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ABSTRACT.  The aim of this article is to characterize compactly supported refinable distributions in Triebel~
Lizorkin spaces and Besov spaces by projection operators on certain wavelet space and by some operators on
a finitely dimensional space.

1. Introduction

A compactly supported distribution f on R” is said to be refinable if f satisfies such a refinement
equation

fE =) cif@x—j, (1.1)

jez®

where the sequence {c;} has finite supportand } _ ;= c; = 2". Define the symbol of the refinement
Eq. (1.1), or of refinable distribution f, by

HE =27 Z cje U, 1.2)

jez®

Then H(£) is a trigonometric polynomial and satisfies H(0) = 1.
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The solution to the refinement Eq. (1.1) is unique up to a multiplying constant. So we only
consider the normalized solution to (1.1), which means f(0) = 1. Hereafter the Fourier transform
f of an integrable function f is defined by

Fe =[xt s

The Fourier transform of a compactly supported distribution is interpreted as usual.

Refinable function appears in different settings, most notably in subdivision schemes for com-
puter aided design, and in the construction of wavelet bases and multiresolution. The refinable
distribution has attracted a lot of attention in recent years and is well studied, including existence,
uniqueness, and regularity. The dependence of the regularity of f on the choice of coefficients ¢y
in (1.1) has been studied by many authors (see [1, 3, 5, 6, 7, 8, 20, 21] for Hélder continuous space,
{14, 17, 18] for p-integrable space and LP-Lipschitz space, [9, 13, 16, 24] for Sobolev space, [25]
for Besov space, and the survey paper [3]). The results are often formulated in terms of the joint
spectral property of operators on a finitely dimensional space, or obtained by the direct estimate for
the corresponding symbol H(£).

In this article, we will characterize compactly supported refinable distributions in Triebel—
Lizorkin spaces and Besov spaces via projection operators P; and Q; of a multiresolution and via
operators B¢ on a finitely dimensional space V.

The article is organized as follows. In Section 2, we fix some notations and state the main
results. In fact, we give the definitions of Triebel-Lizorkin spaces and Besov spaces, multiresolution,
projection operators F; and Q;, operators Be, finitely dimensional space V and pp(Be, V), a number
similar to p-norm joint spectral radius in [14], and state the main results. Section 3 contains the
proof of main theorem. In Section 4, we will give some remarks.

2. Preliminary and Result

The Triebel-Lizorkin spaces and Besov spaces are two important classes of function spaces,
which include spaces of all p-integrable functions for p > 1, Sobolev spaces, and Hardy spaces
as well. For the theory of Triebel-Lizorkin spaces and Besov spaces we refer the reader to [23]
and [11].

Let ¢o and ¥ be functions in the Schwartz class such that ¢y is supported in {£; |&] < 2}, ¥
supported in {&; 1 < |§]| < 4}, and

Do+ F(27%) =1, VeeR".

=0

Define the convolution f * g of two square integrable functions f and g by
78 = [ = gay

and the quasi-norm of p-integrable function by || f ||, = ( fR,, | f(x)IPdx)P for 0 < p < o0. The
convolution of two compactly supported distributions is interpreted as usual.

For —o00 < & < 00,0 < p,q < 00, Triebel-Lizorkin space F ».q is the set of distribution f
such that its quasi-norm || f | Fg, defined by

l/q

WFlEg, = Igox Fll,+ | | D2 Iy » £14
>0
P
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is finite, and Besov space By , is the set of distribution f such that its quasi-norm || f| B2, defined
by
1/q
I Fllsg, = ligo* fll, + | D 2% Iy £II}

>0

is finite, where ¥;(x) = 2y (2x) for I > 0. The topologies of F 1?, q and Bg,q are induced by the
quasi-norms || - |7z, and || - || pg . respectively.

A multiresolution is a family of closed subspaces {V;};cz of L2, the space of square integrable
functions, such that

1. MezV; = {0} and Uz V; is dense in L2
2. icVip, Vv leZ.

3. There exists a function ¢ in Vg such that {¢ (- — k); k € Z"} is a Riesz basis of Vp and V} is
spanned by {2/#/2¢(2} . —k); k € Z").

The function ¢ in 1 is called a scaling function of the multiresolution. The multiresolution
was introduced by Mallat and Meyer (see [4, 19]). In one dimension, it is well known that for any
integer T there exists multiresolutions {V;} and {V1} such that the corresponding scaling functions ¢
and ¢ are compactly supported, in Holder class C* and biorthogonal (see [2, 51). Here we denote
the Holder space with Holder exponent T by C?, and we say that ¢ and ¢ are biorthogonal if

i — e | b i=0,
[ o ;)dx—{(,’ e

A compactly supported distribution g is said to be locally linearly independent if for any open
set A
D digx—j)=0, xeA implies d;j=0, VjeK(A),
jez?
where j € K(A) means g(- — j) is not identically zero on A. In [22], the second author proved
in one dimension case that biorthogonal scaling functions ¢ and ¢ are locally linearly independent.
Then for any integer T > 1, we can construct scaling functions ¢ and ¢ in higher dimensions by
the tensor product method in [19] such that ¢ and ¢ are compactly supported, in Hlder space C?,
biorthogonal and locally linearly independent.
For these multiresolutions {V;};cz and {‘7,}152 let wavelet spaces W; be the biorthogonal
complement of V; in V. Define projection operators P;, 1 > 0 to V; by

PFo =2 Y (£.6(2—1))e (2x-J) . @1
jez*
and projection operators Q; on W; by
Qif =P f-hf (2.2)

for square integrable function f. Here for two functions f and g in L2, their inner product is defined
by

(o) = [ FI3GIas

Now we extend the domain of definitions of P; and Q;. Obviously it suffices to extend the
domain of definition of inner product. By Parseval identity, we have

(o= @m [ For@s
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Then we may define the inner product of two distributions f and g by the formula above when

F&Z @) is integrable.
Denote the class of compactly supported distributions f which satisfy

|7®|<ca+Ep*, vEeR

by D% SetB=1In supgegn |H(£)|/In2. Then f € DB for the refinable distribution fin(1.1).
By integration of parts, we have

[f®|<ca+gD™, VEeR"

when f € C*. Thus, the inner product between f € D? and g € C" iswell defined whent > B+n.
This shows that the inner product between refinable distribution f in (1.1) and ¢(- — j), the scaling
functions of the multiresolution {Vj}, is well defined when 7 > lnsupgcge |H(£)|/In2 + n, and
hence, the projection operators P; and Q; are well defined.

In this article, unless otherwise stated we assume that the multiresolutions { V;} and { V;} are cho-
sen such that their corresponding scaling functions ¢ and ¢ are compactly supported, biorthogonal,
in Holder space C* with T > Insupgge |H(§)|/In2 + n, and locally linearly independent.

To characterize the refinable distribution, we also need a finitely dimensional space V and
operators B on V, which are very similar to the transfer operators in [6, 9, 24].

For¢ € E = {0, 1}"* and the symbol H (§) of the refinement Eq. (1.1), define operators B, by

- § o\ —ieGren (_5_ ) )
BGP(E)_ZH(2+en)e P(Z+en 2.3)

e'eE

for every trigonometric polynomial P. Let

Fo®)= Y_ (£.8¢ = D)e %,

jez?

and R, € € E be defined by

H(E)Fo(§) — Fo (2£) G(€) = Y ¢'“¥Re (26) 24)

ccE

where G (&) is the symbol of the scaling function ¢. Then R, € € E are trigonometric polynomials.
Let V be the minimal space containing R, ¢ € E such that it is invariant under operators
Bc,€ € E. Then

V isspannedby {B ---BqRe;€j, e € E,1<j <l and 12>0}.

It is easy to see that V is of finite dimension (see [14]). For simplicity, we still denote by B, the
restriction of operators B¢ on V.
For 0 < p < oo, define the p-quasinorm ||P||;‘, for trigonometric polynomial P(§) =
Y jezn dje’* by
1/p
ey =1 > |4l
JeZ"

Set
1

Pl
Pp (B, V) = inf sup (2-"1 Z (“ B€1 T Belu“;)p) .
€1

21 ulg=1,uev a€E
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The number p,(Be, V) is essentially the p-norm joint spectral radius of operators B¢ on finite

dimensional space V (see [14] and [12]). The authors thank the anonymous referee who pointed out
this fact to us.

The number p,(B., V) may be also computed by

1
2

Pr (BE, V) = lm Sup 2—nl Z (” BEI Bezu" ;)p

I->00 *
luly=1ueV €1, €E

The assertion above is proved by [14, 15, 16] for p > 1. Now we give the proof of the assertion
abovefor0 < p < 1.

Set

D= sup 2~ Z (" B, - B€,u||;)p

L
lully=1uev L acE

Then it suffices to prove that
limsup;_, D = p(Be, V) .

For any § > 0, by the definition of p(Be, V), there exists [y such that
Dy <p(Be,V)+34.

Hence, we have

.

61,---,€[0€EE

*\P P
Bﬂ---Be,Oull) <2 (o (Be, V) + ) (Jull;)", Vuev
14

and foralll =klp+s5,0<s<lpandk > 1,

p
Y (IBq-Basl})

€1, .6 €E

= ¥ > o X (IBaBauly)’

€klg+1, €1 E €1yg 41, €RgEE €1, €y €E

< 20 (p (B, V) + )P0
*\ P
< 3 SR> Beyoi - Bau )
€uy+1, €1 €E €g_plg+1€kgEE €41, €2 €E
<
*\ P
< 2% (p (B, V) + 8 Y (Bek,0+1---Be,u )
p

€kig+1,€1€EE

P
< 2 (o (B, )+ ()"
where C is a constant independent of k¥ > 1. This shows that

limsup;_, . D; < p(Be, V) +6

for any & > 0. The assertion is proved.
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Fixlp = 1. Let Vl: be the minimal space invariant under operator B, ¢ € E and containing
B, "‘Bez(,REIOH withe¢; € E,1 <i <lp+ 1. Define

71
. —_ * p
pp (Be, Vi) = Jim  sup 2y ("Bex e Belu"p)
=% Jufy=1,ueV} s
From the definition of V;*, we have V;* ¢ V, and hence,
Iy A

p(Be, Vi) <P (Be, V) .

Observe that for [ > Iy,

sup 27 Z ("Bel--.Be,u";)p

el <1.uev ek

—nl *\ P
< C sup sup 2 Z B, "'Bﬂ-z(, (Be,_lo+l ---Be,u)
6 €E I-ly+1=i<l lult <l ueV etar g €F 4
(I—ip) Z A\
<= C sup 27 ( Be, - B u ) ,
p

_.]0
"u’";f.lsulev[; elﬁ"'vEI-IOEE
where the last .inequality follows from the facts that B‘!—'o 41 Bqu e Vlz and || Ber—z(, 4 Baull <
C for all u satisfying ||u}i¥ < 1. Then we have

p(Be, V) < p(Be, V[’g) .

Hence, p(Be, V) can be computed by p(Be, Vl:)
Now let us state our main results.

Theorem 1.

Let —00 < a < 400, 0 < p,q < 00 and f be the normalized solution to (1.1). Set
J = n/min(p, q, 1) and denote the integral part of a real number x by [x]. Suppose that {V;} and
{V}} are multiresolutions such that their corresponding scaling functions ¢ and ¢ are compactly
supported, biorthogonal, in Holder space C* and locally linearly independent, where t is chosen
such that

T > max <lnsup |[HE)/In24n,[J —n —«a], Itxl) .
£eR

Then the following statements are equivalent to each other.

1. fe Fl‘j‘,q.

2. fe Bg‘q.

3. 2Qifllp —> Oasl—> oo

4. There exist constants C and 0 < r < 1 independent of | > O such that
2*\Qifl, <Crt, VI=0.

5. pp(Be, V) <27

From the results above, it is easily seen that a compactly supported refinable distribution in
Triebel-Lizorkin spaces Fy; , is also in Besov spaces B} ,. Comparing with the subdivision scheme
in [ 14], we introduce an appropriate space V, which we use to characterize refinable distributions in
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Triebel-Lizorkin spaces and Besov spaces via p, (B¢, V). Comparing with the characterization of
p-integrable refinable functions in [17], we use biorthogonal scaling functions ¢ and ¢ with higher
regularity instead of the characteristic function on [0, 1] as the initial, which also makes it possible
to consider more general function spaces, Triebel-Lizorkin spaces, and Besov spaces instead of
p-integrable function spaces.

3. Proof of Theorem 1

‘We begin with a characterization of Triebel-Lizorkin spaces and Besov spaces.

Lemma 1.
Suppose 0 < p,qg < 00,—00 < @ < oo and vt > max(J —n — «, |a|). Let P; and Q,

be defined by (2.1) and (2.2), respectively, and let f be a compactly supported distribution. Then
f € Fy , ifand only if

l/q
WPofll, + | | D2 101 £17 <00,
=0
p
and f € By ; ifand only if
l/q
IPofl, + | D 24 NQifl] <oo.
>0

A similar result can be found in {10] and [11]. For the perfection of this article, we include
the proof in the appendix. Now we start to prove Theorem 1.

D=3): LetfeFg, Then (¥ [2"*Q1f(x)|9)/9 < oo for almost every x € R" and
is p-integrable. Hence, 2/*Q; f(x) — 0 for almost every x € R" as | — oo. By the Lebesgue
dominated convergence theorem, we have 2| Q; f || p—>0asl— o0

2) = 3): By Lemma 1, the sequence 2l0, 7l p is g-summable when f € Bg, 4- Hence,
2210 fllp > 0asl — oo.

4) = 2):  Obviously,

Y (210:71,)" <c 3 < oo.

>0 >0

Observe that Py f is compactly supported function in C* by its definition. Hence, |Pofll, < oo
and f is in Besov space B;’ p forall0 < g’ < 0o by Lemma 1.

4) = 1): Observe that F;’ s, B;’," » When q' > p. Hence, f € FI‘;‘ 7 when q’ > p, since
f € By ,. For0 < ¢’ < p, we have

1/q'||? 1/p|?
q P
> o = G| X ey
=0 >0
p 14
< Y (@) <,

>0
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where 4 is chosen such that 2°r < 1, and the second inequality follows from

N\ Pl p/(p—q"
(Z 2% 0, f (x) lq <> |2’ @) 0, £ (x) ‘p x | Y270 .
120

=0 >0

Therefore, f € F 1(;‘ 7 and 1) follows.
3)=4): To prove 4) from 3), we need two lemmas.

Lemma 2.
Let ¢ be as in Theorem I and p > 0. Then there exists a constant C independent of sequence
{d;} with finite support such that

/p 1/p
c! (Z ;"] <X disx—n| sc| XY’} - 3.1

jez jez ? jez"

In [15], Jia proved a similar results under weak restriction on ¢. For the perfection of this
article, we include the proof here.

Proof of Lemma 2. The right-hand side inequality of (3.1) follows from the fact that ¢ has
compact support and is bounded.

Now we consider the left-hand side of (3.1). By the local linear independence of integer
translates of ¢, we have

p
f{om Y digx-p| dx=c1 Y. |a;ff

JEZ JjeK((0,1)")

for any sequence {d;} and a constant C; independent of sequence {d;}, where for open set A,
j € K(A) means ¢(- — j) is not identically zero on A. Hence,

P
/,, Ydipa-pdxzciy, Y. |GlP=ci)] |4l
R |jez keZP jeK (0, 1) +k) jezr
and Lemma 2 follows. O
Lemma 3.
Let f satisfy the refinement Eq. (1.1) and H be the corresponding symbol. Set
R® =Y (£.6(2 i) (32)
jez?
Then we have
RE = H(27'%)Fa®, (3:3)
HEPE) = 277 Zeis'EBeP(Zf) , G4
€eE
and

l'l'[ H <2i—1§) PE) =2"" Z o S et B, - BgP (21%.) (3.5)

i=1 (€1.-.€)€E!
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for any trigonometric polynomial P, where we denote by E' the I-th Cartesian power of E.

Proof. From (1.1) and (3.2), we have

F® = Y (2 -i))ev*
jezZ"
= Y Y afre--9.6(2 -t
jeZ" seZ™
= 2" Y Y a{nd (2 -2 eiie
JEZ" seZ®

H(27'8) Aa® .

Hence, (3.3) is proved.
Observe that the right-hand side of (3.4) is equal to

9—n Z H (§ +Elﬂ) P ('f +€/n,) Ze—ie.gm .

e'eE 33

Hence, (3.4) follows from the formula above since ) ..z e~i€€T = ( when 0 # ¢’ € E and the
cardinality of E is 2".
The formula (3.5) follows from repeating (3.4) for / times. d

Now let us start to prove 4) from 3). Recall that ¢ is a scaling function. Hence, ¢ is refinable.
Denote its symbol by

G(S) —_ 2—n Z g]el]E .

jez®
Then _ _
dE)=G(E/DP(E/D) (3.6)

by taking Fourier transform at both sides of (1.1).
From the definitions of Py, F; and (3.3), we obtain

(7) © = (27) 3 (27%)
and

@7 ® = (Fn(27) - R (27%) 6 (277%)) 3 (2 %)

[T (%) x (5 (7)o (78) -7 () 0 () (27

Recall that .
H()Fo(§) — Fo 26) G(€) = )_ ' “* R (28) .

ecE

Then by Lemma 2, (3.4), and (3.5), we conclude that

!
lQiflps = c2’<P—‘>"( [T (2') x HOFRE - FEHGE)
i=1

*)P
14
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*\ P

i

. d —j
Cco-in Z Z P+ 2 ”161'5)35, 3 (21+1§)

€€E (¢,-.¢)eE!

2y Y (IBaBak})

€€k (1, ,e)eE!

der-m 33 (||B€1-~~BE,R6||;)p—>0

€cE (61."',€[)EE1

p

Hence,

as! — oobecauseZ"’llQlfMp —>0as! — o0.
Furthermore, we have the following:

Lemma 4.
Let R¢, V be defined by (2.3) and (2.4), and let V be the minimal space invariant under the
operators B¢ and containing R¢, € € E. If

. — p
l!.l-)n;ozl(ap ’l)z Z ("BE1 BEIRE";) =0,
€€E (¢1,.-,¢))eE!

then there exists an integer ly such that

dhtep-m Y ’

* p 1 p
( Bey -+ Boyu| ) <> ()’ veev.  6n
I 2
(€1,.€19)eED

Proof. Set
V*={Re,Be, -+ BoRe; €61, ex € E,k=1,2,---} .

Itis easy to see that V is the finite dimensional space spanned by V*. Thus, there exist finite elements
e1,---,e; € V*such that ey, - - -, ¢; is a basis of V, and for any u € V there exist real numbers
ui, - - -, u; uniquely satisfying

u=uyey+---+ue;.

Obviously,
— P
CH (l? -+ lal?) < (Iully)” < € (ul? + -+ ll?)
when p < 1 and
C™ (] + -+ + ) < ully < C (] + - + )

when p > 1 hold for some constant C independent of u € V.
Lete; = Bexi ~--B€£~ RE(,-), in which ¢; = Re(,-, when k; = 0. Then

gler—m 3" (||Bel---Be,ei||:)p

(e1,-.€)eE!

< 2@y 3 (

€€E (¢1, -, 4p;)€EH

Bél e BGH—Iq Re

£\ P

) 2 kile-m _, o
P
as [ tends to infinity. Hence, there exists an integer [y such that

ghter—m 7 (‘

(€1, €1))€ED

BE] v BE[Oei

*\ P 1
) <-cmxp)  j<i<].
P 2 - =
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For any u = uje; + --- + uje; € V, we have

alo(ap—n) Z

(€1,-+,€1p)€E

BE1 Ve Belou

*)p
p

! P
*
< lolp—n) Z |u;|P Z B - Begei )
i=1 (€1, 6,0)5510 P
< ¢! Z wil? < = (1ul3)’
—_ 1 2 r

when p < 1 and

9l (@p—n) Z

(e1,€1y)€E

ZI: |u;| alo(ap—n) Z
i=l1

(€1,+-+€4y)€E0

(c—li\;jmn)p 5 ()"

when p > 1. Hence, (3.7) and Lemma 4 are proved. O

BE1 e Belou

*)P
P

*\ P
B -+ que,- Il )
p

1/p\ P

IA

IA

N —

Set

o b Y (||B€1...BE,RE||;)p

€€k (¢, 6)eE!

Then by Lemma 4, we have

TS VI VD M

(€1.+€1y) B0 €€E (g1 4y, e E!To

_2(1-'10)(0!11—") D> (

€€E (g 11, €)€E! 0

IA

Bfto+1 -+ BgRe

*\ P 1
=—-A;_
[)) 2 -y

when [ > [p. Hence, by Lemma 2, we obtain
Ay <27l

and
2210115 <ca < c27Mho

This is the desired resuit.
4) = 5):  From the proof of 4) from 3), we obtain

2 Y (IBa - Bake]}) <QifH -

€€E (¢q,-,€)€E!

Be, ...B%BQ0+1 .- By R, ,

97
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Recall that V is the minimal space invariant under B, and containing R, forall € € E. Then by (3.7)
there exists an integer [y such that

l/p

*\ P 1
Be -+ Boyu| <-luly, wev.
(i P 2

2[{)0[ 2—nl() Z

(61,---.610)65'0

Hence, 5) follows by the definition of p,(Be, V).
5)=4): By the definition of p, (B, V), there exists an integer [y such that

270y Y ([ Baul})” s 27P@rD (huty)”, wev.

€€E (¢q,,e))eE!

Hence, we may prove (2.2) by the estimate of Q; f in the procedure used in the proof of 4) from 3).
Theorem 1 is proved.

4. Remarks

The finitely dimensional space V is very important to compute p, (B, V). From the definition

of V, we see that it needs to compute { f, @(- — j)) forall j € Z" at first. Our first remark is whether
the space V can be replaced by a finitely dimensional space which is easy to compute.

Theorem 2. 3 :
Let ¢, p,q,¢,$, Bc be as in Theorem 1, and let G and G be the corresponding symbol of
biorthogonal scaling functions ¢ and ¢. Then the refinement Eg. (1.1) has a solution in B"‘ orFy “

if and only if there exists a trigonometric polynomial Fy such that Fo(0) # 0,

F&)=YH ( + ezr) & (-% - en) Fo (% + eﬂ) @1

eck

and Pp(Be, V) < 27%, where V is the minimal space invariant under B, and containing ﬁe, and
where R is defined by

HE)Fo®) — Fo6)G(E) = ) e R (28) .

€cE

Proof. From the proof of Theorem 1, the necessity reduces to Fp satisfying (4.1) and Fy(0) # 0.
Write

G(S) =" Z éje—ijs
jeZ
By the definition of Fy(§), we have

s (5 en) (-5 -er) o en)

ecE

= 2™ Z Z Z Cii8h (f('), o — j)) Ze_i(5/2+5”)'(i+jl~jz)

NEZ" peZ” jeZ" ecE
- Z Z Z ¢j18i (f @-—jn,.¢@ -2j - j2)>e"”5
NEZ" jLeZ" jeZ

= Y (fO.8¢ - p)e it = Fo®) .

jez*
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On the other hand, Fo(0) = 7(0) = 1 by the facts that f(£) = [T>, H(¢/2") and H(0) = 1.
The necessity is proved.
To prove the sufficiency, we define g;(x) in terms of Fourier transform by

a® = [1#@6) x F (276)3(27%) -
s=1

Then g (§) converges to [172, H(&/2 yF(0), which we denote by . Therefore,

-~ E\ ~[E
=H(Z 3
&) (2 3
and f, the inverse Fourier transform of f, is a compactly supported solution of the refinement

Eq. (1.1).
Hence, the sufficiency of Theorem 2 is reduced to proving that P; f = g; for all/ > 0 by the
proof of Theorem 1 and
* P
)

B, "'Be,Re

lgrer —gillh<c27y " Y

€€E (¢, ,--,e1)eE!

By (4.1), we have for k € Z"

-
= fR i E H(278) x (H(277'¢) o (277') - o (276 ) 6 (277 '%))

< $(2—1—1§) (2—’§)e‘i2_["‘5d§

¢
o [T e) = (1 () o (8) & (-5) - oo (5) 6 (-5)

Il
[\
L
=
T
H
3
E]
=
N
N2,
d
e
N’
X
™
(8]
N
SR
+
N
]
N——
e
|
+
m
9
N——
(o]
|
82
|
n
E}
—’

= 0,

where the third equality follows from

S B¢ +2Um G (—E—2%n) =1, VEeR"

keZ"

by the biorthogonality between ¢ and ¢, and the last equality from

Y GE+em)G(—t—em)=1

eeE
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and (4.1). Thus, g;+1 — g is in the wavelet space W;, the orthogonal complement of V; in Vj41, and
Pig; = gy when s > 1. Hence, P; f = g; and Theorem 2 is proved. O

Our second remark is on the index « of Triebel-Lizorkin spaces and Besov spaces of refinable
distribution. From 1) and 2) of Theorem 1, we show that f € Fj , and f € By , are equivalent.
From 4) of Theorem 1 we can get more.

Theorem 3.
Suppose —o0 < ¢ < +00and0 < p, q < co. Foranarbitrary compactly supported refinable

distribution ¢ in a Triebel-Lizorkin space Fj , or By, ., there exists a positive number § > 0O such

that the refinable distribution ¢ is also in Triebel-Lizorkin space F g":l'fs and Besov space B:jl‘,s for
all0 < q' < .

The last remark is on integrable function space L. In Theorem 1, we characterize refinable
function in the local Hardy space F ﬁ ,» @ subspace of integrable function space. In [17], Lau and
Wang characterized the refinable function in integrable function space L!. For an integrable function
f,itiseasy toseethat | Q; f|l1 = Oas! — oo. Then fisin F 10_ , When f is integrable and refinable
by Theorem 1.

Define the Riesz transform R;, 1 < j < n, in terms of Fourier transform by

ig
q

where &; denotes the jth component of £ € R". Let Hardy space H ! be the set of all integrable
functions f such that R; f are still integrable for all 1 < j < n. Then Hardy space H! is a subspace
of local Hardy space F , (see [23]).

Theorem 4.
If a function f is compactly supported, refinable, and integrable, then there exist a compactly
supported bounded function g and a function h in Hardy space H' such that

Rif®) =—L7e,

Proof. Let f be compactly supported, refinable, and integrable. Observe that || P, f — f[l1 — 0
as! — oo. Then |Q;f|l1 = 0as! — oo. By Theorem 1 there exist a constant C and a positive
number 0 < r < 1 such that

lefiy <crt.
On the other hand, it is easy to check that

|RjQif|, <cr, ¥ 1<j<n.

Hence, R; (leo Q. f) is integrable. By the definition of Hardy space H!, we obtain

f-PRf=) Qif eH".

>0

Hence, Theorem 4 follows when we let g = Py f and h = leo o f. 4

5. Appendix

Proof of Lemma 1. Since the assertion for Besov spaces can be proved by a similar procedure
as the one of Triebel-Lizorkin spaces, we only give the proof for Triebel-Lizorkin spaces here.
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Let ¥ and ¥y, s = 1,--+,2" — 1 be the compactly supported biorthogonal mother wavelets
corresponding to the multiresolutions {V;} and {V}} in Section 2. Then for 0 < || < max([J —n —
al,[eDands =1,---,2" — 1, we have

/ Py (x)dx =/ Py ()dx =0.
R R
Therefore,
[we (@ —)2"% s =0, 2"~ 1120, ez} U o - s j €27}

and
{&s(zl-—j)zl"/z; s=0,---,2"—1,l_>_0,jeZ”]U[rﬁ(-—j); jeZ"]

are inhomogeneous smooth molecules of F' I‘j‘ q (see [10, p. 56 and p. 132]). Recall that

f = Pf+) Of
1=0
]
= Y b=+ Y Y2 Y aev (2 —))
jezr s=0 [>0 jez!

in distributional sense, where b; = (f, ¢(- — j)) and a; ;s = 2""/2(f, ¥s(2' - —j)). Then by the
inhomogeneous analog of Theorem 3.5 in [10, p. 132] we have

l/p an_g l/q

1flrg, <[ Xl ] +¢ T HE X (Janssl 2P xour (2 =)’
s=0

jez" 120 jeZ"
p

and by the inhomogeneous analog of Theorem 3.7 in [10, p. 132] we obtain:

1/p n_1 1/q
HETE DI D3 | DI (|at,j,s| 2@+ 0.1 (21 - -j))q ,
jez® s=0 >0 jez"
p

where x[o,1j» denotes the characteristic function on the unit cube [0, 1]*. Hence, it remains to prove
that there exist constants C; and C, such that

n—1 l/q

Y WX X (Jawssl 2D xour (2 i)

5=0 || \ >0 jez"

p
1/q

< D2 10if1e

>0

p
-y 1/q
A\\4

< ) XX (Iaz,,-,slz’(““/ ? X0, 1 (2’ : —J))

s=0 || \i>0 jez"

p
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Recall that ¢, s = 1, - -+, 2" — 1 are compactly supported and bounded. Hence,

271

ufl = €3 3 |l 2" x-crear (2 )
jeZ s=0
-1 1/q
= CY N Yl 2" xecrcr (2 -5) |
s=0 \ jez"

where Cj3 is chosen such that ¢, s = 1,.--,2" — 1 are supported in [—C3, C3] and the second
inequality follows from the equivalence between the different quasi-norms on finite dimensional
space.

Fix 0 < A < min(p, g, 1). Let M4 f be the Hardy-Littlewood maximal operator defined by

1/A
MAf(x)=sup( f If(y)l”dy) ,
AT

where the supremum is taken oven all cubes Q containing x. Hence,

l/q 1 q\ 1/q
Y2ttt ) <C X (20| Ma| X lanssl 2 2 x0y (2 - -))
=0 s=0 \ /=0 jezr
and
l/q
> 2 g f1e
=0
P
] q\ l/q
< C Z Z My Z lal,j,s|21(a+n/2)X[0,1]" (21 . -j)
s=0 >0 jez"
p
7] l/q
q
s cxllXZX (lal.j,s|21(°’+"/ X1 (2’ : —j))
s=0 || \I>0 jez"
p

by Theorem A.1in [10, p. 141].
Fors =1,---,2" — 1, let K be the set of j € Z" such that ¥; # O on j + [0, 1]*. Then

1/4
2r—1
/ Z Z d}s‘/’s()"]) dy
oar | R,

is a quasi-norm on the finitely dimensional space R¥X where #K is the sum of the cardinality of
Kovers=1,2,---,2" — 1 (see Lemma 2). By the equivalence between different quasi-norm on
R*K there exists a constant C such that

1/A
2t 4 ot 1/q

fw 3 S dits - )| dy zcz 3 |dsl?

s=1 jekK; JjekKs
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Let D be an integer chosen such that Y £ Oon [-D, D]" foralls = 1, ---, 2" — 1. Then we have

1/A
- A / _ 1/q
/ > S dawo-i| dr| 2T sl moar e -
x+[—D-1,D+171* s=1 jeZ? s=1 \jeZ"
Therefore,
_— l/g l/q
A\ 7
Y AE X (sl 2@ Px0ur (25 - 5))" ] = [ 22 Ma 10171 )7
s=1 \iz0 jez" >0
and
2" —1 lVa

Z Z Z (|al’”| 21Hn/2 0 (21 ) _J.))q

n
s=1 120 jez"
I4
l/q l/q

< || o2 mMaqgifn? <cC 122’"4|sz|‘1
=0 >0
14 r

by Theorem A.1 in [10, p. 147]. ]
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