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ABSTRACZ The aim of  this article is to characterize compactly supported refinable distributions in Triebel- 

Lizorkin spaces and Besov spaces by projection operators on certain wavelet space and by some operators on 

a finitely dimensional space. 

1. Introduct ion 

A compactly supported distribution f on R n is said to be refinable if f satisfies such a refinement 
equation 

f (x)  = E c j f (2x  - j ) ,  (1.1) 
j~Z n 

where the sequence {cj } has finite support and ~-~jczn cj = 2 n. Define the symbol of the refinement 
Eq. (1.1), or of refinable distribution f ,  by 

H(~) = 2 -n E cJ e-ij~ " (1.2) 
j ~ Z" 

Then H(~) is a trigonometric polynomial and satisfies H(0) = 1. 
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The solution to the refinement Eq. (1.1) is uniqueup to a multiplying constant. So we only 
consider the normalized solution to (1.1), which means f (0 )  = 1. Hereafter the Fourier transform 

A 

f of an integrable function f is defined by 

f'(~) = fR ~ e-iX'~ f (  x)dx . 

The Fourier transform of a compactly supported distribution is interpreted as usual. 
Refinable function appears in different settings, most notably in subdivision schemes for com- 

puter aided design, and in the construction of wavelet bases and multiresolution. The refinable 
distribution has attracted a lot of attention in recent years and is well studied, including existence, 
uniqueness, and regularity. The dependence of the regularity of f on the choice of coefficients ck 
in (1.1) has been studied by many authors (see [1, 3, 5, 6, 7, 8, 20, 21] for H/51der continuous space, 
[14, 17, 18] for p-integrable space and LP-Lipschitz space, [9, 13, 16, 24] for Sobolev space, [25] 
for Besov space, and the survey paper [3]). The results are often formulated in terms of the joint 
spectral property of operators on a finitely dimensional space, or obtained by the direct estimate for 
the corresponding symbol H(~). 

In this article, we will characterize compactly supported refinable distributions in Triebel- 
Lizorkin spaces and Besov spaces via projection operators Pl and QI of a multiresolution and via 
operators BE on a finitely dimensional space V. 

The article is organized as follows. In Section 2, we fix some notations and state the main 
results. In fact, we give the definitions of Triebel-Lizorkin spaces and Besov spaces, multiresolution, 
projection operators Pt and Ql, operators BE, finitely dimensional space V and pp(BE, V), a number 
similar to p-norm joint spectral radius in [14], and state the main results. Section 3 contains the 
proof of main theorem. In Section 4, we will give some remarks. 

2. Preliminary and Result 

The Triebel-Lizorkin spaces and Besov spaces are two important classes of function spaces, 
which include spaces of all p-integrable functions for p > 1, Sobolev spaces, and Hardy spaces 
as well. For the theory of Triebel-Lizorkin spaces and Besov spaces we refer the reader to [23] 
and [11]. 

Let q~o and ~ be functions in the Schwartz class such that tPo is supported in {~; I~1 _< 2}, ~" 
supported in {~; 1 < I~1 _< 4}, and 

l>0 

Define the convolution f �9 g of two square integrable functions f and g by 

f �9 g(x) = fR n f ( x  - y)g(y)dy 

and the quasi-norm of p-integrable function by Ilfllp = (fRn If(x)lPdx) l/p for 0 < p < oo. The 
convolution of two compactly supported distributions is interpreted as usual. 

For - o o  < a < ~ ,  0 < p, q < oo, Triebel-Lizorkin space F~a,q is the set of distribution f 
such that its quasi-norm II f Ilrg, q defined by 

IlfllF~.q -- 1140 * flip + 2 lc~q I~l * f l  q 

P 
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is finite, and Besov space B~,q is the set of distribution f such that its quasi-norm II f IIB~,q defined 
by 

) 1/q 

Ilflla~.q = I1~'0 * flip + E 2letq II~h * fll  q 
l>0 

is finite, where lPl(X) = 2ln~p(2lX) for I > 0. The topologies of Fg, q and B~,q are induced by the 
quasi-norms I1" II F~,q and I1" II B~,q, respectively. 

A multiresolution is a family of closed subspaces { 1~ }/~z of L 2, the space of square integrable 
functions, such that 

1. Nte~.l~ = [0} and (.JI~zVI is dense in L 2. 

2. Vl C Vl + l , 'r I E Z. 
3. There exists a function ~ in Vo such that {~(. - k); k 6 Z n } is a Riesz basis of Vo and Vl is 

spanned by {2ln/2dp(21 �9 -k) ;  k E zn}. 

The function ~, in 1 is called a scaling function of the multiresolution. The multiresolution 
was introduced by Mallat and Meyer (see [4, 19]). In one dimension, it is well known that for any 
integer z there exists multiresolutions { VI } and { V/} such that the corresponding scaling functions 
and ~ are compactly supported, in H61der class C ~ and biorthogonal (see [2, 5]). Here we denote 
the Hi~lder space with H61der exponent z by C r, and we say that ~b and q~ are biorthogonal if 

/ .  / 1, 
cp(x)~(x - j ) dx  = O, j # O. 

A compactly supported distribution g is said to be locally linearly independent if for any open 
set A 

E d j g ( x - j ) = O '  x ~ A  implies d j = O ,  u  
j~Z n 

where j ~ K(A)  means g(. - j )  is not identically zero on A. In [22], the second author proved 
in one dimension case that biorthogonal scaling functions ~b and ~ are locally linearly independent. 
Then for any integer r >__ 1, we can construct scaling functions q5 and q~ in higher dimensions by 
the tensor product method in [19] such that ~ and q3 are compactly supported, in H~51der space C ~, 
biorthogonal and locally linearly independent. 

For these multiresolutions {Vl}l~Z and [V/}/~z let wavelet spaces WI be the biorthogonal 
complement of 1~ in Vl+l. Define projection operators Pt, l > 0 to Vt by 

elf(x) =21n E ( f , ~ ( 2 l ' - - j ) ) ~ ) ( 2 l x - - j )  , 
j~Z n 

(2.1) 

and projection operators QI on WI by 

Q l f  = Pl+l f  - P l f  (2.2) 

for square integrable function f .  Here for two functions f and g in L 2, their inner product is defined 
by 

/ I  

(f '  g) = JR" 
f ( x ) g ( x ) d x  . 

Now we extend the domain of definitions of Pt and QI. Obviously it suffices to extend the 
domain of definition of inner product. By Parseval identity, we have 

(f '  g) = (2~)-n/2 fRn T(~)g---'~d~ 
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Then we may define the inner product of two distributions f and g by the formula above when 
f(~)~'(~) is integrable. 

Denote the class of compactly supported distributions f which satisfy 

]~(~)1 ___ C (1 + I$1)", v~ e ]~n 

by Da. Set B = In suppeR, I H (~)1/In 2. Then f ~ ~B for the refinable distribution f in (1.1). 
By integration of parts, we have 

1~(~)1 _< c(1 + I~1) -~, v~ ~ ~r 

when f 6 C ~. Thus, the inner product between f 6 ~B and g 6 C r is well defined when v > B +n.  
This shows that the inner product between refinable distribution f in (1.1) and q~(. - j ) ,  the scaling 
functions of the multiresolution {IT"j}, is well defined when ~ > In suppeR, IH(~)I/In 2 + n, and 
hence, the projection operators Pl and QI are well defined. 

In this article, unless otherwise stated we assume that the multiresolutions { Vt } and { V/} are cho- 
sen such that their corresponding scaling functions 4) and ~ are compactly supported, biorthogonal, 
in HSlder space C r with r > In sup~tr IH(~)I/In 2 + n, and locally linearly independent. 

To characterize the refinable distribution, we also need a finitely dimensional space V and 
operators B~ on V, which are very similar to the transfer operators in [6, 9, 24]. 

For ~ E E = {0, 1} n and the symbol H(~) of the refinement Eq. (1.1), define operators BE by 

BEP(~) =E,~"~.EH ( I + E'zr) e-iE'(~+E'rr) P ( I  + E'3r) (2.3) 

for every trigonometric polynomial P. Let 

FO(~) = ~ ( f ,~ ( ' -  j))e -ij'~ , 
j~z ~ 

and Re, E 6 E be defined by 

H(~)Fo(~) - Fo (2~)  G ( ~ )  = ~-'~eiE'~RE (2~)  , 

EEE 

(2.4) 

where G(~) is the symbol of the scaling function ~b. Then RE, E 6 E are trigonometric polynomials. 
Let V be the minimal space containing R~, E 6 E such that it is invariant under operators 

BE, E ~ E. Then 

V is spanned by {BE1"-'BEtlRE;Ej,~EE, I _ < j  < l  and I > 0 }  . 

It is easy to see that V is of finite dimension (see [14]). For simplicity, we still denote by BE the 
restriction of operators BE on V. 

For 0 < p < ~ ,  define the p-quasinorm IIPII~, for trigonometric polynomial P(~) = 

ZjEzn die ij'~ by 

Set 

) lip 
IIell  = Idjl 

pp (BE, V) = inf sup 
l>1 [lull*p=l,u~ V 

-nl Z 
E1,...,EIEE 

(IIB.I" B.,.ll  
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The number pp(B~, V) is essentially the p-norm joint spectral radius of operators B~ on finite 
dimensional space V (see [14] and [12])�9 The authors thank the anonymous referee who pointed out 
this fact to us. 

The number pp(BE, V) may be also computed by 

/ 
(B~, V) = lira sup 12-nl E Pp 

l"+~ Ilull*p=l,u~V ~ ~I,'",~I~E 

1 

( lIBEl ""n6lUll;)P ) p-I 

The assertion above is proved by [14, 15, 16] for p > 1. Now we give the proof of the assertion 
above for 0 < p < 1. 

Set 
1 ( / D , =  sup 2-nl E (lln,l...BElUll;) p 

Ilull*p=l,u~V EI,"',Et~E 

Then it suffices to prove that 

limsuPt~ccDl = p (BE, V) . 

For any 8 > 0, by the definition of p(BE, V), there exists 10 such that 

Dlo < P (B~, V) q- 8 . 

Hence, we have 

( .)" ( )  < 2 hI~ (p (BE, V) + 8) pl~ [[Ullp p V u 6 V E BEI"''BEtoU P _ 
EI,...,EIo~E 

and for all l = klo + s, 0 < s < lo and k > 1, 

E 
EI,...,E/EE 

= E E 
EkIo+I ,'",EIEE E(k-1)lo+l ,"',Eklo EE 

< 2 nl~ (p (BE, V) + t~) plO 

• E E 
Eklo+I ,'",EIEE E(k-1)lo+l ,'",Eklo EE 

.~ . . .  

< 2 nkl~ (p (BE, V) q- 8) pkl~ E 

< 

(lIBEl"'" nE, ullp) p 

�9 "�9 E 
EI,...,E/O EE 

Eklo+I ,'".EIEE 

(p (BE, V) + 8) pl ([lull*) p , C2 nt 
\ r /  

(lIBEl"'" nE, Ul[p) p 

z (..,o., ..,u ;) 
E/Oq-I ,.--,E2/0 EE 

(BEkto+l"�9149 p 

where C is a constant independent of k > 1. This shows that 

limsuPl__}ooDl <_ p (BE, V) + 8 

for any 8 > 0. The assertion is proved�9 
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Fix lo _> 1. Let V~*lo be the minimal space invariant under operator B~, ~ e E and containing 
B~l "'" BEto R%+1 with Ei 6 E, 1 < i < lo + 1. Define 

pp (BE, Vt~ ) = lim sup 
l--~e~ ilutl.p=l,ueVt* ~ 

1 

( t E p 
61, . . . ,EtEE 

From the definition of V* V* /o' we have to C V, and hence, 

p (~,, Vto) -< p (BE, V). 

Observe that for I > lo, 

< 

sup 2-n '  E (11 ,1 
IlulI*p <l, u~V E1,... EI~ E 

C sup sup 
E i E E , l - l o +  l <i  <l Ilull*p<_l,uEV 

-- EI . . . ,~I_IoEE 

C sup 2 -n(l-I~ E BE1 "" 
Ilu'll* <1 u'~Vp EI ,...,EI_Io E E  P--  ' tl 

where the last inequality follows from the facts that BEt_to+l �9 .. BEtu e V~*lo and II BEt_/o+l " ' " BEIU ]l - -  <~ 
C for all u satisfying Ilu[I;, _< 1. Then we have 

p (/~E, v) _< p (B,, rio) 
Hence, p(B~, V) can be computed by p(BE, Vlo). 

Now let us state our main results. 

Theorem 1. 
Let - o o  < ot < +oo, 0 < p, q < oo and f be the normalized solution to (1.1). Set 

J = n /ra in(p ,  q, 1) and denote the integral part of  a real number x by Ix]. Suppose that {VI} and 
{ VI } are multiresolutions such that their corresponding scaling functions q~ and ~ are compactly 
supported, biorthogonal, in HOlder space C ~ and locally linearly independent, where r is chosen 
such that 

> m a x ( l n s u p l H ( ~ ) l / l n 2  + n , [ J - n - o t l ,  lotl) . 

Then the following statements are equivalent to each other. 

1. f o F~,q. 
2. f O B p , q .  

3. 2 lu [[ Ql f [[ p -+ 0 as I --~ oo. 

4. There exist constants C and 0 < r < 1 independent of  l > 0 such that 

2 t~ IIQlfl lp -< Cr t, V l  > O. 

5. pp(BE, V) < 2 -~. 

From the results above, it is easily seen that a compactly supported refinable distribution in 
Triebel-Lizorkin spaces F~,q is also in Besov spaces B~,q. Comparing with the subdivision scheme 
in [14], we introduce an appropriate space V, which we use to characterize refinable distributions in 
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Triebel-Lizorkin spaces and Besov spaces via pp(B~, V). Comparing with the characterzafion of 

p-integrable refinable functions in [17], we use biorthogonal scaling functions ~b and 6 with higher 
regularity instead of the characteristic function on [0, 1] as the initial, which also makes it possible 
to consider more general function spaces, Triebel-Lizorkin spaces, and Besov spaces instead of 
p-integrable function spaces. 

3. Proof  of  Theorem 1 

We begin with a characterization of Triebel-Lizorkin spaces and Besov spaces. 

/ , e m m a / .  
Suppose 0 < p, q < oo, -oo  < ot < +oo and r > max(J  - n - or, lul). Let PI and Qt 

be defined by (2.1) and (2.2), respectively, and let f be a compactly supported distribution. Then 
f E F~,q if and only if 

IlPofllp + (l~>_o 2 lq~ Ial f lq  ) 1/q p < o o ,  

a i fandonlyi f  and f e Bp,q 

) 1/q 

IIPofllp + E 2  lqa IIQlfll q 
l>O 

< o o .  

A similar result can be found in [10] and [11]. For the perfection of this article, we include 
the proof in the appendix. Now we start to prove Theorem 1. 

1) ~ 3): Let f e F~,q. Then ()--~4___o 12lu a l f (x) lq)  1/q < oo for almost every x e •n and 

is p-integrable. Hence, 2laQlf(x)  --+ 0 for almost every x e R n as l ~ oo. By the Lebesgue 
dominated convergence theorem, we have 2 la II Qlfllp ~ 0 as I --+ oo. 

2) =~ 3): By Lemma 1, the sequence 2 lu II QI f lip is q-summable when f e B~,q. Hence, 

2tullalfllp ~ 0 a s / - - +  oo. 
4) =~ 2): Obviously, 

y~(21al lQlf l lp)q '  < c y ~  r lq' < o o .  
l>_ O l>O 

Observe that Pof  is compactly supported function in C r by its definition. Hence, [[Pofllp < oo 
and f is in Besov space a for all 0 < q'  Bp,q, < oo by Lemma 1. 

4) =~ 1): Observe that F u D u whenq '  p,q, Bp,p > p. Hence, f e F u when q' > p, since _ p,qt _ 
a For 0 < q' f e Bp,p. < p, we have 

I 2lOIq)lq I < 

< Ca ~ (2'r)/p < OO, 
l>0 
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where 8 is chosen such that 2Sr < 1, and the second inequality follows from 

(l~>O q')Plq' (l~>_O P) ( 2--lpq'81(P--q')l pI(p-q') 2 la Ql f (x )  _ < 2/(~+a) Qlf (x )  x 
\ l>_O /] 

Therefore, f ~ F;,q, and 1) follows. 
3) =~ 4): To prove 4) from 3), we need two lemmas. 

Lemma 2. 
Let d? be as in Theorem I and p > O. Then there exists a constant C independent of sequence 

{d j} with finite support such that 

c - '  IdJl p ~ ~ d j~ (x -  j) ~ C ldJl ' (3.1) 
j ~Z n 

In [15], Jia proved a similar results under weak restriction on ~b. For the perfection of this 
article, we include the proof here. 

P r o o f  o f  L e m m a  2. The right-hand side inequality of  (3.1) follows from the fact that q~ has 
compact support and is bounded. 

Now we consider the left-hand side of  (3.1). By the local linear independence of integer 
translates of  ~b, we have 

f[o -- dx >__ C1 ~ Idjl p 
'l]n jEZ jEK((O, 1) n) 

for any sequence {dj} and a constant C1 independent of  sequence {dj}, where for open set A, 
j ~ K(A)  means ~b(- - j )  is not identically zero on A. Hence, 

- J )  P f~~ ~ dj~(x dx >_ C, ~ ~ Idjl ~ > el ~ [dj[ p 
jEZ kE2 n jEK((O,1)n+k) jEZ n 

and Lemma 2 follows. 

Lemma 3. 
Let f satisfy the refinement Eq. (1.1) and H be the corresponding symbol. Set 

F/(~) = E (f'~(21"-J)) e-ij'~" (3.2) 
j~Z n 

Then we have 

FI(~) = H (21-1~) FI-I(~) , (3.3) 

H(~)P(~) = 2 -n Ee i~ '~B~P(2~) '  (3.4) 

EEE 
and 

l 

I-[ H (2i-10 ?(ZS)= 2-" ~ ei~-~/=121-j'J'~BE1...BEiP(2l~) (3,5) 
i=l (E!,,-.,EI)~E l 
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for any trigonometric polynomial P, where we denote by E l the l-th Cartesian power of E. 

Proof.  From (1.1) and (3.2), we have 

F,(~, = ~ ( f , ~ ( 2 i . - j ) ) e  -i''~ 
j E Z n 

= E E c s ( f ( 2 " - s ) ' ~ ( 2 l ' - J ) )  e-ij'~ 
jEZ  n sEZ n 

= 2-n E E cs(f,q~(2'-' . - j  +2t-'s))e -ij~ 
j E Z  n sEZ n 

= H ( 2 I - I ~ ) F I _ I ( ~ ) .  

Hence, (3.3) is proved. 
Observe that the right-hand side of (3.4) is equal to 

2-n E n ( ~  "1- E'~) P (~ + , ' T r ) E e  - i ' ' ' , r r  . 

~J~E ~E 

Hence, (3.4) follows from the formula above since ~-~-~E e-ir = 0 when 0 ~ E' ~ E and the 
cardinality of E is 2 n . 

The formula (3.5) follows from repeating (3.4) for l times. []  

Now let us start to prove 4) from 3). Recall that ~b is a scaling function. Hence, ~ is refinable. 
Denote its symbol by 

G(~) = 2 -n E gjeiJ'~ " 
j~Z ~ 

Then 
~(~) = G (~/2) ~(~/2) 

by taking Fourier transform at both sides of (1.1). 
From the definitions of PI, FI and (3.3), we obtain 

and 

(3.6) 

(~ l f ) (~)= Ft(2-1~)~(2-t~)  

= _ 

1 
= I ' ] H ( 2 - i ~ ) x ( H ( 2 - i - l ~ ) F o ( 2 - 1 - ' ~ ) - F o ( 2 - ' ~ ) G ( 2 - ' - l ~ ) ) ' ~ ( 2 - l - l ~ ) .  

i=1 

Recall that 
G(~) = E ei"~ R~ (2~) . H(~)Fo(~) Fo (2~)  

EEE 

Then by Lemma 2, (3.4), and (3.5), we conclude that 

LI) IIQtfllP s > c2 l(p-1)n H 2i~ x (H(~)Fo(~)- Fo(2~)G(~)) 

P 
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Hence, 

= C 2  - n l  

(E 1,-...El)eE l 

E (11 .1 
EeE (E1...,EI)EEI 

21(~tP--n) y ~  y ~  ( l i B E l ' ' '  n ~ i g E l l p )  p - " ) ' 0  

EeE (E 1 . . .E l )eE l 

as l --+ oo because 2l~lIQlfllp ---> 0 as l ---> c~. 
Furthermore, we have the following: 

L e m m a  4. 
Let RE, V be defined by (2.3) and (2.4), and let V be the minimal space invariant under the 

operators BE and containing RE, ~ E E. I f  

lim 2 t(ap-n) 
l --+~ 

z E ..,.,ll;)"--o 
EeE (E1,"',El)eE l 

then there exists an integer lo such that 

2l~ ~ B,I""BElo u < ~ Ilullp , Vu ~ V .  

(El ,'",Elo)eE lO 

(3.7) 

Proof.  Set 

V* = {RE, BEI ...BEkRe; E, E1, ' ' ' ,~k E E , k  = 1 , 2 , . . . }  . 

It is easy to see that V is the finite dimensional space spanned by V*. Thus, there exist finite elements 
el, . . . ,  e l E V* such that el ,  . - . ,  et is a basis of  V, and for any u 6 V there exist real numbers 
ul, . . . ,  ut uniquely satisfying 

U = U l e l  "q" �9 �9 �9 '1- Ulel �9 

Obviously, 

�9 . _ _< C (lull p + . . -  + lUll p) 

when p < 1 and 

C - l  ( lul l  + . . .  + lull) _< Ilullp _ C ( lul l  + . . .  + lull) 

when p > 1 hold for some constant C independent of  u ~ V. 
L e t  e i = B E~ . . .  B E~ i RE~, in which e i = RE~ when ki = 0. T h e n  

21CaP-n) ~ (IIB,, . . .BE, eiIIp) p 
(~I,...,EI)EE l ( *)" �9 2 - k i ( u - n )  --+ 0 <-- 2(l+ki)(ctp-n) ~ Y~. BE1 "" BEt+hl RE P 

EeE (E1,'",El+k i )EE l+ki 

as I tends to infinity. Hence, there exists an integer l0 such that 

( 2 t~ ~ BE1 " '"  B % e i  < C - m a x O ' p ) ,  1 < i < l . 

(El ,...,Elo)eEIO 
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For any u = Ulel --[- �9 �9 �9 "+ Ulel E V, we have 

< 

< 

210(~ E ( nEl"'n'loU ~) p 
(el, "',EIo)EE lO 

' ( ; ;  2l~ E luilp E BEI " " B% ei 
i=1 (E1...,EIo)EEtO 

l 1 (,u,;)'  1 C - 1 E  luilP ~ - ~ 
i=1 

when p < 1 and 

< 

< 

21~ E 

(el ,'",EIo)EE lO 

~--~lui, 2l~ E ( BE,...B%ei ; )  p 
i=1 (E1...,Eto)EEIO 

1 C _  l lull < ~ Ilull 
2 

when p > 1. Hence, (3.7) and Lemma 4 are proved. 

Set 

At = 2 l(ap-n) E E 
E~E (e 1 ,...,el)EE I 

Then by Lemma 4, we have 

[ ]  

( l i B , ,  B,,R, II*~) ~ 

Al ( ;; = 2'(ctP--n' E ~ Z B'I'"BEloB•lo+I'"BEIR" 
(E1... %)~EIo E~E (%+I,"',E1)~E I-l~ 

( ; )  e l  
< !2(l-l~176 E E B%+ 1 " '" B,IRE = ~al-lo 
- 2 

EEE (r 1 ,...EI)EEI-Io 

when l > 10. Hence, by Lemma 2, we obtain 

Al < C2 -l/l~ 

and 
2 ta IIQlfl[ p < CAt < C2 -l/l~ . 

This is the desired result. 
4) =~ 5): From the proof of  4) from 3), we obtain 

C-12-nl~'~ E ( l iB ' ,  8',R'II~) ~ --< InQlS,f 
EEE (E1,...,ED~E l 
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Recall that V is the minimal space invariant under BE and containing RE for all E ~ E. Then by (3.7) 
there exists an integer 10 such that 

( ( ")'1 21~ 2-nl~ E BE1 " �9 " B% u p 

(EI,...,EI O)~E l~ 

Hence, 5) follows by the definition of pp(BE, V). 

1/p 

1 
_< :llull*., u ~  V.  

2 -  - - v  

5) :=> 4): By the definition of pp(BE, V), there exists an integer l0 such that 

2--"lo y ~  ~ ( l i B E l ' "  gElUll;)  p ~ 2 -p(ot/0-1"l, (][Ullp) p , U E V . 

EEE (E1,'",EI)eE l 

Hence, we may prove (2.2) by the estimate of Qtf  in the procedure used in the proof of 4) from 3). 
Theorem 1 is proved. 

4 .  R e m a r k s  

The finitely dimensional space V is very important to compute pp (BE, V). From the definition 
of V, we see that it needs to compute (f, q~(. - j)) for all j E Z n at first. Our first remark is whether 
the space V can be replaced by a finitely dimensional space which is easy to compute. 

Theorem 2. 
Let or, p, q, r (b, BE be as in Theorem 1, and let G and G be the corresponding symbol of 

biorthogonal scaling functions (b and ~. Then the refinement Eq. (1.1) has a solution in B~,q or F~,q 

if and only if there exists a trigonometric polynomial Fo such that F0(0) # 0, 

/~o(~) = E~E H ( ~  + , z r )  G ( - ~  - ,zr) F0 ( ~  + , z r )  (4.1) 

and pp( BE, V) < 2-% where Q is the minimal space invariant under BE and containing RE, and 
where RE is defined by 

H(~)/?o(~) -/7o(2~)G(~) = ~ e;E'~/~E (2~) . 

EEE 

Proof. 
Write 

From the proof of Theorem 1, the necessity reduces to F0 satisfying (4.1) and F0 (0) # 0. 

By the definition of F0(~), we have 

G(~) = 2-n Z gje-iJ~ " 
j~g  n 

j lEZ n j2~Z n j~Z n ~ E  

j l~Z n j2EZ n jEZ n 

j EZ n 

= F o ( ~ ) .  
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On the other hand, Fo(0) = fA(0) = 1 by the facts that T(~) = I-[~=l H(~/2l)  and H(O) = 1. 
The necessity is proved. 

To prove the sufficiency, we define gt (x) in terms of Fourier transform by 

1 

~(~) ~ I--I H(2-s~) x /~0(2-/~)~(2-/~) " 
s---1 

Then ~(~)  converges to I-I~l H(~/2t)Fo(O), which we denote by f Therefore, 

A 

and f ,  the inverse Fourier transform of f ,  is a compactly supported solution of the refinement 
Eq. (1.1). 

Hence, the sufficiency of Theorem 2 is reduced to proving that Pl f = gt for all l >_ 0 by the 
proof of Theorem 1 and 

( ;)" I[g/+l -- gtlltp < c2 -n '  ~"~ ~ B,, . . . B, tR,  . 
~E (~l,'",Et)~ Et 

By (4.1), we have for k ~ Z n 

(gl+l --gl ,~)(  21 . - k ) )  

l 
= L ~ a (2-s~) x (U (2-/-1~)/~0 (2-/-1~) -/~0 (2-1~)G (2-/-1~)) 

x ~ ( 2 - l - l ~ ) ~ ( 2 - 1 ~ ) e - i 2 - % ~ d ~  

l 
= 2 -In fR ns~l n (2/--s~)X (n (~)F0 (~)a (-~) -/~0(~) G (~)G (-~)) 

O, 

where the third equality follows from 

~ ( ~  + 2 k ~ ) , ~  (-~ - 2k,r)  = 1, 
kEZ n 

V~ ~ R" 

by the biorthogonality between ~b and ~, and the last equality from 

G (@ Jr" ~Jr) r ( -~  - Ezr) = 1 
E~E 
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and (4.1). Thus, gl+l - gt is in the wavelet space WI, the orthogonal complement of VI in VI+I, and 
Pigs = gl when s > l. Hence, P l f  = gl and Theorem 2 is proved. [ ]  

Our second remark is on the index u of Triebel-Lizorkin spaces and Besov spaces of refinable 
a are equivalent. distribution. From 1) and 2) of Theorem 1, we show that f ~ F~,q and f ~ Bp,q 

From 4) of Theorem 1 we can get more. 

Theorem 3. 
Suppose-c~ < ot < + ~  and O < p, q < on). For an arbitrary compactly supported refinable 

there exists a positive number 8 > 0 such distribution ~b in a Triebel-Lizorkin space F~q or Bp,q, 

that the refinable distribution d/is also in Triebel-Lizorkin space .p,q,~a+8 and Besov space B p,q,~+* for 

all 0 < q~ < oo. 

The last remark is on integrable function space L 1. In Theorem 1, we characterize refinable 
function in the local Hardy space F~2, a subspace of integrable function space. In [17], Lau and 

Wang characterized the refinable function in integrable function space L 1. For an integrable function 
f ,  it is easy to see that 11 QI f II l ~ 0 as I ~ o~. Then f is in F~ when f is integrable and refinable 
by Theorem 1. 

Define the Riesz transform R j,  1 < j < n, in terms of Fourier transform by 

~ j f ( ~ )  = i~j  A 

where ~j denotes the j th  component of ~ ~ ]~n. Let Hardy space H 1 be the set of all integrable 
functions f such that R ( f  are still integrable for all 1 < j < n. Then Hardy space H 1 is a subspace 
of local Hardy space F~. 2 (see [23]). 

Theorem 4. 
I f  a function f is compactly supported, refinable, and integrable, then there exist a compactly 

supported bounded function g and a function h in Hardy space H I such that 

f = g + h .  

Proof. Let f be compactly supported, refinable, and integrable. Observe that II/'1 f - f II1 ~ 0 
as I ~ c~. Then II QI f II1 ~ 0 as I ~ oe. By Theorem 1 there exist a constant C and a positive 
number 0 < r < 1 such that 

liar f i l l  <- C r l  . 

On the other hand, it is easy to check that 

IIRja'fll, - Cr', V 1 < j < n .  

Hence, Rj (~]l>_O Ol f )  is integrable. By the definition of Hardy space H l, we obtain 

f - Po f  = ~ Q t f  E H 1. 
l>O 

Hence, Theorem 4 follows when we let g = Pof  and h = ~-]l>__o Qt f .  [] 

5. Appendix 

Proof of L e m m a  1. Since the assertion for Besov spaces can be proved by a similar procedure 
as the one of Triebel-Lizorkin spaces, we only give the proof for Triebel-Lizorkin spaces here. 
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Let aPs and ~s,  s 1, . ,  = ..  2 n - 1 be the compactly supported biorthogonal mother wavelets 
corresponding to the multiresolutions { VI } and { Vt } in Section 2. Then for 0 < I/~ I < max([J - n - 
c~], [or]) and s = 1, - . . ,  2 n - 1, we have 

fR ~ x# ~Ps(x )dx = fR ~ x# ~:s(x )dx = O . 

Therefore, 

{~ts(21.--j) 21n/2; s=O,...,2n-- l,l>O,j E7zn}u{~(.--j); j EZ n} 

and 
{~s (21.--j) 21n/2; $~O,...,2n--l,l>O,j EznluI~(.-j); j EZ n} 

are inhomogeneous smooth molecules of F~,q (see [I0, p. 56 and p. 132]). Recall that 

f 

CX~ 

= P o f + E Q I  f 
/=0 

2n-1 
= E bj~b(.- j)+ E E 2̀ n'2 E al,j,s~Is ( 2l" --J) 

j~Z n s=0 l>O j~Z n 

in distributional sense, where bj = (f ,  q~(. - j ) )  and aj,l,s --- 2ln/2(f, ~ts(21 �9 - j ) ) .  Then by the 
inhomogeneous analog of  Theorem 3.5 in [10, p. 132] we have 

(j~zn ) 1/p 2n_l 
IlfllF~,,q < C [bj[ p -I- C E 

s---O 
)l/q P t~>_Oj~zn(lal,j,sl21(a+n/2)X[O, 1p(21"--J))q 

and by the inhomogeneous analog of Theorem 3.7 in [10, p. 132] we obtain: ( )1. 
IlfllF~.q > C ~ Ibjl ' + c  

jEZ n s=O 
(l~>Oj~Ezn(lal,j,sl2l(~ 1/q , 

P 
where X[0, l] n denotes the characteristic function on the unit cube [0, 1] n. Hence, it remains to prove 
that there exist constants C1 and C2 such that 

< 

< 

2n_l [ 1/q 
Cls~=O (l>_~Oj~z~(lat'j'sl2l(~+n/2)X[O'lp(2l'--J))q) 

P 

(l~>--o21qa [Qif[q) ''q II, 
C2 E E E (I al'j'sl21(ct+n/2)X[O'l]n ( 2/" --J))q 

s=O l>O jEZ n 
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Recall that $s ,  s = 1, . . . ,  2 n - 1 are compactly supported and bounded. Hence, 

[Qlf[ < 

< 

2 n - -  1 

C E E ]al,j,sl 21n/2x[-C3'C3]n ( 21" --J) 
j~Z ~ s=O 2n1( 

C E E lal,:,'[ q 2lnq/2x[-c3'c3]n ( 2/" - j  ' 
s=0 jEZ n 

= -. 2 n 1 are supported in [ - -C3,  C3] and the second where C3 is chosen such that V/s, s 1, . ,  - 
inequality fol lows from the equivalence between the different quasi-norms on finite dimensional 
space. 

Fix 0 < A < min(p,  q, 1). Let Maf be the Hardy-Littlewood maximal operator defined by 

(l@lfQ )I/A MAf(x) = sup If(y)lAdy , 
x~Q 

where the supremum is taken oven all cubes Q containing x.  Hence, 

E 21q~ [Qlf] q < C E MA 
l>0 s=O 

and 

< 

< 

1/q 

2 n -  ] 

cE 
s=0 

2 n -- 1 

cE 

I I 
a l .  2l' n'2XO n 2l 

by Theorem A.1 in [10, p. 141]. 
For s = 1, . . - ,  2 n - 1, let Ks be the set of j ~ Z n such that aps ~ 0 on j + [0, 1] n. Then 

2n_l A ~ I/A 

f[0,1] n E E dj,s~s(Y- dy ) J) 
s=l jEKs 

is a quasi-norm on the finitely dimensional space R #K , where # K  is the sum of  the cardinality of 
K over s = 1, 2, - - - ,  2 n - 1 (see Lemma 2). By the equivalence between different quasi-norm on 
R #K there exists a constant C such that 

E dj,s~s(y- dy 
f[O'l]n s=l j~K~ 

1/A 

>_ c E Idj,,I 
s= l  

1/q 
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2 n 1. Then we have Let D be an integer chosen such that ~s ~ 0 on I - D ,  D]n for all s = 1, . . . ,  - 

1/A 

( f x  2~_~1 ~ dj,s~s(y j) a ) -- de 
+[-D-l'D+l]n s=l j~Z n 

Therefore, 

1/q / >_ c ~ ~ Idj,sl q x t 0 , 1 r ( x  - j )  
s=l j~Z n 

( tljq 2~1 ~ ~ ( lal'j's 21(ct+n/2)X[O, 1]n ( 21x _ J))q <_ 2 lotq (MA ( Ia l f l ) (x) )  q 
s----1 l>O jEZ n 

< C 

2 n - -  1 

s=l 
(l>~O j~z~n ( [al'j'sl21(ct+n/2)X[O'l]n (2 l" - - j ) ) q )  

( l ~ > _ o  2 laq (MA (I Qlfl)) q)  1/q 

H p 

< C  

and 
1/q p 

by Theorem A.1 in [10, p. 147]. [ ]  
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