set of observations, frequently take place. Many automatic 
techniques are developed for this purpose. Few of these techniques are able to 
provide acceptab!e predictions in areas which are sparsely sampled. Extrapo- 
lations, in particular, seem to cause problems for the procedures. Also in krig- 
ing theory, extrapolations create problems. Journel and Huijbregts (1978) and 
Omre (1983) are references for kriging theory. In kriging, predictions are based 
on a geostatistical model. The model includes assumptions about shape of the 
drift and variogram function. Influence of the former will increase with increas- 
ing distance between location of observations and location for prediction. In 
implementations of kriging theory presently available, predictions tend toward 
planes or second-order surfaces in areas far from observations. Users often find 
predictions in such areas unacceptable. 

In many applications extrapolations are required. Traditionally the user 
introduces subjectivity through fake observations in areas which are sampled 
sparsely. To some extent, this will prevent wild predictions. Few techniques, 
however, are able to treat real observations and qualified guesses differently, as 
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they should. Kriging theory allows for varying precision in observations and 
this provides a possibility for distinguishing the two sources of information. In 
Joumel (1983), Kulkarni (1984), and Kostov and Journel (1985), handling of 
qualified guesses is treated in an indicator kriging setting. In this case, fake data 
can be specified through a probability distribution. 

Introduction of fake observations to control the predicted surface seems 
improper for several reasons: 

(1) Normally, the user has expectations about the general shape of the surface. 
To represent these expectations as a number of separate fake observations 
is not natural. To specify a surface would be more natural. 

(2) By specifying fake observation in certain locations, these particular loca- 
tions are given a different status than others. This may be observed in es- 
timation variances of kriging. Expectations of the user are usually associ- 
ated with all locations. 

3 Usually, a qualitative difference exists in information carried by real ob- 
servations and by the user. The former provides exact values of the region- 
alized variable whereas the latter normally reflects general expectations of 
the phenomenon under study. This difference is not distinguished when fake 
observations are introduced. 

The fact that the user normally has expectations about the general behavior 
of the phenomenon suggests that user-specified information should be a part of 
the model. This will not be the case if fake observations are used. In Omre and 
Holden (1984), the model approach is chosen and a solution within universal 
kriging theory is found. The universal kriging theory, however, allows for no 
uncertainty in specifications of the model. Hence the user has to specify expec- 
tations without uncertainty. In this paper, kriging theory is extended to allow 
for uncertainty in specification of the model. The user may specify any expected 
surface with uncertainty. This qualified guess is included in the geostatistical 
model. Predictions are based on observations and this model. 

The method also may be seen as an extension of a linear Bayesian theory 
to spatial problems (see Hartigan, 1969). A prior distribution of the expected 
surface is specified up to second order. This prior is combined with available 
observations, not to obtain a posterior estimate of the expected surface, but to 
make a posterior prediction in an arbitrary location. Familiar Bayesian relations 
are applied in the procedure. Berger (1980) is a useful reference to general 
Bayesian theory. 

Because the method consists of a mixture of the kriging theory and the 
Bayesian approach, it is named Bayesian kriging. (The author is aware that 
Kulkarni, 1984, denoted his procedure Bayesian kriging. His procedure is qual- 
itatively different from the one suggested here. However, the term soft kriging 
has recently been adopted for the technique used by Kulkarni; see Kostov and 
Journel, 1985.) 
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2. BASIC N O T A T I O N  AND R E L A T I O N S  

Let the regionalized variable under study be denoted {z(x); x ~ A}, and let 
the underlying random function be 

{Z(x); x e A} (l) 

Characteristics of  {Z(x); x ~ A} will not be known a priori. 
Consider another regionalized variable {re(x); x ~ A}, whose underlying 

random function is 

{M(x); x e A} (2) 

Assume its first two moments as known a priori 

E[M(x')] = txM(x') x '  ~ A 

Coy [M(x'), M(x ")1 = CM(x', x ") x ', x"  ~ A (3) 

Note that the covariance may be dependent on both x '  and x ", not only on their 
relative location. 

This implies that the corresponding variogram function is defined as 

3'M(x', x" )  = ½ Var [M(x') - M(x")] 

= [CM(x', x ' )  + CM(x", x")]/2 - CM(x', x" )  x ' ,  x"  ~ A (4) 

Let the following be true 

E[Z(x')] m(x); x ~ A] = ao + m ( x ' )  x '  ~ A 

Cov [Z(x'), Z(x")I M(x); x 6 A] = CzIM(x' - x " )  x ' ,  x"  ~ A (5) 

with ao an unknown constant. 
Then {M(x); x E A} may be interpreted as a guess, associated with uncer- 

tainty, for the shape of  the expected function of  the variable under study {Z(x); 
x ~ A}. The constant ao is introduced to make the guess less sensitive to the 
actual level specified. The shape of  the guess is primarily of  interest. 

The latter entails that {Z(x); x ~ A} is second-order stationary around its 
expected function {a0 + m(x); x e A} and is an assumption familiar to geostat- 
isticians. It also entails that 

Var [Z(x') - Z(x")[M(x);  x ~ A] = 23'ziM(x' - x" )  x ' ,  x"  ~ A (6) 

Expressions for conditional expectation and conditional covariance are known 
from linear, Bayesian theory (see Hartigan, 1969) 

E[Y~] = E[E[YI[ I131] 

Cov [Y1, Y2] = E[Cov [111, Y21 ]13]] + C o v  [E[Yl[ Y3], E[Y2[ Y3]] 

with t"1, Y2, and Y3 arbitrary random variables. 
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From this and expression (5) 

~z(X')  = 

CzM(X', X") = 

Cz(x ' ,  x " )  = 

"yz(X', x " )  = 

= ! (E[Var [Z(x') - Z ( x " ) l m ( x ) ;  x ~ A]] 
2 

+ Var [E[Z(x')  - Z (x" ) lM(x ) ;  x e A]]) 

= - -  X " )  "yZIM(X' X") + "YM(X', 

O m r e  

E[Z(x')]  = E[E[Z(x ' )JM(x);  x ~ A]] = a o + I~M(X'); X' ~ A 

Cov [Z(x'), M(x")] 

E[Cov [Z(x') ,  M(x  ")l m(x); x e A]] 

+ Coy [E[Z(x ' ) lm(x) ;  x ~ A], E [ m ( x " ) l m ( x ) ;  x ~ A]] 

Cov [M(x'), M(x")] 

CM(x', x " )  x ' ,  x "  ~ A 

Coy [Z(x'), Z(x")l 

E[Cov [Z(x'), Z(x" ) lM(x ) ;  x ~ A]] 

+ C o v  [E[Z(x')l M(x); x e Am, E[Z~x")I M(x); x 6 A]] (7) 

CZlM(X' -- x " )  + CM(x', x " )  x ' ,  x "  e A 

½ Var [Z(x') - Z(x")] 

Expression (5) is a sufficient condition for expressions (7) to hold; a nec- 
essary and sufficient set of  conditions would be 

E [ Z ( x ' ) I M ( x ' ) ,  m(x")] = a o + m ( x ' )  x ' ,  x "  ~ A 

Cov [Z(x'), Z(x")[ M ( x ' ) ,  M(x")]  = CZlM(X' -- x " )  x ' ,  x "  ~ A 

The model above is specified up to second order and can be used in a linear 
Bayesian framework. The discussion will be exact if {Z(x); x e A} and {M(x); 
x ~ A} jointly are Gaussian random functions. 

Recall that the two first moments of the random function {M(x); x e A} 
are considered known and that it can be interpreted as a qualified guess of the 
expected function of {Z(x); x e A}. The random function of interest {Z(x); x 
A} is unknown. Assume, however, that the latter can be observed in locations 
x i E A ; i  = 1 , . . . , N .  

3. BAYESIAN KRIGING 

Assume that the following set of observations from the random function 
of interest, {Z(x); x e A}, is available 

{Z(xi); i = 1 . . . . .  N }  
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Because the expected function of  {Z(x); x E A} is known up to a constant, 
see expression (7), one may define the random function 

{ Z r ( x )  = Z ( x )  - ~M(X); x e A} 

and the set of  observations 

{Zr(x/) = Z(xi)  - p~M(Xi); i = 1 . . . . .  N }  

Consider  a l inear est imator  for Z(xo) with x o an arbitrary location within A 

N 

Z * ( x o )  = ~ c~iZr(xi) + ~M(X0) 
i = l  

with {ai; i -- 1 . . . . .  N} a set of  constant weights to be determined. 
Unbiasedness in the est imator  requires 

E[Z(xo) - Z*(xo)] = 0 

1:). 

E[Z(xo) ] = E[Z*(xo) ] 

N 
E[Z(xo)] = ~ c~iE[Zr(xi)] + fzM(Xo) 

i = 1  

From (7) one obtains 

E [ Z ( x o )  - Z*(xo)] = 0 

a 0 = a 0 Z o( i 
i 

A necessary and sufficient condit ion on the set of  weights for ensuring 
unbiasedness is 

O/i ~- 1 ( 8 )  
i 

Estimation variance for the est imator  is 

Var [Z(xo) - Z*(xo)] = Var [Z(xo)] - 2 ~ c¢ i Cov [Z(xo), ZT(xi)] 
i 

+ ~ Z OliOl j C O V  [ZT(xi), ZT(xj)] 
i j 

= Var [Z(xo) 1 - 2 ~ ai  Cov [Z(xo), Z(xi) l  
i 

+ ~ ~ a ia j  Cov [Z(xi), Z(xj)] (9) 
i j 

because covariance is invariant to shifts in the variables.  
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By using expressions (4), (6), (7), and (9) 

Var [Z(x0) - Z*(x0)] = 2 ~ %['YZlM(Xo -- Xi) + "YM(XO, Xi)] 
i 

- -  Z Z ol io l j[ '~ZlM(X i - -  X j )  "~ "YM(Xi,  X j ) ]  (10) 
i j 

In this expression, 3'M(", ") is known a priori. The 3'ZlM(') is unknown, 
however, and has to be estimated. A procedure for estimating this variogram 
function will be discussed in Section 4. Let's proceed as if 7ZlM(') is known. 

Note that estimation variance is ensured to be nonnegative if both "YzIM(" ) 
and "rM(", ") are conditionally positive-definite functions. This is caused by the ' 
additivity properties of this kind of function. 

Consequently, "YZlM(') may be chosen from the class of variogram func- 
tions usually applied in geostatistics (see Joumel and Huijbregts, 1978). 

The other variogram function "YM(X', X ") is dependent on locations x '  and 
x", not only their relative location. Hence it should be chosen from a larger 
family of functions. In Lemma AI (Appendix I), 3'M(" , ") is shown to be 
conditional positive-definite if it is of the form 

[ ( a M ( x ' )  - a M ( x " ) l  2 
"~M(X', X") = 

2 

+ aM(x ' )  aM(x")  3's(X' - x " )  x ' ,  x "  • A 

with OM(X) a nonzero function defined over area A and [1 - 3's(X' - x" ) ]  a 
positive-definite function: 

From expression (4) for second-order stationary random functions, one 
gets 

CM(x', x " )  = aM(x') oM(x") Cs(x'  - x " )  x ' ,  x"  e a 

with ",/s(X' - x " )  = 1 - Cs (x '  - x")' x' ,  x"  e A 

Hence, C s ( ' )  can be interpreted as the spatial correlation function, and 
a ~ ( x )  = Var [M(x)], which may vary over the area A. Consequently, a fairly 
general class of conditional positive-definite functions is defined. 

Recall that the second-order moments of {M(x); x • A } are assumed known 
a priori. Interpretation of ~r~ (x) as the variance of the qualified guess in location 
x simplifies the specification. In addition, a location-invariant spatial correlation 
C s ( . ) ,  valid everywhere within A, has to be given. 

The set of weights {%; i = 1 . . . . .  N} will be determined by minimizing 
variance under the unbiasedness constraint 

Min {Var [Z(xo) - Z*(xo)]} , Y] a i = 1 (11) 
oei; i = 1 . . . .  ,N  i 

By applying the Lagrange minimizing procedure, one finds the following Bayes- 
ian kriging system 
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Z Oli['YZIM.(X i -- Xj) AV "yM(Xi, Xj)] 2v ~1 : ~/ZIM(Xo -- Xj) -~ ~/M(Xo, Xj) 
i 

j = I , . . . , N  

c~ i = 1 (12) 
i 

with ~1 being a Lagrange  mult ipl ier .  

No te  tha t  the varying precision in the qualif ied guess will have influence on 
the weights,  and  hence on the es t imate  obta ined .  

Special Cases 

Some special cases of  the Bayesian kriging system will be considered. 

C a s e  A :  

Consider the case where location x 0 coincides with the location of  one of  
the observations, let 's  say xk; 1 _ k __< N. 

From expression (4) and (6), this entails 

'yZIM(X 0 -- Xk) = 0 

"YM(Xo, X~) = 0 

By choosing ak = 1 and o~ i = O, i = 1 . . . .  , N, i :/: k, one gets from expression 
(10) 

Vat  [Z(xo) - Z*(xo)] = 0 

and the constraint in expression (8) will be fulfilled. 
This implies 

Z*(x~) = zr(z~) + ~M(x~) = z(xk) 

Consequently, the Bayesian l~iging technique is an exact interpolation 
technique. The predicted surface runs through observations regardless of  the 
actual qualified guess and the surface has continuity according to the estimated 
variogram functions; hence observations have large influence in areas with dense 
sampling. 

C a s e  B :  

Consider the case where location x o is farther from any observation than 
the range of  both 3'zlm(') and 3 ' s ( ' ) .  This implies 

3'zlM(x0 - x i )  = C i = 1 . . . . .  N 

"Ys(Xo - x i )  = 1 i = 1 . . . . .  N 

3~M(Xo, x i )  = [a~t(Xo) + a 2 ( x i ) ] / 2  i = 1 . . . . .  N 

with C a constant identical to Var [ Z ( x ) [ M ( x ) ;  x ~ A] .  
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The Bayesian kriging system, see expression (12), reduces to 

o~(xi) 
~] ~i['Yz[M(Xi -- Y j )  "[- "[M(Xi, Xj)] -~- [~1 : C .-I.- ff2(x°----~) --I- - -  

2 2 

j = l  . . . . .  N 

This implies 

"yz(X'  - x " )  = "YzlM(x' - x " )  

and the reduction to the ordinary kriging system is obvious. 

~o~i : 1 
i 

By setting ~1 = C + [o~(Xo)/2], the weights will be independent of location 
x0. 

Consequently the estimator 

Z*(xo) = E ~iZr(xi) + ~M(XO) 
i 

will be dependent on Xo only through the expected function #M(" ). Hence, the 
difference in the estimates in these regions will be caused by the qualified guess 
only. Note that the estimation variance will vary with the precision in the guess 
through/~l- This shows that in areas far from observations, the qualified guess 
will dominate. 

Case C: 

Assume that the a priori qualified guess of the expected function of {Z(x); 
x ~ A} has second-order moments of the form 

Var [M(x')  - M(x")] = 27M(x ', x " )  = 2C "Ys(X' - x " )  (13) 

This implies that the precision in the a priori guess is constant throughout 
the area A. 

Then, from expression (10) 

Var [Z(x 0) - Z*(x0)] = 2 ~ Oli'~z(X 0 -- Xi)  -- ~ Z ~iOlj 'yz(Xi - Xj)  
i i j 

with 7z(X'  - x")  = 7ZlM(X' - x")  + "YM(x' - x")  (14) 

In Section 4, the traditional variogram estimator based on {ZT(xi); i = 1, 
. . . .  N} is shown to be an unbiased estimator for 3'z(X' - x")  in this case. 
Consequently, in practice this case will be reduced to ordinary kriging on the 
random residual function {Zr(x); x e A} .  

In the particular case where the qualified guess can be specified without 
uncertainty, one gets 

Var [M(x)] -- 0 x ~ A 



Bayesian Kriging 33 

To summarize, it should be noted that two types of cases can be distin- 

guished: 

1. If precision of the qualified guess varies over area A, the Bayesian kriging 
system will provide estimates and estimation variances different from tra- 
ditional kriging procedures. 

2. If precision of the qualified guess is constant over area A ,  the Bayesian krig- 
ing system will, in practice, reduce to the traditional kriging procedure. 

Bayesian kriging gives observations large influence in areas in which observa- 
tions are dense. In areas with few observations, the qualified guess has larger 
impact. The variogram and the precision in the guess for the expected surface 
will dictate this trade-off. 

4. VARIOGRAM ESTIMATION 

From expression (7), one gets 

Var [Z(x') - Z(x")] = 2[yZlM(X' -- X " )  + yM(X ' ,  X")] 

YZJM(X' -- X " )  = ½ E I I Z ( x ' )  - Z ( x " ) ]  21 

x',  x"  E A 

_ ~t [#m(X, ) - /.tM(X")] z -- yM(X ' ,  X" )  X ' ,  X"  ~ A 

Let h be a vector in the reference domain A, and define the set of pairs of 
indices Dh as 

Dh : {( i , j ) [x i - -Xj  = h o r x j  - xi = h; i , j  = ~,~ . . . , N }  

Nh = #Dh 

An estimator for -yZLM(h) is then 

1 ~] {[Z(x i )  - Z(xj )]  z - [/ZM(Xi) -- ~M(Xj)] 2 -- 2yM(Xi, Xj)}  
~/ZlM(h) -- 2Nh (i,j)~Dh 

(15) 

One may show that "~ZkM(h) is an unbiased estimator for YZiM(h) for all h. 
The estimator ~ZlM(h) should be plotted for a sequence of lags, and a positive- 
definite function should be fitted to these estimates. The resulting variogram 
function should replace the true function in expression (10) and (12). 

In Case C in Section 3, one assumed that 

"YM(X', X it) = C t'~s(X' - -  X n) x t ,  x t t  ~. A 

i.e., the spatial covariance in the qualified guess is ofily dependent on x '  - x". 
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This entails that the variance is constant throughout the area A. In this case, 
7z(X', x") is dependent on x '  - x"  only, from expression (7). An unbiased 
estimator would be 

1 x' 5'z(x', x '  + h) = 2Nh (i,j)~D,,E [ZT(x,) -- ZT(xj)] 2 x ' ,  + h ~ A 

Hence, for this case, the estimator for ½ Var [Z(x') - Z(x")] will reduce to the 
traditional variogram estimator. 

5. AN EXAMPLE 

A brief example of the Bayesian kriging method in which data are con- 
structed is presented. The objective is only to demonstrate the characteristics 
of the procedure. 

Five observations are available (Fig. 1). The qualified guess for  the ex- 
pected function #M(') also is given in the figure. The variogram function 7zlu( ' )  
is given to be spherical with sill value 3.0 and range value 3.0. 

Three cases are evaluated: 

I. When the expected function is assumed to be known exactly, i.e., 
Var [M(x)] = 0; all x e A. This corresponds to subtracting a predefined 
drift from all observations and performing ordinary kriging on the resid- 
uals. 

z(x) W 

15 

10 

~( o b s e r v a t i o n s  - z (x , } i  i=1~ . . .5  
- -  qua l i f ied g u e s s -  pM(x); x ¢  L 

f 

i i , , , , i , , , , i , , , , i XI 
1 5 10 15 20 

Fig. 1. Observations and the qualified guess. 
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Z ( X )  

10 

'I 

A 

case  I 

o cose ]~  
x case  I~" o 

#, o 

~ x × x x x x x x 

1 

L I , , , , i , r , , i , i I , r 

1 5 10 15 20 

)~ o b s e r v a ~ i o n s - z ( x i ) ; [ = l  ~ ,5 
- quol i f ied 9 u e s s - p . ~ x ) , x z L  

x m~ 

o'~(xl 

10 

+ case I 
cclse [ I  

B o case 

0 0 
0 0 

0 0 

0 

0 

1 

o + + + + + + + ~  
+ 

o 

× 5 10 15 20 

Fig. 2. (A) Results of estimates from the example. (B) Results of estimation 
variances from the example. 

II. When the qualified guess is assumed to be associated with an uncertainty 
which has variance proportional to the value of  the expected function, i .e. ,  
aZ(x) = Var [M(x)] = .25 * tzM(x ). The spatial structure 7 s ( ' )  is given 
by a spherical variogram function with unit sill and range value 8.0. 

III. When the qualified guess is assumed similar to that in case II but variance 
also is increasing with increasing value o f  x. 
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Table 1. Results of  Bayesian Kriging 

Lag 

Variable 1 2 3 4 5 6 7 8 

Qualified guess ~tM(x) 

Observations Z(x ) 
Case I 

Determined drift 

Case II 

Drift uncertainty 
proportional to 
~M(x) 

Case III 
Drift uncertainty 

depends on 
#~x)  and x 

Case IV 

Ordinary kriging 

4.0 5.0 5.5 5.5 5.5 6.0 6.5 7.0 

3.0 - -  - -  10.0 --  --  5.0 4.0 

aM(X) O. O. O. O. O. O. O. O. 
Estimate/Estimated 

Variance 3.0/0. 5.5/2.2 8.0/2.2 10.0/0. 8.3/2.2 6.8/2.2 5.0/0. 4.0/0. 

aM(x) .50 .56 .59 .59 .59 .61 .64 .66 

Estimate/Estimate 
Variance 3.0/0. 5.5/2.3 8.0/2.3 10.0/0. 8.2/2.3 6.7/2.3 5.0/0. 4.0/0. 

aM(X) .60 .76 .89 .99 1.09 1.21 1.34 1.46 

Estimate/Estimated 
Variance 3.0/0. 5.5/2.4 8.0/2.5 10.0/0. 8.2/2.5 6.6/2.6 5.0/0. 4.0/0. 

Estimate/Estimated 
Variance 3.0/0. 5.8/4.4 8.4/4.4 10.0/0. 9.1/4.4 7.5/4.4 5.0/0. 4.0/0. 

A fourth case is also included: 

IV. When the ordinary kriging procedure is performed and the variogram func- 
tion is spherical with sill value 6.0 and range value 3.0. 

The Bayesian kriging procedure is performed in case I through III. Ordi- 
nary kriging is performed in case IV. The corresponding estimates and esti- 
mation variances are obtained in 20 locations corresponding to the integer val- 
ues on the x axis (Fig. 1). Results are reported (Fig. 2 and Table 1). Estimation 
variances from case IV are not comparable to the others because the sill value 
of the variogram function is set arbitrarily. Hence, they are not reported graph- 
ically (Fig. 2B). 

Note the following characteristics (Fig. 2 and Table 1): 

1. All kriging estimates run through the observations and the corresponding 
estimation variances are all zero. 

2. The Bayesian kriging procedure, case I through HI, provides estimates which 
tend toward the qualified guess, corrected by a constant, in areas without 
observations. The ordinary kriging estimates level out on a constant value. 

3. Uncertainties associated with the qualified guess have influence on the es- 
timates, although limited influence in this particular example. Note that larger 
uncertainty entails relatively larger weight to nearby observations. 

4. Estimation variances seem to be fairly sensitive to uncertainties in qualified 
guesses. Obviously, estimation variance increases with increasing uncer- 
tainty. 
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Lag 

9 10 11 12 13 14 15 16 17 18 19 20 

10.0 13.5 14.0 13,5 13.5 12.5 11.5 l l .0  9.0 6.5 4.0 1.0 

-- 17.0 . . . . . . . . . .  
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 

10.3/1.6 17.0/0. 16.6/2.4 15.0/3.5 14.5/3.7 13.5/3.7 12.5/3.7 12.0/3.7 t0.0/3.7 7.5/3.7 5.0/3,7 2,0/3.7 
.79 .92 .94 .92 ,92 .88 .85 .83 .75 .64 .50 .25 

10.3/1.7 t7.0/0. 16.7/2.7 15.1/4.1 14.7/4.5 13.6/4.6 12.6/4.6 12.0/4.6 9.9/4.5 7.4/4.3 4.9/4.2 1.9/4.0 

1.69 1.92 2.04 2.12 2.22 2.28 2.35 2.43 2.45 2.44 2.40 2.25 

10.2/2,1 17.0/0. 16.9/3.9 15.5/6.5 15.2/8.0 14.1/8.8 12.9/9.5 12.2/10.! 9.9/10.3 7.4/10.3 4.9/10.! 1.9/9.4 

10.3/3.2 17.0/0. 13.2/4,7 9.7/6.9 8.3/7.4 8.3/7.4 8.3/7.4 8.3/7.4 8.3/7.4 8.3/7.4 8.3/7.4 8.3/7.4 

6. CLOSING REMARKS 

In many applications in the earth sciences, observations of the phenome- 
non under study are few. The earth scientist often has thorough knowledge 
about the underlying process creating the phenomena, and alternative sources 
of indirect information may be available. The Bayesian kriging procedure pro- 
vides two important features in these cases: 

t. The user can include a qualified guess in the estimation procedure. In areas 
with observations, observations will dominate, whereas in areas without ob- 
servations, the guess will be assigned increasing weight. 

2. The user can assign uncertainties to the qualified guess. Consequently, more 
realistic estimates and estimation variances can be assessed. 

In Kulkarni (1984) and Omre and Holden (1984), geotechnical engineering 
and description of petroleum reservoirs are mentioned as applications where the 
general knowledge of the user is of utmost importance. For other applications, 
as meteorology and air pollution analysis, underlying drifts may be determined 
by rough deterministic models. These estimates of drifts may be used as qual- 
ified guesses for expected surfaces. The Bayesian kriging method provides the 
possibility to evaluate uncertainties in the model specification in the kriging 
theory. 
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A P P E N D I X  I - - A N  E X T E N D E D  CLASS OF  C O N D I T I O N A L ,  
P O S I T I V E  D E F I N I T E  F U N C T I O N S  

Consider the following lemma: 

Lemma A1 

Let o(x) be an arbitrary, nonzero function with x e A, and [1 - "Is(h)] a 
positive-definite function, and define 

[ c r ( x ' )  - o(x")] 2 
~(x ' ,  x " )  = + ~(x')  o(x")  ~s(X" - x ' )  

2 

Then, - - / (x ' ,  x " )  is a conditional, positive-definite function. 
Definition of  conditional, positive-definitness is given in Joumel and 

Ht~ijbregts (1978). 

Proof: 

Positive-definitness in [1 - -/s(h)] entails 

~ OtiOtj[1 -- "ys(xi -- Xj)] ~ 0 all ai 
i j 

(~i )2 (,~(Xi, Xj) [ff(Xi)__O(Xj)]2) 
Ol i -- ~i ~j OliOljl . . . .  ~-- 0 

• • (~(x,)  o(xj) 7 o ( x S  o(xj) ) 

i j ff(Xi) a(Xj) " "y(Xi' Xj) 

1 ~ ol i OLj 

+ 2 ~i " a(xi) a(xj) [a(xi) - (r(xj)] 2 _ 0 all ai 

all ~i 

¢# 

Z a[ Z aj  a2(xj) - Z Z cda]7(xi ,  xj) >- 0 all (~] with cd = o~i/a(xi) 
i j i j 

-- ~ ~ Ol~ Ol; "y(Xi, Xj) ~-- 0 all o~[ such that ~ a[ = 0 
i j i 

Consequently, - ~ , ( ' , - )  is a conditional, positive-definite, function. QED. 
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