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Summary. In this work we formulate the state space approach for one-dimensional problems of viscoelastic 
magnetohydrodynamic unsteady free convection flow through a porous medium past an infinite vertical 
plate. Laplace transform techniques are used. The resulting formulation is applied to a thermal shock prob- 
lem and to a problem for the flow between two parallel fixed plates both without heat sources. Also a problem 
with a distribution of heat sources is considered. A numerical method is employed for the inversion of the 
Laplace transforms. Numerical results are given and illustrated graphically for the problem considered. 

Notation 

C o specific heat at constant pressure 
g acceleration due to gravity 
0 density 
t' time 
u' velocity component parallel to the plate 
H~' induced magnetic field 
x', y' coordinates system 
T' temperature distribution 
To' temperature of the plate 
T" temperature of the fluid away from the plate 
#o limiting viscosity at small rates to shear 
Vo* #/0 
vm magnetic diffusivity 

Alfven velocity 
t* coefficient of volume expansion 
2 thermal conductivity 
2* thermal diffusivity 
G Grashof number 
Pr Prandtl number 
L some characteristic length 
ko the elastic constant 
K'  permeability of the porous medium 

1 Introduction 

The study of viscoelastic fluids has become of increasing impor tance  in the last few years. This is 

mainly due to their many applicat ions in petroleum drilling, manufacturing of foods and paper,  

and many other similar activities. The boundary- layer  concept for such fluids is of special 
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importance owing to its application to many engineering problems, among which we cite the 
possibility of reducing frictional drag on the hulls of ships and submarines. 

Flow through a porous medium in the presence of a magnetic field is of special importance 
due to its application to many scientific and engineering problems [1]. 

Yamamoto and Iwamura [2] investigated the flow streaming into a porous and permeable 
medium with an arbitrary smooth surface. Rudraiah and Prabhamani [3] studied the effect of 
thermal diffusion on convective viscous fluid flow in a porous medium. Straus [4] and Schubert 
and Straus [5] studied convection in porous media. 

Walters [6] and Beard and Walters [7] deduced the governing equations for the boundary 
layer flow for a prototype viscoelastic fluid which they have designated as liquid B' when this 
liquid has a very short memory. Many other authors have contributed to the subject. 
Soundalgekar et al. [8] have studied the behaviour of an oscillating flow past an infinite porous 
plate with mass transfer. Raptis et al. [9]-  [11] have investigated the free convection and mass 
transfer flow of a viscous and viscoelastic fluid past a vertical wall. Singh and Singh [12] have 
studied the magnetohydrodynamic flow of a viscoelastic fluid past an accelerated plate. The 
response of laminar skin friction, temperature and heat transfer to the fluctuations in the stream 
velocity in the presence of a transverse magnetic field has been discussed by Sherief and Ezzat 

[131. 
In most of the above applications, the method of solution developed by Lighthill [14] and 

Stuart [15] is utilized. This method is applicable only to problems of simple harmonic vibrations. 
This prompted many authors to use other methods of solution when dealing with the problems of 
a nonvibrating fluid. Gupta [16] and Riley [17] have used an approximate Pohlhausen method, 
Wilks and Hunt [18] have used the method of similarity solution. Saponkoff [19] and Vajravelu 
and Sastri [20] have used perturbation methods to solve problems of free convection in 
hydromagnetic flows. 

In the above-mentioned works the effect of the induced magnetic field was neglected. 
The main objective of this work is to investigate the free convection flow of an electrically 

conducting viscoelastic fluid (liquid B') past an infinite flat plate subject to a transverse magnetic 
field when we take into account the effect of the induced magnetic field. The solution is obtained 
using a method proposed by Ezzat [21], [22] in hydromagnetic free convection flows. 

In this approach, the governing equations are written in matrix form using a state vector that 
consists of the Laplace transforms in time of the velocity, the induced magnetic field, tem- 
perature, and their gradients. Their integration, subjected to zero initial conditions, is carried out 
by means of the matrix exponential method. Influence functions in the Laplace transform 
domain are explicitly developed. 

The inversion of the Laplace transform is carried out using a numerical technique [23]. 

2 Formulation of the problem 

We investigate the free convective heat transfer in an incompressible viscoelastic hydromagnetic 
flow past an infinite vertical porous plate. The x'-axis is taken along the plate in the direction of 
the flow and the j -axis  normal to it. Let u' be the component of the velocity in the x' direction 
and Ho be the strength of a constant magnetic field in the y' direction. All the fluid properties are 
assumed constant except that the influence of the density variation with temperature is con- 
sidered only in the body force term. In the energy equation, terms representing viscous and 
Joule's dissipation are neglected as they are assumed to be very small in free convection flows [24]. 
Also in the energy equation, the term representing the volumetric heat source is taken as a 
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function of the space variables. With these assumption, the equations that govern unsteady 

one-dimensional free convection flow in an incompressible viscoelastic conducting fluid through 
a porous medium bounded by an infinite non-magnetic vertical plate in the presence of a con- 
stant magnetic field are [7]: 

Ou' O2u ' 
&---; = gfl*(T' - T ' )  + Vo* --~y2 -- ko' - -  

~?H~' O2H x' g3u' 
~?t' - Vm ~y'2 + H~ ~y '' 

OT' 2" 02T' Q' 
ot = + - 2  

aau' Vo* ~,2 (OHx'~ 
ay 2' ~t' K '  u + Hoo \ ~Y' J '  (1) 

(2) 

(3) 

Let us introduce the following non-dimensional variables 

y '  vo*t' Lu' Vo* 
Y = L '  t -  L2 , u Vo*' P r -  2" ' 

Hx' K'  T ' - -  T" L2Q ' 
H~ = H o '  K = C-- 2,  0 - T o ' -  TL Q = 2(r0' - r%) oCp 

gfl* L a( To ' -  T" ) og L ko' 
G = Vo*: , c~ = --Vo* ' ko = ~5.  

(4) 

In view of the transformation equations (4), (1), (2), and (3) yield 

ko t?y 2 & Oy2 + -~ + u = G 0 + 62 c~Hxt?y (5) 

(0 
2 a ) ~u 

~fiy2 - b ~ Hx = - b  ~y, (6) 

-Pr~- 0=-Q,  (7) 

where b = Vo*/Vm. 
We shall also assume that the initial state of the medium is quiescent. Taking the Laplace 

transform, defined by the relation 

cO 

f(s) = ~ e- 'y(t)  dt, 
o 

of both sides of Eqs. (5), (6) and (7), we obtain 

a - -  - s fi = - G  0 - 62 ~/~x ay 2 c3y ' 

- bs  I L  = - b  

- P r s  0 = - 0 ,  

(8) 

(9) 

(10) 

where a =  1 - k o s .  
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We shall choose as state variables the temperature increment 0, the velocity component u, 
the induced magnetic field Hx and their gradients. Equations (8), (9) and (10) can be written as 

~0 
- -  = 0 ' ,  ( 1 1 )  
0y 

0~ 
- -  = ~ , ,  ( 1 2 )  ~y 

~3_Q~, =/~x ' ,  (13) ~3y 

c~O' 
- -  = Pr sO - Q,  (14) 
~y 

- s + f i -  G 0 -  ~ 2 / ~ ,  (15)  
Oy a 

~Hx' 
- bsHx - bfi'. (16) 

Oy 

The above equations can be written in matrix form as 

dV(y, s) 

dy 
-- A(s) V(y,  s) + B(y,  s), (17) 

where 

l?(y, s) = 

0 

0 

Pr s 
A(s) = 

- G  
a 

0 

O( y, s) 
C,( y, s) 
~ (  y, s) 
O'(y, s) ' 
a'(y, s) 

- -  ! 

_H~ (y, s)_ 

0 0 0 

0 0 

0 0 

0 0 

~ 
a 

0 bs 

1 0 0 

0 1 0 

0 0 1 

0 0 0 

0 0 
a 

0 - b  0 

0 

0 

0 
B(y ,  s) = - Q ( y ,  s) 

1 

0 

0 
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The formal solution of Eq. (17) can be expressed as 

(18) 

17"(y, s) = exp [A(s) y] 17"(0, s). 

The characteristic equation of the matrix A(s) is 

a k  6 - a l l k  4 + a21k  2 - a31 = 0, 

where 

E ( 1)1 a21 = S ab  Pr s + ~2b Pr + (b + Pr) s + ~ , 

Pr, s2(s 
The roots _+ kl, _+ k2, and _+ ka, of Eq. (20) satisfy the relations 

kl 2 + k22 + k32 = a1_~1, 
g 

k12k22 + k22k32 + k32K12 - a21, 
a 

k12k22k32 _ a31 
a 

One of the roots, say k~ 2, has a simple expression given by 

kt 2 = Pr s. (21) 

The other two roots k22 and ka 2 satisfy the relation 

k22 + k32 = , (22.1) 
a 

k22k32 - 
a 

The MacLaurin series expansion of exp [A(s) y] is given by 

[A(s) y]" 
exp [A(s) y] = Z 

,=o n! 

(19) 

(20) 

(22.2) 

In the special case when there is no heat source acting inside the medium, Eq. (18) simplifies to 
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Using the Cayley-Hamil ton theorem, the infinite series can be truncated to the following form 

exp [A(s) y] = L(s, y) = aoI + a l A  + a2 A2 -k a3 A3 + a4A 4 q- a s A  5, (23) 

where I is the unit matrix of order 6 and ao - a5 are some parameters  depending on s and y. The 
characteristic roots + kl, + kz, and + k3 of the matrix A must satisfy the equations 

exp (kly)  = ao + a lk l  + a2kl 2 + a3kl  3 + a4kl  4 + ask15, 

exp ( - k l y )  = ao - a l k l  + a2kl 2 - a3kl  3 + a4kl 4 - ask15, 

exp (k2y) = ao + alk2 + a2k22 + a3k23 q- a4k24 + ask25, 

exp ( - k z y )  = ao - alk2 + a2k2 z - a3k23 q- a4k24 - ask25, 

exp (k3y) = a 0 q- a lk3  q- a2k32 + a3k33 + a,k34 + ask35, 

exp ( - k 3 y )  = ao - ajk3 + a2k32 - a3k33 q- a4k34 - ask35. 

The solution of this system of linear equations is given by 

ao = -F(k2:Zk32Cj .  q- k lZk32C2 q- k22k12C3), 

al  = - F ( k 2 2 k 3 2 S 1  -]- k32k1282 -]- k12k22S3),  

a 2  = F [ ( k 2  2 + k32) CI  q- (k32 -1- kl 2) C2 -}- (kl 2 q- k22) C3], 

a3 = F[(k22 -t- k32) $1 q- (kz32 q- kl  2) $2 -~- (kl 2 q- k22) $3], (24) 

a4 = - F ( C 1  + C2 + C3), 

a5 = - F ( S 1  + 82 -~- $3), 

where 

1 
F =  

(k~:  _ k~ ~) (k~ ~ - k~ ~) (k~ ~ - k ~ ) '  

C1 = (k22 - k32) cosh  (k ly) ,  $1 - 

C 2 = (k32 - ]cl 2) cosh  (k2y), S 2 - 

C 3 = (kl 2 - k22) cosh  (k3y), $3 - 

(k22 - k32) sinh (kly), 
kx 

(k32 - k12) sinh (kzy), 
k2 

(k12 - k22) sinh (k3y). 
k3 

Substituting for the parameters  a o - a 5  from Eq. (24) into Eq. (23) and computing A 2, A 3, A 4, 
and A s, we get the elements (Li,~, i, j = 1, 2, 3, 4, 5, 6) of the matrix L(s, y) to be 

Lal  = F(k l  2 - / r  (k32 - kl 2) C1, 

L 1 2 = L 1 3 = 0 ,  

L1r = F(k l  2 - k22) (k32 - kl 2) $1,  

L15 = L16 = 0, 
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G 
L21 = - -  F [ ( k l  2 - bs) C1 + (k22 - bs) C2 + (ka 2 - bs) C3], 

a 

L22 = F[([g12-k22) ((s~- ~-) -ak32) C2-~-(k12-k32) ((s Jr- 1 )  -ak22) C31, 

bs~ 2 
L23  = - -  

a 
F[ (k22  - k l  2) $2  q- (k32 - k l  2) $3] ,  

G 
L 2 4  = - -  F [ (k~  2 - bs) S~ + (k22 - bs) 82 + (k32 - bs) $31,  

a 

L25  -= F[(k2 2 - bs) (k~ 2 - k22) S 2 -[- (k32 - bs) (k l  2 - k32) $31 , 

~2 
L 2 6  = - -  F [ (k22  - k l  2) C2 q- (k32 - k l  2) C3] ,  

a 

G b  
L31  - 

a 
_ _ - -  F[k12S1 + k22S2 -[- k32S3] ,  

L32  = - s + F [ (k22  - k l  2) S 2 --I- (k32 - k l  2) 83] ,  
a 

L33 = F[(bs - k32) (k~ 2 - k22) C2 + (bs - k2 z) (kl  z - k32) C3],  

G 
L 3 4  - bF[Ct -IC C 2 ~- C3] ,  

a 

L35 = bF[(k22 - kl 2) C2 -~- (k32 - -  k l  2) C3] ,  

g36=f[(ak22- ( s+l ) ) (k l z -k22)S2+ (a[r (s-F1))(klz-k32)S31, 

L41 = -Fk12(kl 2 - k22) (k l  2 - ]s 8 1 ,  

L42  = L 4 3  = 0 ,  

L 4 4  = - F ( k l  2 - k22) (ka z -- k32) C 1 ,  

L45  = L 4 6  = 0 ,  

g 5 1  
G 
- -  F [ k l 2 ( k l  2 - bs) $1 + k22(k22 - bs) $2 + k32(k32 - bs) $3 ] ,  
a 

L 5 2  
F(1) 
- -  S - } -  [(KI 2 -- k22) (k22 - bs) $2 + (kl  2 - k32) (k32 - bs) $3] ,  
a 

S 
L53  = - -  ~2L35 , 

a 

L54 = L 2 1 ,  

Ls5  = F[(k~ 2 - k22) (kz z - bs) Cz  + (k~ z - k32) (k32 - bs) C3I,  

~2 
L56  = - -  F [k22(k22  - ka 2) Sz  + k32(k32 - kl  2) $3], 

a 

(25) 
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G 
L61 = _ _  bF[kl2Cl -}- ~22c2 ~- k32c3], 

a 

L 6 2 = ~  s +  L26, 

L63 = bsL36, 

L64 = L31 , 

ba 
L65 = ~ L 5 6 '  

L66:F[(]g12--]g22)(ak22-(sAf-1))C2~-(k12--k32)(ak32-Qs-~-1))C31. 

It  should be noted here that we have used Eqs. (21) and (22) repeatedly in order to write these 
entries in the simplest possible form. It  should also be noted that this is a formal expression for 
the matrix exponential. In the physical problem 0 < y < o% we should suppress the positive 
exponentials which are unbounded at infinity. Thus we should replace each sinh (ky) by 
- 1 / 2  exp ( -ky )  and each cosh (ky) by 1/2 exp (-ky).  

It is now possible to solve a broad class of problems of magnetohydrodynamic  free con- 
vection flow in the Laplace transform domain. 

3 Applications 

Problem 1: thermal shock problem 

We shall consider the free convection flow of an incompressible viscoelastic fluid in the presence 
of a magnetic field occupying a semi-infinite region y > 0 of the space bounded by an infinite 
vertical plate y = 0, with the condition 

u(0, t) = 0, Hx(0, t) = 0. (26) 

We assume that  a thermal shock of the form 

0(0, t) = OoH(t) (27) 

is applied to the plate at time t = 0, where 0o is a constant and H(t) is Heaviside unit step func- 
tion. All initial conditions are assumed to be zero. 

We now apply the state space approach described above to this problem. The three com- 
ponents of the transformed initial state vector 9(0, s) are known, namely 

0(0, s) = --,0~ (28) 
S 

fi(0, s) = 0, (29) 

/7(0, s) = 0. (30) 

In order to obtain the remaining three components  0'(0, s), fi'(0, s) and/7 ' (0 ,  s), we substitute 
y = 0 into Eqs. (25) and (19), to obtain the following linear system of equations in the un- 
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knowns 0'(0, s), if(0, s) and/~'(0, s) 

0'(0, s) = L4-1 0o - -  + L440' 
s 

if(0, s) L51 00 = - -  + L540' + L55fi' + L56/-I' 
s 

(31) 

/ t ' ( 0 ,  S) = L 6 t  00 - -  + L 6 2 0 '  -[- L 6 5 t i '  -}- L 6 6 / ~ ' .  
s 

Solving system (31), we arrive at 

0'(0, s) = ___kl 0o, (32) 
s 

G Oo 
if(0, s) = - - -  [b~klA~ + b z k 2 A  2 + bak3A3] ,  (33) 

F 

/~'(0, s) = _b--Ov~G [k12 A + k22A 2 + k32A3] ' (34) 
F 

where 

bl = (k l  2 - bs), b2 = (k2 2 - bs), 

b3 = (k32 - bs), A1 = (b3k2 - b 2 k 3 ) ,  

A 2  = ( b t k 3  - b 3 k l ) ,  A3  = (b2k l  - b l k2 ) ,  

C = s (b2k 3  - b 3 k 2 )  (k l  2 - k22) ( k l  2 - k32) .  

Equations (21) and (22) were used again to simplify the forms (32), (33), and (34). 
Finally substituting the above value into Eqs. (19), we obtain the solution of the problem 

in the transformed domain as 

O(y, s) = 0o exp ( -k~y) ,  (35) 
s 

G 00 
fi(y, s) = T [Axb~ exp ( - k l y )  + Azb2 exp ( -k2y)  + A3b3 exp (-k3y)],  (36) 

II(y,  s) - b G O o [k~A1 exp ( - k t y )  + k2A2 exp ( - k 2 y )  + k3A3 exp ( - k 3 y ) ]  (37) 
F 

Problem 2." the flow between two parallel f ixed plates 

Consider an incompressible viscoelastic fluid in the presence of a magnetic field occupying the 
region 0 __< y _<__ h bounded by two vertical fixed plates. The mechanical boundary conditions 
can be written as 

u(0, s) = 0 ,  or  fi(0, s) = 0 ,  (38) 
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u(h, t) = 0 ,  o r  f i (h , s )  = 0 ,  (39)  

Hx(0, t) = 0, or /~x(0, s) = 0, (40) 

H d h ,  t) = O, or  / t . (h,  s) = O. (41) 

The thermal  b o u n d a r y  condit ions are assumed to be 

0(0,  t) = OoH(t), or 0(0,  s) = --,0~ (42)  
S 

O'(h, t) = 0, or  O'(h,s) = 0. (43) 

Condi t ion  (42) means that  the plate y = 0 is acted on by a constant  thermal  shock at time t = 0, 

while condi t ion (43) signifies that  the plate y = h is thermally insulated. 
Equat ions  (38), (40), and (42) give three componen ts  of the initial state vector 17(0, s). To 

obtain  the remaining three components ,  we use (19) between y = 0 and y = h to obtain  the 

following three s imultaneous linear equat ions 

0 = L41(h, S) Oo - -  + L44(h, s) 0'(0, s), 
S 

0 = L21(h , s) O~ + L24(h , s) 0'(0, s) + L25(h , s) t~'(0, s) + L26(h , s) - '  -- H (o, s), 
S 

(44) 

0 = L31(h , s) O~ + L34(h , s) 0'(0, s) + L35(h , s) fi'(0, s) + L36(h, s) - ' - H~ (o, s). 
S 

The solution of these equat ions gives 

0'(0, s) = - 0o kl tanh (klh) ,  (45) 
S 

fi'(O, s) = F l [ F l k l b l  sinh k l h  - Blb2k2 sinh k2h - B2b2k2 cosh k2h 

+ B4k2b2 - Bsk3b3 sinh k3h - B6k3b3 eosh k3h + Bskab3],  (46) 

- -  r H~ (0, s) = b F t [ F 1 k f  cosh k l h  - Blk22 cosh k2h - B2k22 sinh k2h - B3k22 

- -  B s k 3 2  cosh k3h  - B6k32 sinh k 3 h  - Bvk32] ,  (47) 

where 

F 1 = F 
G 0 o ( k 2  2 - -  k32) 

Fls cosh k lh  

F 1 = 2b2b3k2k3(cosh k2h cosh kah - 1) - (b22k32 q- b32k22) sinh k2h sinh kah, 

B1 = b3k2[blk3(cosh k lh  cosh k3h - 1) - b3ka sinh k lh  sinh k3h], 

B2 = b2ka[bakl sinh klh cosh k3h - blk3 sinh kah cosh klh],  

B3 = blb3k2k3(cosh k3h - cosh kxh), 
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B4 = bzka[bakl  sinh k lh  - blka sinh kah], 

B5 = b2ka[blkz(cosh k lh  cosh k2h - 1) - bzk l  sinh k l h  sinh kzh], 

B6 = bak2[b2kl sinh k Ih  cosh k2h - b lk2 sinh kzh  cosh klh],  

B7 = b lb2kzka(cosh  k2h - cosh klh) ,  

Bs = bak2[bzka sinh k l h  - blk2 sinh k2h]. 

Substituting the above values into the right-hand side of (19) and performing the matrix 
multiplications, we finally obtain the solution of the problem in the Laplace transform domain 
a s  

O(y, s) = O0 cosh kl(h  - y) 
s cosh k l h  ' (48) 

ti(y, s) = FI[Blb2 cosh k2(h - y) + Bzb2 sinh k2(h - y) + bzB3 cosh k2y 

+ B4b2 sinh k2y + Bsb3 cosh ka(h - y) + B6b3 sinh k3(h - y) 

+ BTb3 cosh kay + Bsba sinh k3y - Fib1 cosh kl(h  - y)], (49) 

_Fix(y, s) = bFl[k2B1 sinh k2(h - y) + k2B2 cosh k2(h - y) - k2B3 sinh k2y 

- k2B4 cosh k2y + kaB5 sinh ka(h - y) + k3B6 cosh ka(h - y) 

- kaB7 sinh kay - kaBs  cosh kay - ktF1 sinh kl (h  - y)]. (50) 

Problem 3: plane distribution o f  heat sources 

We shall consider an incompressible viscoelastic fluid in the presence of a magnetic field occupy- 
ing the region y > 0 whose state depends only on the space variables y and time variables t. We 
also assume that there is a plane distribution of continuous heat sources located at the plate 
y = O. The intensity of the heat sources is taken as 

Q(y,  t) = QoH(t) 6(y) ,  

where Qo is a constant and 6(y) is Dirac's delta function. Taking Laplace transform, we ob- 
tain 

O(y, s) = Qo ~(y). 
S 

We shall now proceed to find the solution of the problem in the right half-space y __> 0 
using (18). 

Substituting for Q in the expression for B and inserting the result in the right-hand side of 
(18), we get upon using the integral properties of the Dirac's delta function, 

l?(y, s) = L(y ,  s) [l?(0, s) + H(s)] (51) 
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where 

/-/(s) = Qo 
- T s  

1 

2kl 

G F / '  k2 2 - k3 2 

[bl  ks 

0 

1 

G F  
(bl(k2 - k3 2) -U-a 

ks 2 - kl 2 kl 2 - k22"~ 
+ b2 k2 + b3 k3 ) 

+ bz(k3 - kl 2) + b3(kl 2 - k32)) 

b G F ( k t k 2 ( k 2  _ kt) + k~ka(k~ - k3) + k2k3(k3 - -  k2))  -Ya--a 

Equat ion (51) expresses the solution of the problem in the Laplace transform domain for y > 0 
in terms of the vector H(s) representing the applied heat source and the vector 17 representing the 
conditions at the plate y = 0. To evaluate the components  of the vector, we note that it follows 
from the construction of the problem that  

u(0, t) = 0 or a(0, s) = 0, (52) 

H~(0, t) = 0 or /~x(0, s) = 0. (53) 

Gauss 's  divergence theorem will now be used to obtain the thermal condition at the plane source. 
We consider a cylinder of unit base whose axis is perpendicular to the plane source of heat and 
whose bases lie on opposite sides of it. Taking the limit as the height of the cylinder tends to zero 
and noting that  there is no heat flux through the lateral surface, we get 

q(O, t) = ~ H(t) or ~(0, s) = --.Q~ (54) 

Using Fourier 's  law of heat condition in the non-dimensional form, namely q = -~0/@,  we 
obtain the condition 

0 %  s) = - Qo. (55) 
2s 

Equations (52), (53) and (55) give three components  of the vector 17(0, s). To obtain the remaining 
three components,  we substitute y -- 0 on both sides of(51) obtaining a system of linear equations 
whose solution gives 

0(0, s) - Qo (56) 
2kls ' 

6 Q o  
if(0, s) = - - - -  [baklA1 + b 2 k 2 A 2  + b3k3A3], (57) 

2k f 

- ' - - -  [kt2A1 + k22A2 + k32A3]. (58) H~ (0, s) b G Qo 
2klF 

As before, we have suppressed the positive exponential terms appearing in the entries of L(y, s). 
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Substituting the above value into the right-hand side of (51), we obtain 

O(y, s) = Qo 2Tls exp ( - k l y ) ,  

Qo G 
fi(y, s) = ~ [baA1 exp ( - k l y )  + bzA2 exp ( - k z y )  + b3A3 exp (-k3y)],  

I t~(y ,  s) - b G Q o [klA1 exp ( - k a y )  + kzA2 exp ( -kzy)  + k3A3 exp (-k3y)].  
2 k l F  
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(59) 

(60) 

(61) 

4 Inversion of the Laplace transform 

In order to invert the Laplace transforms in the above equations we shall use a numerical 
technique based on Fourier expansion of functions. 

Let g(t) be the Laplace transform of a given function g(t). The inversion formula of Laplace 
transform states that 

c + ioo 

g(t) = Yn/  eSt,(s) as, 

c- ioo 

where c is an arbitrary constant greater than all real parts of the singularities of g(t). Taking 
s = c + iy, we get 

eCt i g(t) = ~ eityg(r + iy). 

-oo 

This integral can be approximated by 

eCt 
g(t) = ~ elk'~'~,(c + ikay) ~y.  

k = -- r2~ 

Taking Ay = ~/ t l ,  we obtain 

g(t) = tl g(c) + Re eik~t/ti~,(c + ikTr/tl) . 
k = l  

For numerical purposes this is approximated by the function 

e=[1 )1 gN(t) = tl ~(c) + Re eik~t/tl~,(c + ikTr/tl) , (62) 
k = l  

where N is a sufficiently large integer chosen such that 

e" Re [eiU~vt*~(c + iNlr/tl)] < ~, 

and e is a preselected small positive number that corresponds to the degree of accuracy to be 
achieved. Formula (62) is the numerical inversion formula valid for 2h-> t > 0 [23]. In 
particular, we choose t = t~, obtaining 

gN(t) = t~- ~(c) + Re ( -1 )  k ~(c + ikn/t) . (63) 
k = l  
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5 Numerical results 

In this paper the state space approach is adopted for the solution of one-dimensional problems of 
a viscoelastic fluid of hydromagnetic free convection boundary layer flow past an infinite vertical 
plate. The technique is applied to a thermal shock problem and to a problem for the flow between 
two parallel fixed plates both without heat sources. Also a problem with a distribution of heat 
sources is considered. The inversion of the Laplace transforms is carried out using a numerical 
approach. 

The computations were carried out for three values of the elastic parameter ko, namely, 
ko = 0.0, ko = 0.2 and ko = 0.4, where Pr = 0.71 (which corresponds to air) for a value of time 
t = 10. Formula (4.2) was used to invert the Laplace transforms in equations (35), (36), (37), (48), 
(49), (50), (59), (60), and (61) giving the functions O(y, t), u(y, t) and H~(y, t) for problems (1)-(3). 
The velocity distribution for each problem is illustrated in Figs. 1 -  6. 

The important phenomenon observed in all computations is that the velocity increase with 
the variable coordinate y up to a maximum value and then its decreases again. 

6 Concluding remarks 

The importance of state space analysis is recognized in fields where the time behavior of any 
physical process is of interest. 

The state space approach is more general than the classical Laplace and Fourier transform 
techniques. Consequently, state space is applicable to all systems that can be analyzed by integral 
transforms in time, and is applicable to many systems for which transform theory breaks down 
[25]. 
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Owing to the complicated nature of the governing equations for the unsteady magnetohydro- 
dynamic free convection flow, few attempts have been made to solve problems in this field 
[4] - [7]. These attempts utilized approximate methods valid for only a specific range of some 
parameters. 

In this work, the method of direct integration by means of the matrix exponential, which is 
a standard approach in modern control theory and developed in detail in many texts such as 

U 
f I 

0.6l 

0.5 {l'/,; ',/'~,,,,,,,~ 

0.2 ko =0.0 
',,~, . . . . . .  ko=0.2 

O ' I L  I I , " ~ ~ t - L - L  
o ~ Y 

1 2 3 4 5 6 7 8 9 10 11 12 Fig. 2 

Figs. 1, 2. Velocity distribution of problem 1 for different values of K, ko = 0.2 (Fig. 1) and ko, K = 2 (Fig. 2) 
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Figs. 3, 4. Velocity distribution of problem 2 for different values of K, ko = 0.2 (Fig. 3) and ko, K = 2 (Fig. 4) 
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Ogata [26], is introduced in the field of magnetohydrodynamic and applied to three specific 
problems in which the temperature, velocity and magnetic field are coupled. This method gives 

exact solutions in the Laplace transform domain without any assumed restrictions on either the 
applied magnetic field or the velocity, temperature distributions and viscoelastic parameter. 

The method used in the present work is applicable to a wide range of problems. It can be 
applied to problems which are described by the linearized Navier-Stokes equations. The same 
approach was used quite successfully in dealing with problems in thermoelasticity theory [27], 
[28]. 
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Figs. 5, 6. Velocity distribution of problem 3 for different values of K, ko = 0.2 (Fig. 5) and ko, K = 2 (Fig. 6) 
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