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ABSTRACT. Let 2 S be a band in Z bordered by two parallel lines that are o f  equal distance to the origin. 
Given a positive definite ~1 sequence o f  matrices {cj }jr we prove that there is a positive definite matrix 

function f in the Wiener algebra on the bitorus such that the Fourier coe2~cients f (k) equal ck for  k ~ S. A 
parameterization is obtained for  the set of  aU positive extensions f o f  {cj }j~S. We also prove that among all 
raatrix functions with these properties, there exists a distinguished one that maximizes the entropy. A formula 
is given for  this distinguished matrix function~ The results are interpreted in the context of  spectral estimation 
of  ARMA processes. 

1. Introduct ion 

The extension problem for positive definite functions concerns the problem of finding a positive 
definite matrix valued function with certain prescribed Fourier coefficients. In this paper we shall 
mainly be concerned with Wiener algebra functions of two variables, i.e., functions defined on the 
bitorus with an absolutely summable Fourier expansion. The classical positive extension problem 
for functions of one variable goes back to the works of Carath6odory, Toeplitz, Fej6r, and Riesz 
in the beginning of this century (see [15] for a full account). Attempts to generalize some of the 
one-variable results to the case of two or more variables have often lead to negative conclusions. 
Perhaps one of the most well-known results in this respect is the impossibility of a straightforward 
generalization of the Riesz-Fej6r lemma to functions of two or more variables, which was exposed 
independently by Calderon and Pepinsky [4] and by Rudin [23]. In both papers it is shown that there 
exist positive trigonometric polynomials of two variables which are not sums of squared absolute 
values of polynomials. As a corollary it was shown by duality that the classical trigonometric moment 
problem does not extend trivially to the two-variable case. We will state a precise result later in the 
introduction. 

One of the main applications of the positive extension problem concerns spectral estimation 
of stationary processes based on measured correlation coefficients, and the related linear prediction 
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theory. It is in the linear prediction theory literature and the signal processing literature that many 
positive results for the multivariate positive extension problem may be found (see, e.g., [5] or [18] 
and the references therein). One of the main breakthroughs in this area was obtained in the work 
of Helson and Lowdenslager [14], who extended several one-variable linear prediction results to the 
multivariate case after recognizing that the appropriate definition of "past" is a halfspace in Z d (the 
definition will follow below). Here and elsewhere in the paper we denote by Z the set of  integers, and 
let Z a = {(Zl, . . . ,  Zd) : Zj E Z}, One of the important features of a halfspace in Z d is that there 
exist d - 1 linearly independent vectors along which (after slightly shifting) the halfspace extends 
to infinity in both directions. Thus, loosely speaking, only in one direction Z d is cut in half by the 
halfspace. It is in this spirit that we generalize some of the positive extension results to two (or more) 
variables. Namely, our index sets of prescribed Fourier coefficients is chosen to be a doubly infinite 
band in Z a, which also has d - 1 linearly independent vectors along which the domain extends to 
infinity in both directions. We shall now state some of our main results in detail. 

Let S be a non-empty subset in Z d, and let C = {cj}jE S be an e 1 sequence o f n  x n matrices, 
i.e., the sequence satisfies 

Ilcj II < 
jeS 

where II �9 II is the operator norm (= the largest singular value for matrices). We associate with C a 
matrix valued function f c  defined on the d- toms T d, where T = {e it : t ~ R}, via 

f c ( t l  . . . . .  td) = E c j exp{ i  ( j l t l  q - " ' - t -  jdtd)} , 
J - - - - ( J l  . . . . .  jd)~S 

which will be written in self-explanatory shorthand notation 

f c ( t )  = E cjei( j ' t )  �9 

j~S 

Note that we represent functions on T d as periodic functions on R d, which will be more convenient 
for our purposes. The positive extension problem on S can now be stated as follows: 

(PEP): Find, if  possible, an n x n matrix function g on R a with the following properties: 

(i) g admits a representation 

g(t)  = E gjei(J't)' t �9 R d ,  

jeZ d 

)/~d , where ~'~.j~z d [Igj II < o o ;  in other words, g is in the Wiener algebra n xn. 

(ii) ~j = cj for every j ~ S; 

(iii) g is positive definite, i.e., g(t) is positive definite for every t ~ R d. 

A matrix function g with Properties (i) through (iii) is called a positive extension of f c .  
For certain sets S necessary conditions for the existence of positive extensions can be given in 

terms of Toeplitz operators. Assume that S is such that S ---- A - A = {x -- y : x,  y e A} for some 
A C_ Z d. Let L2(Td) N x l be the Hilbert space of N-component  column vectors with components 
in the Lebesgue space L2(T d) of  square integrable functions on T d with respect to the normalized 
Lebesgue measure. A function f �9 L2(Td) nxl can be identified with its Fourier series 

f (tl . . . . .  td) = ~ f j e  i(j''l , 
jEZ d 



Positive Matrix Functions on the Bitorus 23 

where ~ j ~ z  d Ilfjll 2 < cx~. Denote by L2(A) nxl the subspace of all such f ~ L2(Td) nxl that 

f j  = 0 for j r A. We define the Toeplitz operator T A f  c associated with the sequence C, or 
equivalently the function f c ,  by: 

TA, f c  h = PA  ( f c h ) ,  h ~ L 2 ( A )  nxl  , (1.1) 

where PA is the orthogonal projection onto L2(A) n• Clearly, TA, f  c is a bounded operator on 
L2(A) n• The hypothesis S = A -- A guarantees that T/, , f  c = TA,g for any existing positive 
extension g of f c .  Consequently, a necessary condition for the existence of a positive extension is 
that TA f c is positive definite (notation: TA f c > 0), i.e., 

( Z A , f c h  , h) > 6(h ,  h) ,  h E L 2 ( A )  nxl  , 

where E > 0 is independent of h. As alluded to before, this necessary condition is not always 
sufficient as was shown in [4] and [23]. Therefore, we introduce the following definition. Let 
S _ Z d be such that S ---- A - A for some non-empty set A c Z d. We say that S has the positive 
extension property with respect to A if for every e 1 sequence C = { c j } j E  S of n x n matrices with 
the property that the Toeplitz operator Tzx,fc defined on L2(A) n x 1 by (1.1) is positive definite, the 
matrix function f c ( t )  = ~-~j~s CJ ei(j't) admits  a positive extension. Note that if S has the extension 
property with respect to A, it also has the extension property with respect to the sets - A  and m + A, 
where m ~ Z a. Furthermore, if S = Aj -- Aj for j = 1, 2, where A 1 _ A2, then it is easy to see that 
if S has the positive extension property with respect to A 1, it also has the positive extension property 
with respect to A2 (indeed, one has only to observe that TAI,fc is a compression of TA2,fc, and 
therefore TA2,fc > 0 implies TAl,fc > 0). Therefore, the sets A which are minimal (by inclusion) 
subject to S = A - A are of particular interest. Note that in our main result below (Theorem 1) the 
set S + is indeed minimal in this sense. r, v 

With the above terminology we may now reformulate the classical trigonometric moment result 
in the following form: The sets { - p  . . . . .  p} ___ Z have the positive extension property with respect 
to {0 . . . . .  p}. On the other hand, the negative results in [4, 23] may be stated as that for d > 2 and 
N > 3 the set 

f 

{(sl . . . . .  sd)  zd: Isjl-< N, j = l  . . . . .  d} 
does not have the positive extension property with respect to 

{(Sl . . . . .  Sd) E Z d : O < s j < N , j = l  . . . . .  d } .  

One of our main results establishes the positive extension property for infinite bands in Z 2 
bordered by two parallel lines that are of equal distance to the origin. For S c_ Z d let 1,V2 • be the 
subspace of 14)~ xn consisting of all n x n matrix functions f of the form 

f ( t )  = ~ c j e i ( j ' t ) ;  t = (tl . . . . .  td) ~ R a . 
jes  

We denote by A* the conjugate transpose of a matrix A. For a matrix valued function f ( t ) ,  we let 
f*  be the matrix function defined by f * ( t )  = ( f ( t ) )* .  The shorthand f . - 1  is used for ( f . ) - l .  

T h e o r e m  1. 
Let 

Sr, v = {(k ,e )E  Z2 : I k - r e l  <_ v} , 

where r is a real and v is a positive number. Then Sr, v has the positive extension property with 
respect to 

S + = [ (k ,e)  E Z 2 :  O < k - r s  or k - r e = O  and k > 0 1  r, v [. -- -- J ~ 
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In fact, if C is a sequence for which Ts+v,fc is positive definite, then a positive extension of f c  may 

= = ( Y i j ( ) ) i , j = l  E } / t ; s  + b e d e f i n e d  befoundasfollows: Letx(t)  (Xi j ( t ) )~ , j= 1 E VVS;!? andy(t) t n nxn 
r ,  v 

by 

(xiJ)i=l = ,fc (e j) ;  yij i=1 = T-s%,fc (e j ) ,  

where ej denotes the  jth column of the identity matrix, and let D(x) = P{(o,0)}(x) and D(y) = 
P{(0,0)I(Y). Then 

go(t) := x(t)*-l  D(x)x(t)  -1 = y(t)*-l  D(y)y(t)  -1 

is a positive extension of fc .  

Let A c Z a be a halfspace, i.e., (i) 0 r A, (ii) for a d-tuple m # 0, m 6 Z a, we have that 
m 6 A if and only if - m  C A a n d ( i i i )  m 6 A a n d p  6 A i m p l y m + p  6 A. Note t h a t A i s a  

nxn halfspace if and only if - A  is. For a positive definite g 6 W~ , we say that g allows a A-spectral 
factorization if we may write 

g = (I + ga)* DA(g) (I + ga) , (1.2) 

wheregA, ( i + g ^ ) - I  I belongto nxn cnxn. 
- W~ , and DA (g) ~ When this factorization exists, it is 

unique (see, e.g., (proof of) Lemma II.3.2 in [27]). In the scalar case one may use the results of  [7] 
to show that this factorization exists for all positive definite functions. In the matrix valued case we 
shall show that for the halfspaces A we consider, any positive definite function in ~A,~ xn admits a 
A-spectral factorization. Consequently, in our cases DA (g) is well defined for every positive definite 
g. 

W nxn admits positive extensions, then in the set of  all positive extensions of  f there is I f f  E Sr.~ 
a salient extension characterized by the following theorem. For Hermitian matrices A and B we let 
A > B denote the Loewner ordering, i.e., A > B denotes that A - B is positive semidefinite. 

Theorem 2. 
Wn xn is such that Ts+v, f is positive definite, and let Suppose that f ~ Sr.~ 

A =  { ( k , s  k - r s 1 6 3  . 

Then there is a unique positive extension go o f f  with the property that 

Da (go) > DA(g) 

for every positive extension g of f . Moreover, go is given by Theorem 1, and is the unique positive 
w n •  extension of f with the property that go 1 E sr.~ �9 

Theorem 2 remains valid when one replaces A by - A .  Note that DA(go) = D(x)  -1 and 
D-A(go) = D(Y) -1.  The extension go is sometimes referred to as the central extension of f .  For 
a positive function g we define its entropy as 

1 f02n f02n g(g) -- (2~r)a . . .  log [det g (q . . . . .  td)] dtl . . .  dta.  (1.3) 

Note that g (g)  = log det D a  (g) and log det is strictly concave on the set of  positive definite matrices. 
As a result, we obtain the following corollary of  Theorem 2. 

Corollary 1. 
In the notation of Theorem 2, go is the unique positive extension of f that maximizes the 

entropy among all positive extensions of f . 
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Our final main result in the introduction gives a parameterization of the set of all positive 
extensions of f .  

Theorem 3. 
Let fc ,  x, y, D(x), and D(y) be as in Theorem 1. Put u(t) = x( t )D(x)- �89 and v(t) = 

y(t)D(y)- �89 Then each positive extension of f c ( t )  in W~ • is given by 

(u + vg) *-1 (I  - g 'g )  (u + vg) -~ , 

where g(t) is an arbitrary Wiener n x n matrix function with support in the set {(k, s ~ Z 2 : 
k - re > v} and such that 

sup IIg(t)ll < 1. 
tER 2 

This correspondence is one-one. 

Similar results may be obtained by replacing S+~ with 

{ ( k , e ) ~ Z 2 :  O < k - r e < v  o r k - r s  and k < 0 } .  

Since the modifications for this choice are obvious, we shall not provide separate statements and 
proofs for this variation. 

Our paper is organized as follows. In Section 2 we prove the main results in the case that the 
slope r of the band is irrational. In Section 3 the main results are established in the case that r is 
rational. The proofs for the irrational and the rational case are completely different. In the first case 
we employ a new variation of recent results on almost periodic functions obtained in [22], while 
in the second case we reduce the problem to an operator valued one-variable case. In Section 4 
we discuss some extensions of the obtained results to other sets S, in particular, to periodic matrix 
functions of more than two variables. In Section 5 we present a version of the extension problem for 
positive measures. Finally, in Section 6 we interpret some of the results in the context of spectral 
estimation of ARMA processes. 

The scalar valued versions of Theorems 1, 2, and 3 have been announced in [2]. 

2. Proofs of the Main Theorems: The Irrational Case 

Our reasoning in this case uses extension results for almost periodic functions and related 
properties of operators on Besikovitch spaces, discussed earlier in [22]. Let us begin with the 
necessary background. 

Let (AP)  be the algebra of complex-valued almost periodic functions on the real line, i.e., the 
closed subalgebra of L~176 generated by the functions e i~'t , K E R. Recall that for any f ( t )  ~ (AP)  
the Fourier series is defined by the formal sum 

where 

~ f ~ e  ixt , (2.1) 
x 

1 f r  
fx lim J _  = e- i~t f ( t )d t ,  )~ ~ R ,  

T---> cx~ 2-T T 

and the sum in (2.1) is taken over the set ~r(f) = {L ~ R : f~ ~ 0}, called the Fourier spectrum 
of f ( t ) .  The Fourier spectrum of every f ~ (AP)  is at most a countable set. The coefficient f0 
in (2.1) is called the mean of f ( t )  ~ (AP),  and is denoted M{f} .  The Wiener algebra ( A P W )  is 
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defined as the set of all f e (AP) such that the Fourier series of f ( t )  converges absolutely. For the 
general theory of almost periodic functions we refer the reader to the books [6, 16, 17]. 

Denote by ( A P W )  m• the set (algebra if m = n) of m x n matrices with entries in (APW) .  
For A c R, we denote by (A P W)~ • the set of all f ~ (AP W) m xn such that ~r (fij)  ~ A for each 
matrix component fij  of f .  

Introduce a scalar product on (AP)  by the formula 

( f , g )  = M {fg*},  f , g  e ( A P ) .  (2.2) 

The completion of (AP)  with respect to this scalar product is called the Besikovitch space and is 
denoted (B). Thus, (B) is a Hilbert space. 

For a nonempty set A __. R, define the projection 

g ) Lea(f)NA 

f L e  izt , 

The projection r la  extends by continuity to the orthogonal projection (also 
We denote by (B)A the range of I-IA, or, equivalently, the completion of 

where f ~ (APW) .  
denoted FIA) on (B). 
(AP W)A with respect to the scalar product (2.2). The vector-valued Besikovitch space (B) n• t con- 
sists of n x 1 columns with components in (B), with the standard Hilbert space structure. Similarly, 
(B)~ • is the Hilbert space o fn  x 1 columns with components in (B)^.  

n x n  For any additive subgroup Z c R and f ~ (APW)r~ , the generalized Toeplitz operator 

�9 n x l  n x l  
T ( f ) a n z . ( B ) a n z - - + ( B ) a n z  

is defined by 
t 'l}~nxl 

g ~-~ FIa(fg),  g E ~uJAn z �9 

In the case Z = R, we use a shorthanded notation T( f )A in place of T ( f ) ^ n z .  
A Hilbert space operator T : 7/--+7-/is called positive definite if there exists an E > 0 such 

that (T f ,  f )  > , l l f l l  2 for all f E 7/. 
The positive extension theory for almost periodic functions consists of three main theorems 

below. 

Theorem 4. 
nxn Let Z c_ R be anadditive subgroup, and let lz > O. For a given function f E (AP W)[_tz,~]nr. 

the following statements are equivalent: 

( A P W  ~nxn (i) f has a positive extension in ~ ~z , i.e., there exists h ~ ( A P W ) ~  xn such that 
hx = f z for  all ~ ~ [ - /z , /z ]  N Z andthere is an E > 0 such that h(x) > d for all x ~ R; 

(ii) the generalized Toeplitz operator 

(iii) 

(iv) 

T(f)t0,ulnx : 

is positive definite. 

the generalized Toeplitz operator 

T(f) [ -g ,o lnz  : 
n x l  n x l  

(B)I_~,olnz--+ (B)[-t~,olnz 

(/~-~nx 1 . . . ~ ( l~nx l  

is positive definite�9 

f has a positive extension in (A P W) n • 
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When one (and thus all) of(i)  through (iv) is satisfied, then 

ho(t) = x * - l ( t ) M { x I x - l ( t )  = y * - l ( t ) M { y } y - l ( t ) ,  t 6 R (2.3) 

is a positive extension of  f in (APW)r~nxn. Here, x = (Xtj)i,j=l.. n E (APW)io~tz]n~nXn and y = 
n n• (Yij)i,j=l E (APW)[_~,o]n~ are given via 

(xiJ)i=l = (T(f)[o, lzln~;) -1 (ej);  . (Yij)i=l = (T(f)t-~,olnr~) -1 (ej)  , (2.4) 

where ej denotes the jth column of  the n x n identity matrix. 

Let Z~(~ Z) be an additive subgroup of R. Every positive extension h in (APW)n~x, n of f 
n x n  (6 ( A P  W)t_u,~zln~:) admits right and left spectralfactorizations 

h(t)  = h*+(t)Ol(h)h+(t), t E R ,  (2.5) 

h(t)  = h*_(t)Dx(h)h_(t),  t 6 R ,  

4-1 n x n  4-1 A P W  n x n  where h+ 6 (APW)to ,~)n~ , ,  h_ ~ ( )(-~,o]nr.', M{h+} = M{h_}  = I and Dl(h) ,  D2(h) 
are positive definite constant matrices. For h = ho formula (2.3) implies that x and y are invertible 
in nxn ( A P W ) z  , and that M{x} and M{y} are positive definite matrices. In fact, it turns out that in 
addition 

n• , y - I  n x n  
x -1 E (APW)[o,oo)nr ~ E (APW)(_~,olnr .  , (2.6) 

so that spectral factorizations of ho can be obtained from (2.3) by setting h+ = M{x}x  -1,  h_ = 
M{y}y  -1. Then, of course, 

Dl(ho)----M{x} -1, D2(ho)=M{y} - 1 .  

The extension ho has the following additional properties: 

T h e o r e m  5. 
Let lz and ~ be as in Theorem 4. Let f ~ ( A P W ) ( ~  ~)nr. be such that one (and thus all) 

of  conditions (i) through (iv) in Theorem 4 is satisfied. D'es~e ho by (2.3). Then ho is the unique 
positive extension in ( A P W )  nxn o f f  with the property that 

tr (ho l )  c [ - /z , /z] .  (2.7) 

Moreover, if  h is a positive extension in ( A P W)  n• o f f ,  then 

D1 (ho) > D1 (h), D2 (ho) >_ D2(h) (2.8) 

with each equality holding if  and only if h = ho. 

The third main result in this section concerns a description of all positive extensions in 
( A P W ) ~  • using the parameter set 

"n / / (CAPW)o~ ,~)n~  .-- g ~ ( A P W ) ( ~ , ~ ) n r  ~ : supllg(t)ll < 1 . 

Theorem 6. 
Let f ,  x, and y be as in Theorem 4, and let 

1 1 
u = x M { x } - 7 ,  v = y M { y } - :  . 
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Then each positive extension in (AP W)~ • o f f  is of the form 

T(g) = (u -Jr vg) *-1 (I - g'g) (u + og) -1 , 

n •  n x n  where g E (CAPW)(tz,c~)nr; Moreover, the correspondence between (CAPW)(tz,oo)nr " and the 

set of positive extensions in (AP W)~ • o f f  is one-to-one. 

Theorems 4 through 6 were obtained in [22, Sections 3 and 8] under the additional condition 
that/z ~ I3. The reasoning in [22] was based on the band method (see [8]), and the only statement 
the proof of which actually used this condition was the following auxiliary result in ([22, Lemma 
8.31). 

Lemma 1. 
n x n  Let f ~ (APW)I_u,,In~ be such that T(f)[o,~ln~ > 0. Then there exist unique x, y 

(APW)~ xn such that 

(1) a(x) c_ [0,/z] O 52, a(y) _ [-/z,  0] n 52; 

(2) a ( f x  - I) _ ((-oo,  0) U (/z, c~)) n 52, 
a ( f y - I )  c_ ( ( - c ~ , - / z )  u(0 ,  o o ) ) o z .  

Moreover, x and y are invertible in (APW)~ xn and 

(3) a(x -1) c_ [0, c~) n I2, a(y  -1) c (-c~,  0] n I~; 

(4) U{x} > O, U{y} > O. 

We will show that Lemma 1 holds even when/z r 52. To this end, recall that the following 
variation of Lemma 1 (with/z E ~)  is also valid (see [22, Section 10]). 

/ ,emma 2. 
n• Let f E ( A P W) (_u,~)nr " be such that T(f)[0,~)or~ > 0, and assume that Iz E ~. Then there 

exist unique x, y E (APW)n~ x" such that 

(5) a(x)  c [0,/x) N ~, a(y) c_ (--Iz, O] N N; 

(6) a ( f x - I )  C ((- -~,O) U[#,oo))n52,  
a ( f y - - I )  C_ ( ( - o o , - l z ] u ( o ,  o o ) ) n E .  

Moreover, these x and y are invertible in (APW)~ xn and 

(7) a(x - l )  c_ [0, r n I3, a(y -1) c_ ( -c~,  01N ~; 

(8) U{x} > O, U{y} > O. 

In fact, x and y are given by the formula 

n = T --1 n (x,j)/= 1 ( ( f ) t0 , ,~n~)  (ej);(yiJ)i= 1 = (T(f)(-tz,01n~) -1 (ej) . (2.9) 

We also need the fact that, under the hypotheses of Lemma 2,x and y are continuous functions 
of f in the norm Ilfllw: 

Ilfllw --- ~ IlfJ II 
j ~ R  

This is not obvious from (2.9), but follows from alternative formulas for x, y. Namely, the positivity 
of T(f)[0,~)n~ implies (see statement (A) in [22, Section 10]) that the matrix function 

G(t) = [ eilZti nf(t) e-ilXtln 
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a mitsacanonicala W oc,oriza,ion ----Ma*w ere =["o , a - - -  , ]is 

invertible in ( A P W ) [ o . ~ ) ,  with inverse ~ .~ , say. In terms of this factorization, 

x = (yq~ q- 8s~) (s~so - q ~ q o )  -1 , y = (p*ol~ -t- r*~)(o~ool~ - flor -1 , 

where ~o = M{ol}, flo = MIr etc. (It may be observed that }(t)  = y ( - t )  plays the role of  x( t )  
for f(t) = f ( - t ) . )  Since the mapping G ~-~ A is continuous in ( A P W )  2~x2~ norm [26, Theorem 
21, the induced mappings f ~ x and f ~ y are continuous in ( A P W )  ~xn norm as well. 

P r o o f  o f  L e m m a  1 (~  ~ I;) .  It is well known that either I~ = ~Z for a certain ~ > 0 or I~ is 
n• nxn dense in R. In the first case, every f e (APW)I_~,~]nr  " in fact lies in (APW)i_~o,~olnr " where 

/zo = L ~ / r J r .  Since/zo e E,  Lemma 2 allows construction of x, y satisfying (1), (3), (4), and (in 
place of  (2)) 

a ( f x  -- I )  C_ ( ( - - ~ ,  O) U (Uo, ~ ) )  n ~,  t r ( f y  - I )  c_ ( ( -oo ,  - l zo)  U (0, ~ ) )  n ~, .  

Since (/zo, <x~) n I2 = ( / zoo)  O Z,  ( - o o ,  - / zo )  n E = ( - o o ,  - / z )  o ~ ,  (2) is also satisfied. 
Let now E be dense in R. Choose /z '  e ~ n (0,/z). From the positivity of  T(f)[o,~lnr~ it 

follows that T ( f ) [ o , # ] n z  is also positive, with the same lower bound: T(f ) [o ,# lnr .  > r  According 
to Lemma  8.1 in [22], the latter inequality implies that T( f ) [o ,# ]  > d .  Since E does not depend on 
/z', and the latter can be chosen arbitrarily close to/z, it follows from here that T(f) [o ,g)  > EI. The 
latter condition allows us to apply Lemma 2, with E replaced by R. 

This leads to the existence of x, y e ( A P W )  nxn such that 

a (x )  C [0 ,# ) ,  a(y )  C ( - / z , 0 ] ,  a ( x  -1)  C [0, c~), a ( y  -1)  C ( - ~ , 0 ] ,  

a ( f x  -- I )  ___ ( - o o ,  0) U [/z, oo), a ( f y  - I )  C_ (--c~, --/z] U (0, oo), and M{x}, M{y} > O. 

These x, y are given by the formula 

n n 
(xiJ)i= 1 = (T(f)[o,tz)) -1 (e j ) ; (YiJ) i= 1 = (T(f)(_lz,o]) -1 (ej) . (2.10) 

r  n x l  Since ej E ~ J[o,/z]oI~ and T(f)to,~)l(B)to,tzlnz = T(f ) to ,~ lnz ,  the latter formula for x coincides 

with (2.9). A similar reasoning works for y. It remains only to sho w that a(x+l ) ,  a ( y  +l) c_ ~,  
because then 

a ( f  x - I )  c_ ( ( -oo ,  O) U [#, r O r, = ( ( - r  O) U (Iz, ~ ) )  n 

and 
a ( f y  - I )  c_ ( ( - ~ ,  - l z]  O (0, c~)) n ~ = ( ( - ~ ,  --Iz) U (0, oo)) n ~ . 

To this end, observe that for every positive operator A and a constant c > I IAI l, 

t( A - l =  1 I -  A . 
r 

j = 0  

Applying this observation to the positive operators T(f)[o,~),  T(f) ( - i~ ,o  ] in (2.10), we conclude that 
a(x ) ,  a ( y )  c ~.  

Finally, inclusions a ( x - 1 ) ,  a ( y  -1)  C ~ can be proved by using the same idea as in the proof  
of  Lemma  8.3 in [22]. Namely, consider a family f(u) = o l I +  (1 - o 0 f ,  0 < ot < 1. All operators 
T(f(a))[o,~) are positive, so that for each function f ( a ) ( e  (APW)[n_*~,tzlnr~) we can construct x (a), 

y(a) the same way as x, y were constructed for f .  According to the remark after Lemma 2, x (a) and 
y(a) are continuous functions of  ot e [0, 1] together with f (a) ,  which are invertible in ( A P W )  nxn. 
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t A P W  ~nxn Since X(1)(= I )  and y(1)(= I) are invertible in ~ :z  , Theorem 7.2 in [22] implies that 
x(~ x) and y(0)(= y) are also invertible in A P W ) ~  . [] nxn 

It follows from a general (i.e., independent of the relation between/z and E) statement of 
Lemma 1 and the band method (as developed in [9, 10, 11], and in [8, Chapter XXXIV]) that 
Theorems 4 through 6 also hold in this general setting; see in [22, Section 8]. 

To prove the results stated in the Introduction, in case of irrational r we now set ~ = Z + rZ. 
Consider the map 

nxn nxn S :  W~ ~ ( A P W ) z  

defined by 

where 

In other words, 

(S f ) ( t )  = ~ ,c je  i(jl-rj2)t,  t ~ R ,  (2.11) 

f (tl, t2) = ~ L  c j e  i(jltl+j2t2), (tl, t2) E R 2 . 

J=(Jl,J2)~z 2 

(S f ) ( t )  = f ( t ,  - r t )  . 

Since r is irrational, we clearly have 

(jl ,  j2),  (kl, k2) E Sr, v, j l  - r j2 = kl - rk2 =~ (jl ,  j2) = (kl, k2) �9 

Therefore, S is an isometric isomorphism between the Banach algebras W~ • and (APW)n~ xn. The 
same formula (2.11) also defines Hilbert space isometric isomorphisms (which we also denote by 
the same letter S) 

2 n• nxl L 2 IS  + .~nxl CB.~nxl (2.12) S :  L (Sr, O) -+(B)~ z ; S :  ~ r,v: ---~ :[o,v]nz" 

Application of the isomorphism S is also known as the Besikovitch trick, see [3]. 

P r o o f  of  T h e o r e m  1. Due to the isomorphism (2.12), the operators Tsar, f (acting on 
nxl L2( S+r, v)n• and T(Sf)[o,  vln~ (acting on (B)[0,vln~z) are positive only simultaneously. From here 

and Theorem 4 it follows that the positivity of Ts%,f implies the existence of positive extensions 

h ~ (APW)n~ • of the function S f .  In other words, there exist functions h ~ (APW)~  • such that 
hx = (S f )x  for all L 6 I -v ,  v} O E and h(x) > E1 for all x 6 R. Then, of course, g = S - l h  
(E W~rX n) deliver positive extensions of the original function f .  In particular, the extension go 

equals S-~ho, where h0 is given by (2.3), (2.4). [ ]  

Lemma 3. 
Let r be irrational and 

A = { ( k , e )  EZ2:  k - r e > O } .  

Then any positive definite g E W~ •  has a A-spectral factorization and a ( - A  )-spectral factoriza- 
tion. 

Proof .  Let g ~ W~ xn be positive definite. Then h := Sg allows factorizations (2.5). To find the 

A- and (-A)-spectral factorizations of g, put gA = S - l (h+) ,  D^ (g) = Dl(h), g - a  = s - l ( h - ) ,  
D_A(g) = D2(h). [ ]  

P r o o f  of  T h e o r e m  2. Since r is irrational, the set A consists of the pairs (k, l) ~ Z 2 such that 
k - rl > 0. Hence, for every positive extension g(6 W~ • of f ,  (1.2) yields the right spectral 
factorization (2.5) of h = Sg, with D1 (h) = DA (g). According to Theorem 5, D1 (h) < D1 (ho), 
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where h0 is given by (2.3), (2.4). Hence, Dh(g) < DA(go) for go = S-lho.  On top of that, h0 
is a unique positive extension of S f  having the property a(h  -1) c [ -v ,  v], so that go is a unique 
positive extension of f in W~ xn with the property go I E W n xn [] St', v " 

P r o o f  of  T h e o r e m  3. According to Theorem 6, all positive extensions of S f  in (A P W)~ xn are 
of the form 

(U + VG) *-1 (I - G 'G )  (U + V O )  - 1  , 

n x n  where U = xM{x} -1/2, V = yM{y} -1/2 with x, y given by (2.4), O ~ (APW)o,,m)nz and 
suPt~R I lO(t)ll < 1. Moreover, this correspondence between the set of positive extensions and the 
open unit ball of (AP W)(nx, n)nr, is one-to-one. 

It remains to use a (also one-to-one) correspondence (2.1 1) between (APW)~:n xn and w~n x n, 
and set u = S - I U ,  v = S - 1 V ,  g = S - I G .  [] 

3. Proofs of the Main Theorems: The Rational Case 

In this section we assume that r is rational. We prove Theorems 1, 2 and 3 in this case by 
making use of the band method (see [9, 10, 1 1] and the books [8, 27]). For this, let S+v and A be 
as in the statements of Theorems 1 and 2. Further, let 34 = W~ xn, and introduce the direct sum 
decomposition 

34 = 341 q- 340 _1_ 34d -1- 340 '1-344, (3.1) 

with 

( o)* n x n  c n •  , 341 = W A \ s + v , 3 4 0 =  n x n  = = , ]/VS~v\{(O,O)} ' ,M e 340 = 34 344 (341)* 

where the involution * is given by F*(t) = (F(t))*. The unit e in the algebra 34 is the function that 
is constant equal to I. Note that decomposition (3.1) defines a band structure on 34, as defined in [8, 
Chapter XXXIV.1]. Let C be a sequence for which Ts~,fc is positive definite. In order to apply the 
band method we need to show that the equations 

P2 ( f c x ) =  e, P3 (fcY) = e (3.2) 

have solutions x ~ 342 := 340 + Aid and y ~ 343 := 340 + .Me such that Pax > O, PaY > O, 
x -1 ~ 34+ := 341 + 340 + Aid, and y-1 ~ 34_ := 344 "1- 340 _.1_ -Add" Here, P2, P3, and Pa 
denote the projections onto .M2, 343, and 34,t along their respective complements as suggested 
by (3.1). It is not hard to see that the functions x and y defined in Theorem 1 satisfy Equation (3.2), 
and are in fact the unique elements to do so. What is less obvious is that these elements x and y have 
the desired properties. We shall prove this for x in the next proposition, which makes use of the one 
variable operator valued results in [9]. The proof for y is similar. 

Write r = /~ ,  where p, q are relatively prime integers, and q > 0. (If r = 0, we take p = 0, q 
q = 1.) Let N = [qv], the largest integer that does not exceed qv. Let also 

We start with a lemma. 

/ , emma  4. 

A = { ( k , e )  E Z 2 :  O < q k - p g . < N }  . (3.3) 

W n •  Let f r  &. . Then Ts%,f c is positive definite if and only if Ts is positive definite. 

Proof. Since Ts%.f c = Ps% T;x,yc Ps%, the if part follows immediately. 
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For the only if part, let us first remark that since p and q are assumed to have no common 
divisor, we have that 

This implies 

d~f{ z 2 } I0 = (k, l )  e : q k - p l = 0  = { m ( p , q ) : m e Z }  . (3.4) 

L 2 (Io) = Cmeimptle imqt2 : ]Cm[ 2 < C~ . (3.5) 

t m = - o o  m = - e o  

Consider the subspaces 

Vm .~- {e-imptle-imqt2h : h 6 L 2(5 + ~nxl[ r,v/ / '  m = 0 , 1 , . . . .  

In view of the definition of S+v we have Vml C Vm2 i f m l  < m2. Moreover, using (3.5) we easily 

see that the union Um>_oVm is dense in L2(dx) n• For g = e-imptte-imqt2h, with h 6 L2(S+v)nxl, 
m > 0, we have that 

(TTx,jcg, g) = (e-imptle-imqtzfch, e-imptle-imqt2h) 

= EIIhI]~ = Ellgll 2 , 

where ~ is independent ofg .  By the earlier mentioned density, it follows that (Ts% ,fcg' g) > E llgll22' 

for every g e L 2 ( ~ )  n• 1. [ ]  

We will also need the following result for operator valued functions. Let 7-/be a Hilbert space. 
Denote by WT-t (T) the operator Wiener algebra on the unit circle T, that is, the set of  all operator 
valued functions F on T of the form 

+oo 
F(3.) = E 3 . J F ( j ) ,  ~. e T ,  

- - 0 0  

with F ( j )  6 s (the algebra of all bounded linear operators on 7-/) and Y~q [i fi'(J)I] < oo. Also, 
let 7 ~ be a projection acting on W~(T)  according to the formula 

and denote PWT-t(T) = W~(T). 

Lemma  5. 

-~-oo 

(PF)ff.) = y~ X@(j), 
o 

Let F 6 WT~(T) and F()O is a positive definite operator on ~ for each )~ e T. Then there 
exist a positive definite operator D( F) e s and F+ invertible in W~(T)  so that Iv+ (0) = I and 

(3.6) F(~.) = F+()O*D(F)F+(~.). 

This representation is unique. 

Lemma 5 was obtained in [27, Lemma III.3.1], as a variation of the result in [13] for operator 
functions close to the identity and their scalar multiples. It is important for our purposes that, 
according to [13] and [27], F+ and D(F) in (3.6) are given by the formulas 

D(F) = G _ ( ~ ) G + ( 0 ) ,  F+(~.) = G + ( 0 ) - I G + ( ~ . ) ,  (3.7) 
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where 

G+(~) -1 = I - 79M(X) + 79[M(L)79M(k)] . . . .  , IXl < 1,  (3.8) 

flG_(k) - i  = I -  QM(L) + Q[(QM(L))M(L)] . . . .  , I~-I > 1,  (3.9) 

M(3.) = f l - l F 0 ~  ) - I,  fl is an arbitrary positive constant greater than maxxeT IIF(X)llccn), Q = 
1 - 7  9, and 

G*_G+ = F.  (3.10) 

In the case of finite dimensional 7-/, factorization (3.10) was established in [12], and its special 
form (3.6) for positive definite matrices in [25]. 

Proposition 1. 
Let C be a sequence for which Ts~,fc is positive definite. Then the unique solution x E At2 

of Equation (3.2) has the properties that (i) Pdx > 0 and (ii) x is invertible in At+. 

Proof. Let 
I j = { ( k , g )  EZ2: q k - p e = j } ,  j = O , + l  . . . . .  

Consider the following alternative decomposition of At:  

A t  = .A~ 1 --[- j~[0 --I- J~'ld --[- j~'[0 --[- .A~[4 , (3.11) 

with 

- A ~ I = A t l , - A ~ ~  h=l lh ' d =  I0 ,j~.,[O= jQ  * , . A ~ 4 =  ~ 1  �9 

Note that decomposition (3.11) also defines a band structure on At. In this context it is natural 
to consider the Toeplitz operator Ts : L2(A) nxl ----> L2(Zk) nxl,  which by Lemma 4 is positive 
definite. Note that (in the self explanatory notation) 

N :(C 
h=O 

(3.12) 

With respect to decomposition (3.12) the Toeplitz operator Ts has the following matrix form: 

[ Mr~ Mf-I "'" Mf-N 1 
MA Mfo Mf_N+t 

Th,sc = �9 . . , 

MfN MfN_I Mfo 

where 
fh(t) = E cjei(j't); 

jcIh 

and M A denotes the multiplication operator 

h = 0 , •  . . . . .  + N ,  

Mfh : Z2 (Ihl)n• (lhl+h) "• 0 < hi,hi + h < N 

Mfh(g)  = Yhg, g e L 2 ( I h , )  n •  . 

To put our problem in the context of  Section III.3 in [27] or Section II.1 in [9], we use the unitary 
operator 

: L2 ( l l )  nxl -->L2 (I0) nxl 
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defined by 
(dpf)(t)  = e-i(k(1)q+e(l)t2)f(t), t = (tl, t2) E R 2 , 

�9 O) g(1)  wherer  , aref ixedintegerssuchthatqk( l l -pe O) = 1. Theneph : Lz(Ih~)n•  ~• 
Introduce kO = diag(eph)n=0. By Theorem II.1.2 and its proof in [9], the operator polynomial 

X(L)  = Xo + Xl)~ + . . .  + XN)~ N, )~ ~ C ,  where [xo 
XI 

qIT;x,fcql* 

XN 

[ (3.13) 

has the properties that X0 > 0 and X(Z) is invertible for all 1).I < 1. Consequently, X()0 is invertible 
for all IZl < 1 + ,  for some positive , ,  and the inverse has an expansion X(~.) - l  = )--~-~=0 Yk~'k, 
I~.1 < 1 + , .  

To make the connection with the solution x that we are seeking, first of all observe that by 

the inequality (Ti , , f  c u, u) > , (u ,  u), w h e r e ,  > 0 is independent of  u, for vectors u of  the using 
/ I 

form 

I ul 
u2e i  (k (l)t I +s 

u = . ; uj E c n ;  qk  ( j ) - p s  = j ,  

U N e i (k(N) tl +s t2) 
that the matrix function 

fo(t) . . .  f -N(t)  ] 

J F(t )  = " 

fN( t )  " "  fo(t)  

is positive definite for all t ~ R 2. It follows (one can use induction and Schur complements to verify) 
that F ( t )  -1 is a matrix function whose entries are in the Wiener algebra W~ xn. Write 

foo(t) . . .  foN(t)  ] 
F( t )  -1 = �9 . J " 

fNo(t)  "'" fNN( t )  

n• Here 3~j ~ l'Vli_ j �9 Clearly, foo(t) is positive definite for all t ~ R 2. Using (3.4), we may identify 

foo with an n x n matrix valued function on the unit circle T. According to Lemma 5, it can therefore 
be factorized in the form 

foo(t) = (I + f~o(t))* n (I  + f ~ ( t ) )  , (3.14) 

where D ~ C nxn is positive definite and f + ( t )  and (I + f~o(t)) -1 - I lie in WT~ n, where I + = 

I0 f-I A. Note now that X().) = Y'~N__ o ~tMAo)~t.  Because of  the special form of the coefficients of 
X we get that X(X) -1 is of  the form 

X( ) ' ) - I  = E ~kMyk~'k ' (3.15) 

k=0 

where yt ~ ~/V~[ n. Put now 2(t) = ~ v = 0  fko(t).  Note that (3.13) implies that P h ( f c 2 )  = 
n x n  1, and moreover, (3.15) yields that 2(t) -1 = Y~.~=oYk(t) C WAUlo. Let now x( t )  = (1 + 

f + ( t ) )  *-1 (foo(t) + . . .  + fNo(t)) .  It is now easy to check that x has the desired properties. [ ]  
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Proposition 2. 
Let r ~ Q and 

A = { ( k , e )  6 Z 2 :  k - r s  > O or k - r g . = O  and k > O} . 

Then every positive definite g ~ VP~ • has a A- and a ( - A  )-spectral factorization. 

Proof.  Let g ~ ~/V~ xn be positive definite, and let Ij be as in the proof of Proposition 1. Con- 
sider the multiplication operator Mg on L 2 (Z2) n x I. With respect to the decomposition L 2(Z2) n • l = 
~hazL2(ih)n • 1 the operator Mg has the form Mg = (Mg(k-j))k,j~Z, where g(k) (t) = ~-.J~k gJ ei <j,t> 
and g j, for j ~ Z 2, are the Fourier coefficients of g. Consider now 

S()O = EMg(k)~k)Jc, Z e T ,  (3.16) 
k ~ Z  

with ~ defined as in the proof of Proposition 1. This is an operator valued function acting on 
7-[ = L2(Io) n• 1 and positive definite simultaneously with Mg. According to Lemma 5, S(~.) admits 
a factorization 

S(Z) = S~_(~.)D(S)S+(Z), (3.17) 

where S+ and D(S) are found via (3.7), (3.8), and (3.9) with F replaced by S. Induction shows 
that each term in the right-hand side of (3.8) and (3.9) has the form Y-~j Mq~ ~J)J  with qj having 

nonzero Fourier coefficients only in lj .  Hence, G~_ 1 (defined in (3.9) with F replaced by S) inherit 
the same structure. Due to (3.16), and (3.10), this is also true for G_ (= SG+ 1) and G+ (= G-1S). 
In particular, G_(or • and G+(0) • have the form Mqo. From here and (3.7) it follows that 

D(S) = Mqo and S+()O = I + Y-~j>_ l MqjdpJ~.J. Setting ~. = ei(k(1)tl+l(1)t2), we obtain from (3.17): 

( ) g = E g  (k ,= I + E q j  qo l + Z q j  �9 
k~Z j>l  ] j>l  

Now from the positive definiteness of D(S) = Mqo we conclude that 

qo(t) = Z ~mei(ptl+qt2)m 
mEZ 

also is positive definite for all t e R 2. Letting L = e i(ptl+qt2), we see that ~0(~.) = ~,meZ ~m ~'m is 
positive definite for all ~. e T. Applying Lemma 5 again (this time, in its finite dimensional version) 
we may write 

qo(~.) = (I q- ~+(~.))* D (qo) (I q- ~+(~.)) , 

where D(qo) ~ C nxn is positive definite and ~+(~), (I + ~+(~))-1 _ I have Fourier expansions of 
the form ~j>_l Cj)d. Plugging back e i(ptl+qt2) in place of ),, we see that 

qo(t) = (I + q+(t))* D (qo) (I + q+(t)) 

t / x n  with q+, (I + q+)-I  _ I lying in ),V c for/~- = I0 N A. Let now g^ = (I + q+)(I + ~']-j>_l q J) 

and DA(g) = D(qo). This gives the A-spectral factorization. For - A  a similar reasoning applies. 
[] 

P r o o f  of  Theorems  1, 2, and  3 (the case of  ra t ional  r).  This is a direct application 
of Theorems XXXIV.I.1, XXXIV.1.2, XXXIV.1.3 (Theorem 1), XXXIV.4.2 (Theorem 2), and 
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XXXIV.2.1 (Theorem 3) in [8]. That the notions of positive definiteness here and in [8, Chap- 
ter XXXIV.1], are the same, follow from the existence of factorization (1.2) for positive functions 
as shown in Proposition 2. For the unital C*-algebra 7"4 from [8, Chapter XXXIV.1], we choose 
(LOO (Td))n xn. With this choice it is easy to see that Axioms (A) in [8, Chapter XXXIV.2], and (C 1) 
and (C2) in [8], Chapter XXXIV.4, are satisfied. [ ]  

4. Some Variations and Generalizations 

Along with the set Sr, v, one may also consider 

Sr~ = {(k, l) E Z2: I k - r l [  < v } .  (4.1) 

We have the following variation of Theorems 1, 2, and 3. 

Theorem 7. 
The set S~ defined by (4.1) has the positive extension property, with respect to 

Sr+~ E Z 2 : 0 < k - r l < v  or k - r l = O  and k > O }  . 

I f  Ts+O ' f is positive definite, then all positive extensions of f in W~ • are given by 

(u + vg) *-1 (I - g'g) (u -t- vg) -1 , (4.2) 

where g(t) is an arbitrary Wiener n x n matrix function with support in the set {(k, e) ~ Z 2 : 
k - re > v] and such that 

sup [[g(t)l[ < 1, 
t E R  2 

u(t) = x(t)P{(o.o)} (x) -1/2, v(t) = y(t) P{(0,0)I (y)-l/2, and x, y are defined by 

(Xij) n , fc (ej)" (yij)in__l = T_s+O f c (ej) i = 1  = ' " 

This correspondence is one-to-one. 
The extension go [corresponding to g = 0 in (4.2)] is a unique positive extension o f f  with the 

nxn  property go 1 ~ W~o  . Moreover, go is a unique positive extension o f f  maximizing D^(g), where 

A =  { ( k , s  k - r g . > O  or k - r g . = O  and k > 0 }  . 

For the case of irrational r and r r Z, or for the case of rational r and noninteger q v, the sets 
Sr~ and Sr.v coincide. Hence, in these cases Theorem 7 does not contain any additional information 
when compared with Theorems 1, 2, and 3. For the case of irrational r and v 6 I~ the proof of 
Theorem 7 is based on the "point excluding variations" of Theorems 4 throug h 6 (see Section 10 
in [22]). For the case of rational r and integer qv, one can use the same proofs as in Section 3 but 
with N substituted by N - 1. 

Theorems 1, 2, and 3 can be generalized to certain sets of Z a (with d > 2) for which the 
Besikovitch trick can be used to reduce the problem to the corresponding positive extension problem 
for almost periodic matrix functions of one variable. 
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Theorem 8. 
Let r ---- (rl . . . . .  rd) be a d-tuple of real numbers which are linearly independent over the field 

of rational numbers. Then for every positive number v, the sets 

and 

S =  { J = ( j l  . . . . .  j d ) � 9  I ( j , r ) l _ < v } ,  

S ~  {j = ( j l  . . . . .  j d ) � 9  d" I( j , r) l  < v }  

have the positive extension property, with respect to 

= { J = ( / 1  . . . . .  j d ) � 9  0 < ( j , r ) < v }  A 

for S, and analogously for S ~ 

The formula for all positive extensions [analogous to (4.2)] is valid under the hypotheses of 
Theorem 8, as well as the description of the positive extension go with maximal D^ (go) analogous 
to the description of go in Theorem 7. 

The proof is analogous to that of Theorems l, 2, and 3 for the irrational case, by using the 
isometric isomorphism 

n x n  i ~ x n  S :  W~I -+(APW) A , 

where A = r lZ  + r2Z + - - .  + rdZ is defined by 

( S f ) ( t )  = E c jexp{(r l j l  + ' . ' + r d j d ) t } ,  J = (Jl . . . . .  jd) 
j~Z a 

for 

f (tl . . . . .  td) = ~aCj exp {(jltl + " "  + jdtd)} �9 )42~ • �9 

Finally, consider the multidimensional generalization of the rational case: 

Theorem 9. 
Let r = (rl . . . . .  rd) be a nonzero d-tuple of rational numbers. Then for every positive number 

v, the sets 

= ] J = ( j !  . . . . .  j d ) � 9  d :  I( j , r) l  _< v[ , 
f 

S 
t ] 

and 
f 

zd"  I(j,r)[ 
I 

U 

have the positive extension property with respect to 

{ j = ( j l  . . . . .  Jd) �9 Z d: O< ( j ,r )  <. v or O= (j ,r)  and jl  >-0} 

for S, and analogously for U. 

Again, the description of all positive extensions, and the characterizations of the positive 
extension that maximizes DA (g) are valid in the context of Theorem 9. 

The proof is analogous to that of the rational case of Theorems l, 2, and 3 (see Section 3): 
Denote ri = ~ ,  where Pi and qi > 0 are relatively prime integers (put Pi = O, qi = I when ri = 0). 

Denote Q -- lcm(ql, . . . . . . .  ., qd), and T = gcd(Qqgl I -~-Qvd .) > 0. Let now N ---- LyQvJ, and 

I j =  (kl . . . . .  k d ) � 9  b Pm___QQ=j j = 0, S:I, 
m=l ~rn qm T . . . . .  
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Now proceed as in Section 3. 
Thus, in the d-dimensional case we have proved the positive extension property of the sets 

{ j = ( j l  . . . . .  jd) e Z d :  I ( j , r ) l < v } ,  { J = ( j l  . . . . .  jd) e Z d :  l ( j , r ) [  < v }  , (4.3) 

provided that the dimension of  the vector space spanned by rl ,  �9 �9 rd (where r = (rl, �9 . . ,  rd)) 
over the field of  rationals is either 1 or d. In the intermediate cases, when this dimension is strictly 
between 1 and d, it is an open question whether the sets (4.3) have the positive extension property. 

5. Another Version of the Positive Extension Property 

In this section we present a variation of the positive extension property. Here, we allow the 
sequence C to be just bounded; on the other hand, the positive extensions are sought in the set of 
measures. Only scalar functions will be considered in this section. 

Let us give the precise definitions. For a positive Borel measure/z  on T d, we define the 
moments of/z  by 

[ kl k2. Ck(l z) = I X1 X2 " 'x~adlz(x) ,  x = (Xl . . . . .  xd) e T d 
,IT d 

where k = (kl, k2 . . . . .  kd) e Z d. The set {ck (/z) }~z  d is clearly bounded; it is also positive (definite) 
in the sense that 

ck-e(lz)hkf~e > 0 (5.1) 
k,s 

for every finite set {hk}k~r of complex numbers. The verification of  (6.1) is immediate: for a 
continuous function 

h(t) = ~ hke i(k't), t e R d , 

k~K 

the left-hand side of (6.1) coincides with fTa h(x)h(x)dlz(x),  where x = (e ikltl . . . . .  eikdtd). 

We can now formulate the positive extension problem for measures. Let be given a set S c Z d 
and a sequence C = {cj }j~s of complex numbers such that sup Icjl < oo (e ~176 sequence). 

j~s 
(PEPM): Find, if possible, a positive Borel measure Iz on T d such that cj = cj (lz) for all 

j E S .  
If  S = A -- A for some A _ Z d, then a necessary condition that (PEPM) admits a solution/z 

is tha t  {cj}jE S is  positive on S, i.e., 

ck-ehkfze > 0 (5.2) 
k,e~K 

for every finite set K _ A and every set of  complex numbers {hk}k~K. If  this necessary condition 
is also sufficient for existence of a solution/z of  (PEPM), then we say that S has positive measure 
extension property with respect to A. 

For example, Z d has (PEPM). This is a consequence of Bochner's Theorem and the fact that 
T d is the character group of Z d. Sasv~i  proved [24] that vertical bands {(k, l) e Z 2 : Ikl < v} 
have the positive moment extension property. Our main theorem in this section is the following 
generalization of SasvS_ri's result. It should be noted that there is a simple trick to go from the case 
when r = 0 to the case when r e Q (see, e.g., Lemma 1.2.6 in [18]). 
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Theorem 10. 

(a) The sets 

St, u =  { ( k , e ) ~ Z 2  : I k - r e l  < v }  , 

and 
Ur, v ~--{(k ,s  Z2:  l k - r e l  < v] , 

where r is a real number, and v is a positive number, have the positive measure extension 
property, with respect to 

(k, s e 2 2 : 0 < k - re < v or k - re = 0 and k >_ 0} , 

(b) 

and 

respectively. 

The sets 

and 

(k, e) e 2 2 : 0 < k - re < v or k - re = 0 and k > 0} , 

j = (jl . . . . .  Jd) ~ Zd : l(J,r)l  < v} 

{j = (jl . . . . .  jd)  e Z d :  I( j , r ) l  < v } ,  

where r --- (rl . . . . .  ja) is a d-tuple o f  real numbers that are either all rational or linearly 
independent over the rationals, have the positive measure extension property, with respect 
to the sets 

j --- ( j l , - . . ,  jd)  E Z d : 0 < ( j , r )  < v or 0 = ( j , r )  and j l  > 0} 

and 
j = ( j l  . . . . .  jd) E Z d :  O< ( j , r )  < v or O =  ( j , r )  and j l  > 0 }  , 

respectively. 

Lemma 6. 
W n• be such that F( t )  is positive definite for  every t ~ R 2. Let F ~ sr.~ 

G, G E W s;Xn such that 

F = GG* = G*G . 

Then there exist 

Proof .  This lemma is easily proved using the factorization (1.2). Indeed, since F is positive, by 
Propositions 3 and 2 we may factorize F as (I  + H ) D ( I  + H)*, where H and (I + H)  -1 - l belong 
to W~ • and D ~ C n• In fact, since F ~ )/~rX n, w e  get that n = F ( l  + H ) * - I D  - 1  - jr E 

/ ' / x n  / ~ x n  
" l / V +  . W(Sr, v_A)N A C [ ]  -- S~,v 

P r o o f  o f  T h e o r e m  10. We prove only part (a) for Sr, u. All other parts of the theorem can be 
proved similarly. Let a bounded positive sequence C = {cj }j~sr,~ be given. Define a functional ~c  
on Wsr,~ by 

d~c(h) = ~ c j h j ,  (5.3) 
j eSr,, 

where 
h(t)  = ~ h i e  i(j't) E )/Vsr.v �9 

jasr, v 
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Clearly, 4~c(h) is a linear functional on W s  .... and 

kbc(h)l < sup lcjl I h j l .  
J EZd jEZ d 

Let h E Wsr, v be such that h(t) >_ 0 for all t E R E and the support {j E Sr, v : hj  ~ 0} o fh  is finite. 
By Lemma 6 (or since we are in the scalar case, we can also use [7]), h admits the factorization 

h = GG* , 

where G ~ Ws+ v. Writing G(t) = Y-]j~s~v gJ ei(j ' t) '  w e  have 

j~zd k,~-j~s~v k,e~Sr+.~ 

Thus, dpc(h) > 0 by the positivity of C. Since the set of functions with finite support is dense in 
14; (in the norm II �9 I I w ) ,  using (5.3) we obtain by continuity that (bc(h) > 0 for every h ~ Wsr,~ 
such that h(t) > 0 for all t. Ws~,~ is an operator system in the unital C*-algebra C(T d) of all 

continuous functions on T d (see, e.g., [20] for definition and properties of operator systems.) By 
Krein's Theorem (see [21, p. 156] or [20, p. 23]), q~c can be extended to a (necessarily bounded) 
positive functional ~c on C(T2). By the Riesz Representation Theorem, 

&(h)=f, dhdlz, h E C ( T 2 )  , (5.4) 

where/z is a positive Borel measure on T 2. The measure # satisfies the requirements of the theorem. 
[] 

Our final remark connects with Toeplitz operators. Let S = A - A, and let a sequence 
C = {cj}j~s be given such that Y]j~s Icjl < c~. Then the Toeplitz operator defined by Tfch = 
PA( fch) ,  h E L2(A) is positive semidefinite if and only if C is positive in the sense of (5.2). 
Indeed, let h ~ L2(A) have only finitely many non-zero Fourier coefficients: 

h(t) = E hkei(j ' t)  ' 

k~K 

where K C A is a finite set. Then 

= ( :cjei<J't)E ~ h k e  i(k'`), ~-~h e i(p't)\ {Tfch, h) ( f ch ,  h) = = ~_~ cjhphk- Z_, P 
�9 j~S k~K pcK / 

where the sum is over all triples k ~ A, p e A, and j e S such that - p  + j + k = 0, which proves 
our claim. 

6. Application to Spectral Estimation for ARMA Processes 

The identification problem for wide sense stationary autoregressive moving averages (ARMA) 
stochastic processes is a classical signal processing problem. In this section we consider (wide sense) 
stationary processes Xm,n depending on two discrete variables defined on a fixed probability space 
(K2, .A, P). We shall assume that the random variables Xm,n are centered, i.e., their m e a n  E(Xm,n )  
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equals zero. Recall that the space L2(~,  ,,4, P)  of square integrable random variables endowed with 
the inner product 

Ix, r / :=  e ( r 'x )  

is a Hilbert space. A sequence X = (Xm,n) (m,n)~Z 2 is called a stationary process on Z 2 if for 
m, n, k, s e Z we have that 

, ( ,  ) E ( X m , n X k , s  = E Xm.l_p,n+qXk-t-p,e-i- q = :  R X (m - k ,  n - ~ ) ,  f o r  a l l  p, q e Z .  

It is known that the function Rx, termed the covariancefunction of X, defines apositive semi-definite 
function on Z 2, i.e., 

k 

E oti&jRx ( r i -  rj, si - sj) > O, 
i , j= l  

for all k e N, or1 . . . . .  otk e C, rl . . . . .  rk, sl . . . . .  s~ e Z. The theorem of Herglotz, Bochner, 
and Weil on positive definite functions states that for such a function Rx there is a non-negative 
measure/zx defined for Borel sets on the torus {(u, v) : u, v e [0, 2Jr]} such that 

Rx(r, s) = f e-i(ru+sv)dtxx(u, v), 

for all integers r and s. The measure/zs is referred to as the spectral distribution measure of the 
process X. The spectral density f x  (u, v) of the process X is the density of the absolutely continuous 
part of /zx,  i.e., the absolutely continuous part of /zx equals 

dudv 
f x  (u, v) ~ . 

The classical signal processing question of estimation concerns finding one possible spectral 
distribution measure of processes X, or the determination of all such measures, based on observations 
of the covariance function Rx(r, s) of X over a limited region ((r, s) e S, say). When processes 
with the prescribed observations indeed exist, one may in addition ask for the one(s) with the worst 
possible prediction error. Helson and Lowdenslager [14] have shown that, with the definition of 
the past being a halfspace A, this prediction error is given by the entropy E(fx) of fx .  When this 
prediction error is > 0 (or, equivalently, f log f x  > -o o ;  a so called non-deterministicprocess) and 
/zx is absolutely continuous, the stationary process may be represented as a moving average. For 
this, represent f x  (nonnegative and summable on the bitorus) with respect to the halfspace A as a 
square 

boo + 12 fX(U,V)= E bm'ne-i(mu+nv) 2---~176 
(m,n)~A 

the existence of which is guaranteed since f log f x  > - c ~  (see [14, Theorem 3]). Then Xpo,qo, 
where (Po, qo) is the successor (when it exists) of (0, 0) in the ordering induced by A, may be written 
as 

Xpo,qo = b0,0~0,0 q- ~ bm,n~m,n , 
(m,n)~A 

where ~m,n are orthogonal stochastic processes. If, in addition, we may write 

f x ( u , v ) =  1 - H ( u , v )  ' 
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where H(u, v) = ~-'~(m,n)EA Bin, nei(mu+nv)' with ~ Ilnm,n II < ~ ,  then we have that 

Xo,o -  ~ Hm,nXm,n=eZ/2~O,O, (6.1) 
(m,n)~A 

which means that the process is autoregressive. The set {(m, n) 6 A : Hm,n ~ 0} is sometimes 
called the support of the autoregressive process X. We refer to Reference [1] as a general reference 
on ARMA processes and related issues. 

The results stated in the introduction may now be interpreted as follows. 

Theorem 11. 
Let 

St, v =  { ( k , e ) ~ Z 2 :  I k - r ' , <  o} , 

where r is a real and v is a positive number, and 

S + = [(k,e)  E Z 2 :  O < k - r e < v  or k - r s  and k > O [  r, V [ - -  - -  J " 

Given are complex numbers R(s, t), (s, t) ~ Sr, o. There exist wide sense stationary processes X 
such that its covariance function Rx satisfies 

Rx(s, t) = R(s, t), (s, t) ~ Sr, u , (6.2) 

if and only if {R(s, t) : (s, t) ~ Sr, u} is a positive sequence on S+u. In case the slope r is rational, 
and {R(s, t) : (s, t) e Sr,~} is absolutely summable and strictly positive on Sj+u (i.e., TS~,fR > 0), 

then X may be chosen to be an ARMA process with support in S+u \ {(0, 0)}. The autoregressive 
representation (6.1) of an ARMA process with this support is unique and may be found by taking x ( t ) 
as in Theorem i (with the sequence C replaced by R), and letting 

H(u, v) = I - x(u, v)D(x) -1 , 

and )~ = - log D (x ). The processes with these autoregressive representations are also the processes 
with the maximal prediction error among all processes satisfying (6.2). 

Analogous interpretations can be given to the results stated in Section 4. 
Let us remark that in [19] the domain 

S M , N = { ( n , m ) : n = - - N , m > - - M  or - N + I  < n < N - - 1  or n = N , m < M }  

is considered. In that paper reflection coefficients are developed as well as a 2-D Levinson algorithm. 
It should be noted that this domain is also conducive to using the band method; however, it is an 
open problem on how to obtain the appropriate analog of Proposition 1. 

A c k n o w l e d g m e n t s  

The authors wish to thank Professor I. Gohberg for suggesting the use of the Besikovitch trick 
to them, Professor A. Seghier for acquainting them with References [4] and [23], and Professor G. 
Castro for acquainting them with Reference [1]. In addition, we would like to thank Professor Ph. 
Loubaton for his comments, especially regarding the signal processing application. The research 
of MB was partially supported by GSU Grant 97-024. The research of LR and HJW was partially 
supported by the NSF Grant DMS-9500924. The research of IMS was partially supported by the 
NSF Grant DMS-9401848. The research of HJW was also partially supported by a Faculty Research 
Assignment Grant from the College of William and Mary. 



Positive Matrix Functions on the Bitorus 

References 

43 

[1] Azencott, R. and Dacuhna-Castelle, D. (1986). Series of Irregular Observations, Springer-Vedag. 

[2] Bakonyi, M., Rodman, L., Spitkox~sky, I., and Woerdeman, H.J. (1996). Positive extensions of matrix functions of two 
variables with support in an infinite band, C. R. Acad. Sci. Paris, 323, 859-863. 

[3] Besikovitch, A.S. (1954). Almost Periodic Functions, Dover Publications. 

[4] Calderon, A. and Pepinsky, R. (1950). On the phases of Fourier coemcients for positive real periodic functions, in 
Computing Methodv and the Phase Problem in X-Ray Crystal Analysis, Pepinsky, R., Ed., 339-346. 

[5] Castro, G. (1997). Coefficient de R6flexion G6n&alis6s. Extension de Covariance Mnitidimensionelles et Autres 
Applications, Ph.D. Thesis, Universit6 de Paris-Sud Centre d'Orsay. 

[6] Corduneanu, C. (1968). Almost Periodic Functions, John Wiley & Sons, New York. 

[7] Ekstrom, M.E and Woods, J.W. (1976). Two-Dimensional Spectral Factorization with Applications in Recursive Digital 
Filtering, IEEE Trans. Acoustics, Speech and Signal Processing, 24, 115-128. 

[8] Gohberg, I., Goldberg, S., and Kaashoek, M.A. (1993). Classes of Linear Operators II, OT 63, Birkh~iuser, Boston, 
MA. 

[9] Gohberg, I., Kaashoek, M.A., and Woerdeman, H.J. (1989). The band method for positive and contractive extension 
problems: An alternative version and new applications, Integral Equations and Operator Theory, 12, 343-382. 

[10] Gohberg, I., Kaashoek, M.A., and Woerdeman, H.J. (1991). A maximum entropy principle in the general framework 
of the band method, J. Functional Anal,, 95, 231-254. 

[11] Gohberg, I., Kaashoek, M.A., and Woerdeman, H.J. (1990). The band method for extension problems and maximum 
entropy, in Signal Processing Part I, Auslander, L., Kailath, T., and Mitter, S., Eds., IMA Volumes in Mathematics and 
its Applications, 22, 75-94, Springer-Verlag. 

[12] Gohberg, I.C. and Krein, M.G. (1960). Systems of integral equations on a half line with kernels depending on the 
difference of argnments, Am. Math. Soc. Transl. (2), 14, 217-287. 

[13] Gohberg, I. and Leiterer, J. (1972). Factorization of operator functions relative to a contour. II. Canonical factorization 
of operator functions close to the identity, Math. Nachr., 54, 41-74. (Russian). 

[14] H. Helson, H. and D. Lowdenslager, D. (1958). (1961). Prediction theory and Fourier series in several variables. I. 
Acta Math., 99, 165-202. 
II. Acta Math., 106, 175-213. 

[15] Krein, M.G. and Nudelman, M.A. (1977). The Markov Moment Problem and Extremal Problems, Am. Math. Soci. 
Trans., Providence, RI. 

[16] Levitan, B.M. (1953). Almost Periodic Functions, GTTL, Moscow. 

[17] Levitan, B.M. and Zhikov, V.V. (1982). Almost Periodic Functions and Differential Equations, Cambridge University 
Press, Cambridge. 

[18] Loubaton, Ph. (1989). Champs stationnaires au sens large sur Z2: proprietes structureUes et modeles parametfiques. 
(French) [Wide-sense stationary processes on Z2: structural properties and parametric models], Traitement Signal, 
6(4), 223-247. 

[19] Marzetta, T.L. (1980). Two-dimensional linear prediction: autocorrelation arrays, minimum-phase prediction error 
filters, and reflection coefficient arrays, IEEE Trans. Acoust. Speech Signal Process, 28(6), 725-733. 

[20] Paulsen, V.I. (1986). Completely Positive Maps and Dilations, Pitman Research Notes, 146, Longrnan Scientific and 
Technical. 

[21] Paulsen, V.I., Power, S.C., and Smith, R.R. (1989). Schur products and matrix completions, J. Functional Anal,, 85, 
151-178. 

[22] Rodman, L., Spitkovsky, I.M., and Woerdeman, H.J. (1998). Carath6odory-Toeplitz and Nehari problems for matrix 
valued almost periodic functions, Trans. Am. Math. Soc., 350, 2185-2227. 

[23] Rudin, W. (1963). The extension problem of positive definite functions, Illinois J. Math., 7, 532-539. 

[24] Sasvfiri, Z. (1987). On the extension of positive definite functions, Radovi Mat., 3, 235-240. 

[25] Smulyan, Yu. (1953). Riemann's problem for positive definite matrices, Uspehi Matem. Nauk, 8, 143-145. 

[26] Spitkovsky, I.M. (1989). On the factorization of almost periodic matrix functions, Math. Notes, 45, 482--488. 

[27] Woerdeman, H.J. (1989). Matrix and Operator Extensions, CWI Tract 68, Centre for Mathematics and Computer 
Science, Amsterdam, The Netherlands. 



44 M. Bakonyi, L Rodman, LM. Spitkovsky, and H.J. Woerdeman 

Received August 11, 1997 

Department of Mathematics, Georgia State University, Atlanta, GA 
e-mail: mbakonyi@cs.gsu.edu 

Department of Mathematics, The College of William and Mary, Williamsburg, VA 
e-mail: lxrodm@math.wm.edu 

Department of Mathematics, The College of William and Mary, Williamsburg, VA 
e-mail: ilya@math.wm.edu 

Department of Mathematics, The College of William and Mary, Williamsburg, VA 
e-mail: hugo@math.wm.edu 


