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Summary. We extend the theorem of Burton and Keane on uniqueness of the 
infinite component in dependent percolation to cover random graphs on 7/e or 
z d x  N with long-range edges. We also study a short-range percolation model 
related to nearest-neighbor spin glasses on ;ge or on a slab ;ge x { 0 , . . . ,  K } and 
prove both that percolation occurs and that the infinite component is unique for 
V = ~2 x {0, 1} or larger. 

1 Introduction 

Consider a countable set V and a subset E of the set of unordered pairs of elements 
in V: we call elements in V vertices and elements in E edges. Consider a subset 
E ~ E and suppose vertices are connected through the elements of/~; then V falls 
apart into connected components. To have a good definition we will only refer to 
maximal connected components, having the property that they are not properly 
contained in any other connected component. The global connectivity picture can 
now be given by one of the following possibilities: 

(1) all components are finite; 
(2) there are some infinite components, but also finite ones; 
(3) all vertices of V are connected. 
Different terminologies have been developed to describe the various cases, 

so we define case (1) as absence of percolation, case (2)~ as occurrence of 
percolation and case (3) as connectedness of the graph (V,E). A further study 
can be carried out in case (2) counting the number of distinct infinite components, 
called infinite clusters in percolation theory, which do occur: if there is only one 
infinite cluster we say uniqueness of the infinite component holds. Note that we 
adopt terminologies coming both from random graph theory and from percolation 
theory. 

* A.G. was partially supported from AFOSR through grant no. 90-0090 
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We now suppose tha t /~  is described by a probability measure P on {0, 1} E. 
Having an assignment ~/of the values 0 and 1 to the edges, we declare an edge e e E 
open, and thus belonging to/~, if the value assumed by t/ in e is 1 and closed, and 
not belonging to E, if this value is O. 

In this paper we want to show that for a broad class of choices of V and E and 
of probability measures on {0, 1} ~ two dichotomic laws hold: 

(a) Connectedness of the random 9raph: when with probability one the graph 
described by P is either totally connected or falls apart into infinitely many 
components. 

(b) Uniqueness of the random infinite component: if with P probability one there is 
either no infinite component or a unique one. 

Actually we will prove results concerning (b) and those concerning (a) will be an 
immediate consequence. 

These kinds of results, together with the search for conditions to ensure that one 
of the two possibilities described in (a) or (b) occurs, have already a long history, 
and we now review some of the more relevant steps. But let us first remark that we 
are considering infinite random graphs and the results are thus different from those 
obtained in the graphs studied originally by Erd6s and R6nyi [9] and surveyed for 
example by Bollob/ts [3], in which the number of vertices is finite and in which 
asymptotic properties are considered when the number of vertices approaches 
infinity. Nevertheless there are some features which can be considered common: in 
particular, also in the finite case, for a large class of probability distributions, either 
the graph has a probability tending to one to be totally connected or the number of 
components tends to infinity (see [3]). 

Another difference, this time not so significant, is between bond percolation 
models, which are those considered here, and site ones, in which vertices are 
randomly distributed and all edges of a set E are open. Indeed many arguments can 
be easily translated from one model to the other. We prefer the bond (edge) one 
because the relation between graph theory and percolation theory is somewhat 
clearer, because of the relevance to statistical mechanical models of bond percola- 
tion (see Sect. 4 below), and finally because long-range models, which we treat in 
this paper, are intrinsic to bond percolation. 

We recall that n.n. (nearest-neighbor) models are those in which only edges 
between vertices at distance one are considered (with the distance always taken to 
be the Euclidean distance for V _~ •a) and long-range models will be for us those in 
which all edges are considered. We use the term connectedness when (a) holds and 
uniqueness when (b) holds. The problems of connectedness and uniqueness were 
successively solved in the following settings. 

First we have n.n. stationary models in Z 2 for which uniqueness was proved 
for distributions of edges which are independent (Harris [18] and Fisher [10]), 
Markov (Coniglio et al. [6]) or simply positively correlated models (the so-called 
FKG condition) with some additional geometrical requirements (Gandolfi et al. 
[15]). We mention that some of the results of these papers are not included in the 
present one. 

As we move to 2U we first have results for n.n. and long-range distributions for 
the independent case yielding connectedness of the infinite graph (Grimmett et al. 
[16"], in which also necessary and sufficient conditions are given to decide which of 
the possibilities occurs) and uniqueness (Aizenman et al. [1], with a simplified 



Uniqueness of the infinite component in a random graph 513 

proof in Gandolfi et al. [14]). Then uniqueness was obtained for Gibbs measures 
(with some additional requirements, Gandolfi [13]). 

In the meantime n.n. percolation in ;ga was analyzed with the only requirements 
of stationarity and finite energy of the probability measure (finite energy essentially 
means that it is possible to change locally an event preserving its positive probabil- 
ity). Partial results in this direction were obtained by Newman and Schulman [27] 
and a simple and elegant proof of uniqueness under these conditions was given by 
Burton and Keane [4]. The argument in this last paper shows that if two (and 
hence many) distinct infinite clusters occur, then the surface of a cube cannot 
accommodate all the disjoint open paths which are nevertheless forced by the 
regularities of the measure to intersect that surface. 

We want to push forward this argument, first of all to all long-range models. 
This will be achieved by realizing that the volume of the cube itself is not sufficient 
to accommodate the disjoint open paths still forced by the geometrical properties 
of the measure to intersect it (see proof of Theorem 1). 

We are also able to reduce the requirements about the set of vertices; Theorem 
1, for example, covers 7/a x N as well as 7Z d and Theorem 1' covers other vertex sets. 
Nonetheless we cannot treat in generality other classes of graphs: the first example 
to which our results do not apply is long-range percolation in the quadrant N x N. 
Previous results for the n.n. independent problem in Z d x N are given by Kesten in 
[24], where he proves uniqueness for these models; Kesten's results were extended 
to N k and 7z a x N k by Barsky et al. [2]. Kesten [24] also shows connectedness for 
long-range independent percolation in Z a x N k, d > 0, finding the conditions under 
which the graph is totally connected. 

Theorem 1 and our other results also do not entirely require finite energy, 
but only a one-sided version of it. We will say that P has positive finite energy 
for e ~ E if the conditional probability that e is open, given the configuration 
of all other edges in E, is almost surely positive; we will say that P obeys the 
positive finite energy condition if the set of such e's is large enough to connect 
any pair of vertices in V. Theorem 1 is stated in the next section after a 
lemma, which will be needed in its proof. Meanwhile, we state a special case of 
Theorem 1: 

Theorem 0. Let V = 7Z a and E = the set of all pairs of vertices from V. The random 
9raph determined by a probability measure P on {0, 1} ~ satisfies uniqueness if P is (a) 
stationary and (b) obeys the positive finite energy condition. 

We remark that if one further restricts Theorem 0 to the case where P is 
assumed ergodic, then most of the technical issues which arise in the proof of 
Theorem 1 are eliminated. The reader is encouraged to consider this special case 
while looking at the proof of Theorem 1 given in the next section. 

It may be appropriate here to mention some examples in which (a) or (b) is 
violated. Infinitely many infinite clusters can occur even with stationarity and the 
positive finite energy condition for percolation on a graph where the number of 
vertices at distance R from a fixed vertex grows exponentially, such as a homogene- 
ous tree T or T x  7Z a (Grimmett and Newman [171). Other examples can be found 
in certain exactly solved percolation models in ~a called ergodic percolation 
(Meester [25]) where the positive finite energy condition does not hold. A nice class 
of examples in which one obtains a finite number of distinct infinite clusters in 7Z, e 
may be constructed by considering i.i.d, variables {X~: v ~ ;~a} taking values in 
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{1 . . . .  , q} with probabilities pi - P(X~ = i) for i = 1 , . . . ,  q. Take E = {n.n. 
edges} and then define t/~ = 1 if and only ire  = {v,v'} has X~ = X~,. There will be 
one infinite cluster for each i such that there is independent n.n. site percolation in 
;gd at density p~. For  example, with d = 3, q = 2 and Pl = P2 = �89 there will be 
exactly two distinct infinite clusters since the critical value for n.n. site percolation 
in 2g 3 is strictly below 1/2 (Campanino and Russo [5]). 

There is a second line of development for the connection-uniqueness problem 
which is concerned with models in N. Connectedness for long-range distributions 
on N has been shown in great generality by Kalikow and Weiss [19]. They also 
find for independent distributions the conditions under which the graph is com- 
pletely connected or there are infinitely many finite components with probability 
one, work generalized by Kesten to 2~ d x N k as already mentioned [-24]. Conditions 
for this transition, including the explicit computat ion of the critical value of the 
parameter  in one-parameter  families, has been found for non-homogeneous distri- 
butions by Shepp [29] and Durrett  and Kesten [7], thus "solving" a large class of 
these models. We limit ourselves to the homogeneous case by which we mean that 
the distribution is invariant under the (induced map given by the one-sided) shift 
n ~ n + 1. In Sect. 3 we give a proof  of uniqueness for all these models, provided 
they have finite energy: results on connectedness for homogeneous models are an 
immediate consequence. 

As an application of Theorem 1 (or the original Bur ton-Keane  theorem) we 
show in Sect. 4 that the cluster of edges is unique in a model related to spin glasses. 
In the process of verifying the conditions of Theorem 1, we show that indeed 
percolation occurs when V = :gd, d > 3 or even in a slab with V = :g2 x {1 . . . . .  K} 
with K > 2 for n.n. models (so that it has a meaning to worry about  the number  of 
infinite components): this result is in accordance with the belief that phase 
transitions should occur for dimensions higher than 2 in these models. We have not 
determined whether or not percolation occurs when V = ;g2. 

In the next section we begin with some definitions and an introductory lemma, 
before stating and proving Theorem 1 and the closely related Theorem 1'. 

2 The main result 

We now proceed by fixing the notation. Let V be a countable set; the elements of 
V will be called vertices. The set of edges between vertices in V will be a subset E of 
V2 = {{vl,v2}, vie V, i =  1,2}. Each e ~ E  will be identified by the two vertices 
which define it and these will be called the end-points ore: e = {vl, v2} for vl, v2 e V. 
The edges are not directed. A (vertex self-avoiding) path ? in E between distinct 
vertices v and v' in V i s a  finite sequence of distinct vertices (v0 -- v, vl . . . .  , v, = v') 
such that the edge { v i - l , v i } ~ E  for i =  1 . . . . .  n. v and v' will be said to be 
connected by ?. We will identify 7 with the set of these edges and write for example 
that 7 ~ E. 

To represent edges which are open or closed we consider H = {0, 1} ~ in which 
a topology is given by the cylinders of the form C = {0 ~H: ~e~l~ = ~1, �9 �9 -,  ~/e~,~ ---- ~,} 
with base {er  e~,)} c E for h e N ,  ~ie {0, 1}. For a subset E '  = E a topology 
is similarly obtained by the cylinders with base contained in E',  to which we shortly 
refer as cylinders in E '  for short. Given q ~ H and a vertex v r V we define the 
component I~ of v (in q) on (V, E) as the maximal subset of V which has the property 
that all its vertices are connected to v by a path 7 whose edges are open, i.e. ~/e = + 1 
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when e e 7- We will also consider components on a subset V' c V, by which we mean 
maximal connected components on (V',E')  in ~/' where E' c E is the set of edges 
whose end-points are both in V' and t/'e(0, 1) ~'. 

For v E V we consider maps (to be specified) T~ : V --, V. Note that given such 
a map T~ we have an induced action on E defined by T~(e)= T~({vt ,v2})= 
(T~vl, T~vz), e ~ E, where we use the same notation for the induced maps because it 
will be always clear at which level we are considering the map. We wilt say that E is 
T~-invariant if {v l , v2}~E if and only if (T~vl,T~v2} is in E. There is then an 
induced map on H defined by T~(t/)~ = ~/r~(~), r /~H and on the subsets A of H by 
T,(A) = {T~(t/): t/cA}. If a G-algebra s~ of subsets of H is given, then T~ is 
sff measurable if T~ 1 (A) ~ sd for all A e d and a probability measure P defined on 
N is T~-invariant if P(T2-1(A)) -- P(A) for all A e d .  

We start now with a technical lemma. It relates the conditional probabilities of 
a probability measure P given a sub a-algebra with the same conditional probabil- 
ities of the ergodic components of P, when P is decomposed into probability 
measures which are ergodic with respect to a map T. This result essentially shows 
that if finite energy (or positive finite energy) holds for P then it holds also for its 
ergodic components. 

Lemma 1. Let E be a countable set and T an invertible map of E onto itself. Let 
H = {0, 1 }e, e e E and let sd and de\{r be the a-algebras 9enerated by the cylinders 
in E and E \  {e} respectively. As usual let us denote by the same letter the extension of 
the map T to H and sd. 

Suppose that Tn(e) 4= e for all n > 1. Then there exists a function (p on H, 
measurable with respect to sd~\~r such that for any T-invariant probability measure 
P defined on sd, 

(p(t/E\~l) = P(r/~ = 1 ]...~r J P-almost everywhere 

and therefore for almost all ergodic components P in the ergodic decomposition of 
P related to T 

/~(t/~ = llsr P(t/~ = I[~E\~}) P-almost everywhere. 

Proof The main idea in the proof is a proper use of the ergodic theorem. Indeed 
if C c H is a cylinder set and I~ denotes its indicator function, then 

1 n l im , - ,+~Y ' , Ic (T  t / )= #,(C) exists for P-almost all t / s H  whenever P is a T- 
invariant probability measure, and i fP  is ergodic this limit no longer depends on t/. 
From now on we consider only t /~H for which #,(C) exists for all cylinders C and 
since there are only countably many cylinders, the set of these ~/'s has probability 
one for any T-invariant measure. Choose a sequence of finite subsets Bm c E such 
that e ~ Bm c Bin+ ~ and U~ B~ = E. We now define cylinders depending on a given 
t/. For  m e N let C,,(q) be the cylinder set of the configurations coinciding with t/in 
B,,\ {e}; i.e., Cm(t/) = {t/': ~/'~, = t/~, for all e'EBm\{e}}. Furthermore, let C~(~/) be the 
cylinder set with the same properties as C~0/) but with e forced to be open: 
c~(~) = {~'~ c~(~): ~; = 1}. 

Let q0m(t/)= #,(Clm(rl))/#,(Cm(tl)) when this is defined (i.e. for the t/'s we are 
considering for which the denominator is nonzero); Because of the assumption on 
T"(e), #~(C) does no tdepend  on t/r for any C. If P is ergodic, then with P prob- 
ability one, #,(C) -- P(C) and hence ~o~(t/) depends only on the values of r/ in 
B~\{e} and 

~o,,(,7) - -  F( ,I~ = ~ I , ~ , , ~ , \ ~ j ( , 1 )  
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for /;-almost all t / sH.  Now apply the martingale convergence theorem to the 
sequence ~0m(r/) of functions measurable with respect to dg,~\~e~, where SlBm\~e~ 
converges as a sequence of a-algebras to de\(e~, to see that 

(p(t/) = lim,,~ + ~ ~0m(tl) = /;(t/e = ll~r 

holds/ ; -a lmost  everywhere. To extend the equality to all invariant measures we 
can use uniqueness (a.e.) of the conditional probability and remark that using the 
ergodic decomposition and denoting by pe the probability measure on the space of 
probability measures that realizes this decomposition, the following holds for any 
A ~ E \ { e } :  

A 

= I / ; (A n {qe = 1})pp(d/;) = P(A ~ {tie = 1}). 

This shows that ~0 satisfies the equation claimed in the lemma. Next consider P and 
note that for pp-almost all P in the ergodic decomposition of P the set in which 
P(~/~ = 1 Id~\(~)  = go has probability one. If P is one of these components then the 
second equality of the lemma holds for if-almost all q e H. [] 

We are now ready to state our main result for percolation on 7/d or ~d • IN. 

T h e o r e m  1. Let  V be 77 d or 7/d • N and let Tv : V -~ V be defined by T,(w) = v + w. 
Let  E be a subset o f  V2 = { {v~,v2}: v~e V, i =  1,2} such that E is T,-invariant for  
each v e  V and let P be a probability measure on H = {0, 1} E invariant under Tv for 
all v ~ V. Assume P satisfies the positive finite energy condition; i.e., assume that the 
set E'  o f  edges e such that 

P(t/~ = I I~ r  > 0 P-almost everywhere ,  

is large enough so that for  every v~, v2 E V, there is some path ]; ~ E '  connecting v~ 
and v2. Then, in the random graph defined by P, there is at most one infinite 
component with P probability one. 

Proof. The proof is divided into several steps. 
1. First we reduce the range of values the number of infinite components can 

assume, using Lemma 1, to 0, 1 or 0o. 
Denote the origin ( 0 , . . . ,  0) by Vo. First note that for some v e V, v # Vo also 

- v e V and thus T~ becomes an invertible map of V onto itself, whose extension to 
E has also such a property. This was the requirement of Lemma 1, together with the 
fact, here obviously satisfied, that T2(e) 4= e for all e ~ E',  for n > 1. 

The second conclusion of Lemma 1 shows then that almost all ergodic compon- 
en t s / ;  of P in the decomposition related to T~ satisfy positive finite energy o n  the 
same subset E'. 

For  an ergodic measure / ;  the number of infinite components is constant almost 
everywhere and positive finite energy on E '  easily implies this number must be 
0, 1 or oo (as in [13 or 1-27], think of another number, find this many components 
intersecting a finite region and join them through E', which gives a prohibited 
positive probability to a smaller number). 

Considering P again, it remains only to exclude the possibility of a positive 
probability for having infinitely many components. We turn immediately to P to 
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stress that almost the whole proof can be done without using ergodic properties (in 
some cases they do not appear  at all as in Theorem 2 below). 

2. To achieve a contradiction suppose there are infinitely many infinite com- 
ponents with P positive probability. The strategy is now to find at least three of 
these distinct infinite components and join them to a fixed vertex, the origin, in 
such a way that they remain disjoint apart  from vertices near the origin; this has to 
occur with positive probability. 

By the assumptions on E' ,  each pair of vertices can be connected by a path 
using edges in E' .  Therefore, we can find %0 ~ E', a union of at most three paths, 
such that v~,v2,v3 and v 0 are all connected by Yvo. Next, we repeatedly use the 
positive finite energy condition for the edges of 7vo in the following form. Let A be 
any event such that P(A) > 0 (in our case this will be the event that vz, v2, v3 are in 
three distinct infinite components) and let eeE; then, P({q~ = 1} ~ A ) >  0. The 
equivalence of this formulation to the one given in the hypothesis is easily seen and 
the result is that the event ~o, as defined in the next equation has nonzero 
probability: 

P(z~o) = P(%o is open, each of the three vi's is in the same infinite component,  but 
there is an altered configuration of the tle'S for e ~ 7vo such that vl, v2 and v3 
would be in three disjoint infinite components) 

= a > O .  

1 occurs there are at least three distinct Consider the set of edges E \%0. When rvo 
infinite components -voC7(1),..., C ~  o(")) on (V,E\V~o) which are then connected 
through edges in Yvo. These components of (V, EkTvo) will be called branches of Vo. 

3. The event just defined for the origin can occur also around other vertices and 
this will be our definition of 31 in 2~a; but since we want to preserve the probability 
of the events, in the case of 2g a x N, a better definition is necessary. 

1 - 1  1 To define similar events for ve  Vlet % = T~ (%o). Note that z~ only refers to 
edges having both end-points in Tv(V) and nothing is assumed about  edges having 
at least one end-point in VkTv(V) (if this set is not empty). The branches C~ i) of 

1 Furthermore v are related to those of Vo by C~i)(rl)= Tv(C~(Tv(rl))) for ~/E~v. 
define Cv = UiC~ ~ for ve  V." 

l ~ z ~  occurs for two sites v and w the 4. We now want to show that if rv 
branches C~ ~) and C~ j) will satisfy the hypotheses of Lemma 2 (given below) when 
w and v are "far enough apart". 

We define a certain subset V' ~_ V; pairs of sites fl'om V' will be far enough 
apart. First choose a box Bz containing re, i = 0 , . . . ,  3 and all end-points of edges 
in 70o, where box in the context of 2~ ~ means a set of vertices of the form 
[ -  k, k] a c~ V and in the context of 7Z a x N means ( [ -  k, k] e x [0, k]) ca V, Denote 
next by v ~ w the relation ve Tw(v) and we Tv(V). If v ~ w we simply ask that 
Tv(BI) ~ T,~(B1) = 0. Oil the other hand, if for instance, re} T~(V), which implies 
we  Tv(V), we ask that Tv(B1)c~ T~(V) = 0. Choose a subset V' _ V such that for 
any v, w ~ V' the previous requirements are fulfilled. V' can and will be chosen to 
have positive density. Now we want to see what the simultaneous occurrence of 

and t for v, w e V', implies. ~'v "Cw~ 
Let us first take the case where v ~ w (this is the only case in 7la). Either w 6 i~ 

(the component  of v), and thus v r I~, or there is an open path 7' connecting w and v. 
If w ql Iv or if every such 7' contains a vertex in V\  T~(V) = V\T,~(V) then we have 
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({v} u Cv)C~ ({w} u Cw)=  0, because branches are defined only using vertices in 
T~(V). Suppose therefore that there is such an open 7' whose end-points are all 
vertices in T~(V). First let us remark that w is in a branch ofv. Indeed the open path 
7' connects v and w and there are at least three distinct infinite components of 
(Tw(V), TwE\Tw) which are connected only through 7w (Tw = Tw(7~o)); therefore at 
most one can contain vertices which are end-points of edges of T~ since 7v and 7~ are 
disjoint (since Tv(B1) c~ Tw(Bz) = 0), and 7, would connect two branches of w out- 
side 7,~. This implies that at least two infinite paths emanate from w without using 
edges of 7~ and thus end-points of edges in these paths have to be part  of a branch, 
say C, (1), of v, together with end-points ofT' and w itself. For the same reason v is in 
a branch, say C(~ 1), of w. No other branch of v can have a common vertex with the 
remaining branches C}~ ), i ~ 1, of w, which are those branches not containing any 
end-point of edges in 7~, since otherwise there would be a path not containing edges 
in 7v and connecting two branches of v. Thus C~ 1) ~ {w} ~ ' C (1) _ C~\  ~ and, for the 

~(i) , C(1) same reason,~w -~{v}~C~\ ~ . 
Now we consider the case where we T~(V) but v~ T~(V); if w~I~ or if every 

open path connecting v and w contains edges whose end-points are vertices of 
V\ T~(V), then again (C~ ~ {v}) c~ (C~ w {w}) = 0. Suppose instead that there is an 
occupied path 7' from v to w whose end-points are all contained in T~(V). This time 
we conclude immediately that w is in a branch of v, which we denote again by C~ (I), 
and that C~ (1) _~ {w} to Cw; indeed no vertex of C,~ can be an end-point of an edge in 
7~ since we assumed T~(V) c~ Tv(B1) = 0, so they are all contained in C~ (I), together 
with w. 

5. The next step in the argument will be to show, based on probabilistic 
reasons, that for a positive density of vertices v e V', z~ occurs. This would already 
be conclusive for n.n. models; to overcome the problem of having a possibly 
long-range model we first provide a box around v in which each of the branches of 
v contains many vertices. Together with the density of occurrence of z~'s and the 
disjointness of the various branches (from Lemma 2 below) this will require the 
existence of more vertices than there actually are. 

Take V' ~ V as before. Now V' was chosen to have a positive density, i.e. 
lim~_~ + oo [B~ c~ V'I/B~ n V[ = p > 0, where {B~ },~N is a sequence of boxes such that 
B~ ~ B,-t  and U,_>0B,, = V. Let K e N  be such that K(~/2)p/2> i. (Recall 
G from the definition of i %0.) Then we can choose a box B2 ~ BI such that 2 Z'vo 
defined in the next equation, satisfies 

P(Z,2o) = P(-r~o occurs and all the branches of Vo contain 

at least K vertices in B2\B1) > a/2 > 0. 

2 Now define % = T~-l(~o), for ve  V. Next consider a box B3 m B2 such that 
t}3 = {veB3: Tv(B2)eB3} satisfies 

I/}3 ~ V'l _>_ p/2.  
IB31 

Such a box exists because of the positive density of V'. (Remark. We use here the 
fact that our graph (V,E) is subexponential: this is the reason why this proof  
cannot work for trees; see also Theorem 1' below). The mean number of sites v in 
/}3 c~ V' for which ~ occurs is 1/}3 c~ V'lcr/2 and thus there must be at least this 
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number  with positive probability.  Thus, ~3, the event that  this number  exceeds 
I B3 [(a/2)p/2, occurs with nonzero  probability. 

To  apply Lem ma  2 given below take tl e "c 3 and let R be the set of v ~ t}3 c~ V' for 
which z2 occurs. To  define S take v ~ R and let us remove v from C~ if it was 
contained in it; denote  with the same symbol C~ ~) the branches of v intersected with 
B3 and from one of which v has been removed (if it was contained in C~). Now let 
S = ~ e ( C ~  w {v}). F r o m  the previous discussion, we have seen that  condit ion (a) 
of Lemm a  2 is satisfied when as subsets of S we take for each v ~ R the branches of v. 
When  v ~ w condit ions (I) or (IV) of (b) are satisfied; otherwise, condit ions (I), (III) 
or (III) of (b) are satisfied. Lemma  2 then implies that  ISI > K(IR[ + 2), since the 
definition of z 2 implies that  every branch contains at least K vertices in B3. 
Therefore  we can conclude that  with P positive probabil i ty 

IB3 ~ SI ~ K(IB3[(cr/2)p/2 + 2) > IB31. 

This, by contradict ion,  proves the theorem. D 

The next lemma, which was used in the proof  of Theorem 1, is a combinator ia l  
one which extends Lemma  2 of Bur ton  and Keane [4]. 

L e m m a  2. Given a set S and a finite subset R ~ S, suppose that 
(a) for all v s R  there exists a finite family ,~((:(1), ~c (2), . . . , C~ "~) of  n~ => 3 disjoint 
non-empty subsets of  S not containing v; 
(b) for all v, w ~ R one of  the following cases occurs (where we define C~ = ~Jl C~) for 
any w e R): 

(I) ({v} w C.) ~ ({w} w Cw) = O; 
(II) s.t. {w} 

(III) 3j s.t. C~ ) ~ {v} w C~; 
(IV) 3i,j s.t. C~ ~) ~ {w} w C~\  C(j ) and C~ j) ~ {v} w C~\ C~ ~ 
Then IS[ > (min~R(minglC~01))(IRI + 2). 

Proof  First we observe that  the assumptions imply that  there exist v s R and i s N, 
i __< nv, such that  C~ i) c~ R = 0. In fact, choose any Wl ~ R and j l  ~ {1, 2 . . . . .  n~l }. If 
C(w~') c~ R = 0 take v = Wl and i - - J l ;  otherwise consider w2eC(w~ ~) ~ R and j2 such 
that  C(J2)w2 c C(~{ ~). The existence of such a j2 can be easily derived by (b); in fact for 
w2 ~-w~C(J) case (I) cannot  occur and neither can case (II) with w2 = v and wl -- w 
because by the assumptions w2 e C ~  ~) c Cw~ but w2 ~ Cwz and thus C,~ $ C(,~ for 
any i. Then  clearly ~2c(J~)c~R] < IC~) ) c~R] so that  repeating this procedure  we 
obtain v and i with the required properties. 

Next  take R \ { v }  and SkC~ ~ and note that  properties (a) and (b) still hold. In 
fact R k{v}  ~ SkC(~ 0 since C~(~ c~ R = 0. Proper ty  (a) still holds since for w ~ R k { v } ,  
of the previous family rr~(~) r~(2) t,~,~ , ~ , . . . ,  } only one set, say C~ x), may have changed 
into C(~)\C~ ~), but  in this case 3j + i such that  C(~ t) = C~ (j) and thus C(wl)\C(~ ~ 4: O. 
This follows easily from (b). P roper ty  (b) still holds since of the previous families 
related to two points Wl and w2 not  equal to v no element has become empty and 
inclusion relations are unchanged under the t ransformat ion C ~ ) ~  C(]~\C~ ~). 

Fur the rmore  the proof  that  proper ty  (a) still holds shows that  
minv~R (min~ ] C~ ") 1) can only have been increased. This results in an applicat ion of 
induction,  not ing that  if IN[ = 1, then IS I > 3min~R(miniC~(0). Z] 
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The next theorem is proved by essentially the same arguments used for 
Theorem 1; details are left to the reader. Neither Theorem 1 nor Theorem 1' 
contains the other. We include Theorem 1' because it covers some examples, such 
as percolation on the graphs of finitely generated groups, which may be of some 
interest. 

Theorem 1'. Let V be a countable set and let E = V2, the set of all edges between 
pairs of elements of V. Let P be a probability measure on {0, 1} e and let G be a set (or 
without loss of generality, a group) of bijections, T: V--* V, whose natural extensions 
to {0, 1} E leave P invariant. Suppose there are elements T ,  of G and 0 of V such that 
the following properties hold: 

O) (Finite energy) The set E', of  edges e = (vl, v2} such that P has finite energy 
for e, i.e., 

0 < P(qe = llAE\(e;) < 1 P-almost everywhere, 

and such that { T~ v l, T .  v2 } +- {vi, vz } for all n >__ 1, is large enough so that all points 
in V are connected by paths in V'. 

(ii) (Subexponential growth of volumes) There is an increasing sequence of finite 
subsets C, of V containing D and converging to V such that for any K, 

lira I{xE g= ~ T e G  s.t. T(0) = x and T(CK) ~ CL}I = 1,  
L-.~ ICLI 

where lAI denotes the cardinality of A. 
Then in the random graph defined by P, there is at most one infinite component 

with P probability one. 

Remarks. 1. It is probably possible to write down a theorem sufficiently general to 
include both Theorems 1 and 1' as special cases (and prove it). We shall spare the 
reader the agony of reading such a theorem by not writing one down. 

2. We mention a simple consequence for connectedness of random graphs. 
Under the condition of Theorem 1 or Theorem 1', if the random graph has the 
property that every vertex v ~ V is connected to infinitely many other vertices with 
probability one, then connectedness holds. This gives a different proof of the result 
in [16], as well as an extension of it to half spaces (see also [24]) and dependent 
measures. 

3 Long-range models on N 

There has recently been some interest in long-range models on N, where V = N 
and E is the set of all edges N2 [7, 19, 29]. In this specific case the proof of Theorem 
1 and Theorem 1' cannot be directly applied because the space is not invariant 
under an invertible map. Nevertheless it is possible to modify the proof to show 
that also for long-range models on N there is at most one infinite component. We 
only require that the probability measure has finite energy, which is a very natural 
assumption, and is invariant under translations. This second assumption rules out 
interesting cases [7, 29] in which a transition occurs from connection to non- 
connection of the graph, but it includes, for instance, the case when all edges e ~ E 
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have independent probabilities p~ = Pc . . . .  2/= Plvl-v21 to be open and ~ Pi = ~ ,  
which is studied in [19] with different techniques; the result proven there that the 
graph is totally connected with probability one is achieved here as an easy 
consequence of the next theorem, which more generally shows that the infinite 
component is unique. 

Theorem 2. Let E = N 2 be the set of all edges between vertices in N and let P be 
a probability measure on {0, 1} E. Suppose that: 

(a) P is invariant under T,, in the sense that P(Ts )) = P(A ) for all events A, 
where T, is the map on the o.-algebra 9enerated by the cylinder sets in E induced by 
the map Tn: T,(m) = m + n, for n ,m~N.  

(b) P has finite energy, i.e. for all e ~ E 

1 > P(tle = lld~\~e~)(tlE\(e~) > 0 P-almost everywhere, 

where tl~{0,1} ~, qE\~e~ is its restriction to E\{e}  and ~4E\(~ is the o.-algebra 
generated by the cylinder sets in E \  {e}. 
Then there is at most one infinite component with P probability one. 

Proof. Since the result is achieved by adapting Theorem 1 we will only indicate the 
principal modifications. The main difference is that we now directly prove that 
there cannot be two or more disjoint infinite components with positive probability. 
So we start by supposing that there exist two vertices v~, v2 ~ N such that 

P(v~ and v2 are in two distinct infinite components) > 0 .  

Finite energy allows us to assume now that with positive probability o- > 0 the 
origin Vo is in two distinct branches c ~) and ,,~(2) ~ o  ~ o  ; denote this event by %0. 

For  n~ N,  let ~, = T21(%o) and suppose r ,  and z,, occur for n, mEN,  with 
n ~ m ,  

Note that by our definition of z, the two branches C, (~) and C, (2) (which are the 
z, analogues of C~(o ~) and C~ (2)) are infinite components of the graph restricted to 
In, ~ ) and we think of them as not containing the vertex n e N and being therefore 
completely disjoint. Then two possible cases can occur: 
(1) me C, = C(, ~) ~ C(, 2), in which ase (Cr~ u {m}) ~ (C, u {n}) = q); 
(2) m s C , ,  in which case there exists a branch of n, say C, (~ such that C,(~ ~ 
{m} ~ Cm. Recall that P(r~o) = o. > 0 and let K e N  be such that K(o-/2) > 1. As in the 

2 the event defined as proof of Theorem 1 we find sets B2 and B3 ~ N such that %~ 

2 %0 = {%~ occurs and both branches (7(1) and (-~(2) contain 
~V  o ~v  o 

at least K vertices in B2},  

has P(~2o) > o./2 and/}3 = {n6B3: T,(B2) c B3} satisfies 1/~31/1B31 > �89 
2 - 1  2 Let v, = Ts (%~ The mean number of integers in/}3 for which ~2 occurs is 

I/~1 o-/2 and thus there must be at least this number with positive probability. We 
want now to imitate Lemma 2 to show that in this case there are at least [/}3lKa/2 
vertices in B3 and achieve a contradiction. 

2 Consider the set R ~/}3 of vertices for which z~ occurs and the set S = ~,~R 
({n} u C,c~B3}. Take m,n~R with, say, n < m. Note that (1) or (2) must occur. 
Then it is not difficult to see that 

[SI > (min m i n  ]C(ni)~B3l).(IR[ q- 1 )>  K ' ( ] / I  + 1). 
\ n ~ R  i = 1 , 2  / 
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This is true if [R I = 1 and it can be shown by induction for all values of [R [. Indeed 
it is enough to take m~R such that there is a branch, say t~m"(1), with the property 
C(2 ) ~ R = 0 and to note that for each element n e R \ {m} there are two branches in 
S \  C~ 1) satisfying (1) and (2). Application of induction follows again by observing 
that the procedure we just described does not decrease the minimum size of the 
branches left. 

Since IS[ > K[R[ > [BaIKal2 > IB3[ and S c B3 we have achieved the re- 
quired contradiction and proved the theorem. [] 

4 Spin glass models - random cluster models 

We consider in this section dependent percolation models which are related to spin 
glasses. The interest in spin glass models is in the behavior of configurations of 
spins under a suitable Gibbs distribution, but as Fortuin and Kasteleyn have 
discovered [11, 12, 21] for Ising ferromagnets it is possible to obtain the Gibbs 
distribution for the spins (which are located at the vertices of a graph) by a con- 
struction which starts from a distribution of variables defined on the edges between 
spins. Following Kasai and Okiji [20] and Swendsen and Wang [30] (see also 
Edwards and Sokal [8] and Newman [26]), we start from the definition of such 
a distribution and we study some of its percolation properties as they are related, 
even if less directly than in the Ising ferromagnet, to the magnetic properties of the 
spin distribution. 

Consider again a set of vertices V, which we assume to be 7/d, and the set of 
edges E = V2. We start from a finite box B c V, which we take of the form 
B = {x ~ ~d: I[ X II =< k}, k e N, II" II being the sup-norm in 2~ d. Let EB be the set of all 
edges between vertices of B. Let JB = {a,f} ~", so that j~JB  is a prescription of the 
edges being ferromagnetic ( f )  or antiferromagnetic (a) and denote JB by J when 
B -- 2~d; the choice of the values a's o f f ' s  is made independently for each edge with 
a and fequa l ly  likely. Once j e J is fixed we construct the random cluster measure 
on the edge variables r / s H  = {0, 1} E. Let therefore t /=  r/B ~HB = {0, 1} E" be a pre- 
scription of occupation variables for the edges of B. Once t/ is given the set of 
vertices of B can be split into maximal connected components (where the connec- 
tion is once again through open edges) called clusters and we denote by cl(q) the 
number of these components. The next step is the "coloring" of the vertices of B, 
which will produce a configuration m ~ { - 1 ,  1} B. This step is carried out by 
assigning to each vertex a spin value + 1 or - 1 with the following prescription. If 
an edge e is closed, i.e. such that r/e = 0, then the spin variables co can assume in the 
two vertices vl and v2 any of the two values __ 1, but if the edge is open then 
cov~ = coy2 ifje = f a n d  coy I + co~2 ifj~ = a. Note that this can lead to a contradiction 
for some choices of j  and q, in which case we say that t/is frustrated. Note also that if 
t/is unfrustrated, i.e. it is possible to assign the spin variables without contradiction, 
then exactly two such assignments are possible. Finally, let us denote by 
U(t/) = Uj(t/) a function being 1 if t/ is unfrustrated for the given j and 0 if t / is 
frustrated. As usual we think here of two values of the spin variables, but results are 
valid when a different number is considered. 

For  a given j, the probability distribution on the edge variables will be 



Uniqueness of the infinite component in a random graph 523 

where r = {Pe}eeE, 0 ~ Pe ~ 1, jeJ~,  tl~HB and Z~.~(j) is a normalizing factor. 
If j = i F - - f  (i.e., in the totally ferromagnetic case) we have the Fortuin-  

Kasteleyn representation for the Ising model (see [26]) which is then ob- 
tained by independently and symmetrically coloring each cluster of B and letting 
B]'TZ d. 

There are many possible choices for N and two of interest are: 
(1) nearest-neighbor (n.n.) models: 

{P if Hell = 1 
pe = otherwise , 

where 0 < p < 1. 
(2) long-range models: pe = Pllell, for example with limx_~+ ~ x2p~ = fielR. 
To simplify the exposition we will limit outselves to n.n. models from now on, 

but it will be clear that similar computations, and in particular the uniqueness 
described in Corollary 2, can be obtained for long-range models as well. In the 
notations we will therefore replace ~ by the single parameter p. 

We have not mentioned so far the boundary conditions we are taking. This 
amounts to fixing edge variables and spin values off B and affects the definition of 
cI(tl) as well as the ensuing coloring process. It is possible that for fixed values of the 
parameter p different boundary conditions can produce different weak limits when 
B = B, i" ga (i.e. when B, ___ B,+I and 2g e = U ,  B,). This is related to the existence 
of more than one (infinite volume) Gibbs distribution for the spin variables. We will 
generally take periodic boundary conditions; i.e. B will be a rectangle in Z e treated as 
a torus (i.e. with "opposite" sites in B identified). 

An important remark is that when we consider the joint distribution of j  and t/, 
any weak limit obtained with periodic boundary conditions will be invariant under 
all 2~e-translations. 

For a given j, a sufficient condition for the occurrence of more than one Gibbs 
distribution for the spin variables is that in some Gibbs distribution, 
Cov(c0o, C~x)7 ~ 0 as II x ll ~ oo. We will consider this possibility for the Gibbs 
distributions that arise, from a translation invariant distribution of j and t/ ob- 
tained as described above, by conditioning on j  and using the independent coloring 
process to construct co from t/. We will use a subscript p to keep track of the 
parameter p in the model (in physical terms, p = 1 - exp( -K/T) ,  where T is the 
temperature and K is a positive constant, so that p ~ 1 as T ~ 0); thus conditioned 
on a fixed j, Covp will denote the covariance in the Gibbs distribution of oJ and 
P~ will denote the corresponding distribution for t/. 

One of the results of Fortuin and Kasteleyn [11, 12, 21] is that in the totally 
ferromagnetic case 

Covp(COo, cox) = P~  (0 is connected to x by a path of open edges) 

=: Pg~(Ao,~) , 

where P~  is the weak limit of P~,~B with periodic boundary conditions. In the 
general case we have only a one-sided result (see e.g. [26]): 

ICovp(coo, ~)1  < Pr 

Nevertheless, it is clear that percolation is necessary for Covp(coo, co~)/~ 0 as 
IIx II -~ oo, and as a first partial result we study P~(Ao,~),jeJ and the behavior of 
the infinite components of open edges. 
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Since we are interested in properties which are true for almost all configurations 
j ~ J  we consider the joint distribution Pp,B o f j  and ~/ variables for edges in E~, 
which we call the (finite volume) random interaction random cluster model. As 
explained above, consider periodic boundary conditions and let Pv be the weak 
limit of Pp,B, along a suitable subsequence Bn T 7Zd. Let p~dge be the marginal of Pp 
on the edge variables. The next theorem provides a lower bound to the conditional 
probability, under pedge that ~/e = + 1 given the ~/values for e' + e. As a conse- 
quence we obtain that for p large enough, in dimension d > 3 (and in fact for the 
slab 7/2 x {0, 1 }), there will be percolation of open edges under P~ for almost all j e J 
(Corollary 1). The lower bound implies also that the positive finite energy condition 
of Theorem 1 holds for Pp; we will therefore be able to conclude that the infinite 
cluster of open edges is unique P~-almost always for almost all j e J (Corollary 2). 

Theorem 3. Let p~dge be the marginal on the edge variables of a weak limit Pv offlnite 
volume random interaction random cluster models. Then for e e E 

ppdge(qe = + l[dr\~j(r/E\(e~) > p/2 ,  

for p~dge-almost all tlE\ (e~ ~ {0, 1} E\~e~, where Ae\ (e} is the a-algebra generated by the 
variables in E \  {e}. 

Proof Let us call e' the edges in E\{e}  and let Pp,B be the finite volume measure 
�9 edge p e d g e  with edges marginal Pp,~ converging to To prove the theorem it is enough 

to estimate, uniformly in B, the following: 

D edge ( 
(*) min -p ,B  ~ e  = + 1, Oe') 

D edge [ 

where ~e -- f/~, means a choice of t/~, for e ' eE \ {e }  c~ B = E~\{e}. 
Dedge  The explicit form of the measure ~p,B is 

p edger, 
p,B ~.~e = + l , 0 e ' ) - -  ~ Pe, n(tle - +l , : / e ' , j )  

j ~ { a , f }  e" 

= ~, pN~(1 -- p)SO2aOoUj(tl)Zpl(j), 
j~ (a, f }eB 

where ~/ is the configuration assuming the values + 1 and ~,  in e and e' re- 
spectively, No and NI are the numbers of edges e"~ E ,  such that r/e,, = 0 or 1 
respectively. 

To study (.) we can thus estimate 

Pp,,(qe = + 1,je, F/e,,L,) 

(**) min J"="'r 
go,,L, Z Pp,B(~le = O,je,fle',L') ' 

j e = a , f  

where ]e' is a configuration of the j variables for e 'e  En\  {e}. 
Let 'us consider separately the four cases t/e -- 1, 0 and j~ -- a, f There are still 

three different situations which can occur once f/e, and ]e, are given. Either v~ 
and v2, the two end-points of e~, are not connected (I) by any path of edges in ~,  
or they are; in this second case either U~o=f,7,, (r/e= + l , f / e , ) = 0  or 
Uj.=., L, (t/~ = + 1, 0~,) = O, in other words ifv~ and v 2 are connected in/~e" then the 
edge variable q~ being + 1 forces either Je = a (II) or Je =f ( I I I ) .  
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This explains Table 1, which gives the value of Pp,B(tle,je, qe',]e') for the 
indicated values of ~ and j~ and the three possible cases (I), (II) and (III). In each 
entry the factor Ci, i = I, II, III depends only on]~,, G' and is constant on each line 
and thus irrelevant in (**). 

The normalizing factor Zp(j) depends on the entire j, but we denote it by Z(a) 
or Z ( f )  to mean that j~ = a or f a n d  ]~, is fixed. 

We can evaluate (**) as 

2~(a))  1 

p Z(a) p 1 
( l - p )  1 1 ' ( 1 - p )  Z ( f )  

Z(a) + z(U~) Z(a~ + 1 

(p (***) min ~ + 

= r a i n  
- Z ( a ) '  (1 - p) 1 + 

2(1 p)' (1 P) 1 + Z(f~) Z(a).J 

Next it remains to evaluate the ratio Z(a)/Z(f) and we follow the same scheme 
which led from (**) to Table 1. 

Indeed writing Z(a)= Z(je = a,]e,) explicitly, separating the cases Oe = + 1 
and ~/e = --1, and assuming qe. as fixed we achieve the same computation as in 
Table 1 apart from the normalizing factors: this is summarized in Table 2. 

We conclude that 

min Z(a) Z(a) 1 Jo, ~ = (1 - p), m a x -  = . 
L, Z ( f )  1 - p 

Table  1 

j~=f je=a 
Case 

r/e = 0 r/e = 1 r/e = 0 r/e = 1 

(1 - p) c ,  P c ,  d - p) c ,  P 
z ( f ~  2z(f~) Z(a) 2Z(a~) C, 

(1 - p) p (1 
I I I  Z T f ) -  C,,, - -  Cm - p)  C,,, 0 

Z(f) Zta) 

I I  (1 -- p) Cn 0 (1 - p___~) Cn ~ P  Cn 
Z(f) Z(a) Z(a) 
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Table 2 

Case Z(a) Z( f )  

I 2(1 - p )  + PDI 2(I - p) + pD~ 
2 2 

II (t -- p)Dn DII 
III Dm (1 -- p)Dni 

We evaluate (***) as min(p/2(1 - p), p/(2 - p)) = p/(2 - p), which is also the 
minimum in (,) and yields 

pedge[ p,B tt/~-- -t-llsr ) > 

uniformly in B. [] 

1 p 

2 - p  2 
l + - -  

P 

The first consequence concerns the occurrence of percolation. Consider a finite 
box B and its edges EB. It is not difficult to see that for two probability measures #1 
and #2 on {0, 1} ~" the inequality 

min #~(~/e = + 1 [dE,\(.~)(~qr\~e~) > m a x  #2(~e : + 1 [~EB\I~I)(I~E\{e} ) 
v/E \ l*} ~E\(el 

implies that #t stochastically (or FKG) dominates #2 in the sense that for any 
increasing f u n c t i o n / o n  {0, 1} r" we have S f d # l  > Sfd#2 (see for instance Russo 
[28]). 

oedge stochastically dominates uniformly in B the Theorem 3 implies that -v , ,  
Bernoulli measure #p/z, where p/2 is the density of edge variable assuming the value 
+ 1; since for d > 3 for bond percolation in Z ~ (or for percolation in ~2 >( {0, 1}) the 

density at which edge percolation occurs is strictly smaller than 1/2 (see [22]) we 
can now prove the following: 

Corollary 1. I f  d > 3 and p is large enough then P~ (the origin is in an infinite cluster 
of open edges)> 0 for almost all j e J, where P~ is the weak limit of P~,n along 
a sequence of boxes converging to 7Z/for which Pp,B weakly converges. 

Proof From Theorem 3 and the previous remarks we know t ha t  p~dge (there exists 
an infinite duster of open edges) = 1. The same holds for Pp and applying Fubini's 
theorem Pg (there exists an infinite duster of open edges) -- 1 for almost all j ~ J. 
Additivity of the measure and finite energy yield the result. [] 

A second consequence of Theorem 3 is about uniqueness of the infinite cluster 
of open edges. 

Corollary 2. Let P~ be as in Corollary 1 in any dimension. Then P~ (there exists an 
unique infinite cluster of open edges) = 1 for almost all j e J. 

Proof We apply Theorem 1 to p~dge which is preserved by the full group of 
translations of2~ ~ and has (positive) finite energy on the full lattice E by Theorem 3. 
A subsequent application of Fubini's theorem yields the result. [] 
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