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ABSTRACT. We argue in this paper that the systematic use of special software in instruction 
has a profound impact on the notion of function as an abstract entity to be constructed. We 
argue that through the medium of the computer, the objects in the graphical, tabular and 
algebraic settings can change their essence and thus become objects of a new kind we call 
representatives. Actions on representatives which naturally arise in this framework induce 
an ontological shift. A taxonomy of the skills involved in the learning of the concept of 
function through these new ontological lenses is presented, as well as software, and problem 
solving tasks that embody the same ontological perspective. Within the framework of a 
teaching experiment, students' acquisition of many of the identified skills was investigated 
by means of a questionnaire and interviews during computer supported problem solving 
sessions. The most salient results of the study indicate that a majority of students were 
able (1) to cope with partial data about functions (e.g., problems of interpolation and 
arbitrariness), (2) to recognize invariants (i. e., properties of functions) while coordinating 
actions among representatives from different settings, and (3) to recognize invariants while 
creating and comparing different representatives from the same setting. 

1. INTRODUCTION 

The mechanisms that underlie the growth of concepts taught in schools 
are often very different from the mechanisms accompanying concepts 
growing outside of school. Resnick and Greeno (Resnick and Greeno, 
1990; Resnick, 1992; Greeno, 1991) have articulated a theory which posits 
that important segments of mathematical knowledge have their origins in 
everyday experience with quantities of physical material and discourse 
about that material. According to this view, concept acquisition is inti- 
mately linked to actions on objects and conservation of invariants under 
actions. In contrast, school learned concepts are often acquired through 
analogical and metaphorical processes, in which the learner needs to map 
a well known concept onto a new (target) knowledge (for example learning 
about electric circuits using a water flow model; see Gentner and Gentner, 
1983). In the case of mathematics, there is often no source knowledge 
that students can map onto high level concepts, and learning is reduced 
to mapping between several notation systems signifying the same abstract 
object (Kaput, 1992). 

Educational Studies in Mathematics 29: 259-291, 1995. 
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The concept of mathematical function does not escape this pattern. 
The relevant symbolic notational systems are the tabular, the graphical 
and the algebraic settings) By means of them students make descriptions 
and predictions, and solve problems about functions. In a comprehensive 
review of the literature about functions, Leinhardt, Zaslavsky and Stein 
(1990) surveyed research on functions and graphs. Some interesting gen- 
eral phenomena emerged. First, research focusing on students' difficulties 
shows persistent problems in linking information from different settings, 
indicating that different entities are signified, and that mental representa- 
tions corresponding to each of the settings have their own developmental 
trajectory. In other words, research shows that students' knowledge is com- 
partmentalized. Second, in many instructional research studies, students 
used notational systems which were not constructed but given to them; 
when students constructed their own graph, formula, or table, the con- 
struction was often technically so demanding that modifications such as 
changing scales or adding new data were avoided. 

In this study, we created an entire functions curriculum, and imple- 
mented it in several classes. We took the three classical settings (graphical, 
tabular and algebraic) as given and designed activities which stressed the 
relationships between them. As pointed out by Douady (1986), such activ- 
ities induce interplays between settings ("jeux de cadres"), which allow 
for changes of setting according to students' progress and the evolution of 
their concept of function (see also Artigue, 1990). The activities required 
students to construct new objects belonging to the settings, called repre- 
sentatives, and to manipulate, compare, and transform these objects. A 
central aim in the design of the activities was the discovery of invariants 
under actions, i.e. functional properties. Thus, no new notational system 
was created, but new objects, new actions, and new links among the objects 
and actions of different settings could be created and were aimed to allow 
students to construct properties of functions at a level which integrated 
between the graphical, tabular, and algebraic settings. 

The environment we used to achieve this goal, the Triple Representa- 
tion Model (TRM) is a computer microworld that eliminates the "technical 
load" from tasks on functions and stresses the use of concurrent dynamic 
settings. It thus shares common properties with other environments such as 
the Function Analyzer (Schwartz and Yerushalmy, 1989) or the Function 
Probe (Confrey, 1991). In each of these systems, settings are linked: oper- 
ations undertaken in one setting affect the others. A design characteristic 
specific of TRM is that it not only stresses parallels between settings but 
also compels students to actively construct the links between them. 
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In this paper, we investigate two questions of a very different nature. 
First, we explain why, and how microworlds such as TRM can redefine the 
function concept. The second question is an experimental one: what is the 
nature of knowledge acquired by students who manipulate the objects of 
a microworld about functions? The approach we adopted in this research 
differs from the theory-driven studies undertaken by Dubinsky and Harel 
(1992) and Sfard (1992); their approach was to articulate a theory (based 
in both cases on ideas used in other content domains by Thompson, 1985, 
and Douady, 1986), and apply it to the notion of function. In their studies, 
experimental research was to some extent accessory; it played the role 
of checking out the theory. In our approach, the theory developed from, 
in conjunction with and simultaneously with the experimental classroom 
implementation of the curriculum. Comparing the theoretical positions is 
not the goal of this paper; for this purpose, it would have been necessary 
to undertake a fine-grained developmental study. 

Our scope is limited to a non-developmental analysis of cognitive con- 
structs of individuals. We attempt to describe the status of functional rep- 
resentations for students, how they connected them, and whether they 
comprehended them as signifying the same abstract entity. We ignored 
"situations", confining ourselves to the kinds of settings and actions that 
computerized environments such as TRM could generate. In spite of these 
limitations, a new view of the nature of functional thinking emerged; the 
results of the experiment proved this new view to be realistic. 

2. SETTINGS AND REPRESENTATIVES 

2.1. Ambiguity 

Graphs, tables, and formulae are often treated as if they characterized a 
function unambiguously. A table with a constant rate of change is sup- 
posed to describe a linear function. Similarly, any straight line segment 
is considered to be the graph of a linear function. And the formula 1/x is 
considered to be the function given by f(x) = 1/x in the domain x # 0. 
However, such plain formulations hide several problems: For the formula 
l/x, the domain has not been specified. Graphs and tables are generally 
partial and partiality generates ambiguity: For example, the table 

x -1 0 1 

y -1 0 1 
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matches the functions y = x, y = x'* (n odd) and y = sin( 7rx/2); and the 
graphs of y = x(x + Ixl)/2 or y = x 2 look the same on any partial domain 
contained in x _> 0. 

Another problem causes graphs to be ambiguous. Graphs are concrete 
realizations which are equivocal in the sense that there is a limit to the 
accuracy of their drawing. For example, in most coordinate systems the 
graphs of f(x) = 1/(1 + x) and g(x) = 1 - x + x 2 appear identical in the 
bounds - 0 . 2  < x < 0.2, 0 < y < 1. Worse, the graphs of an arbitrary 
function f(x) appears identical to the graph of h(x) = 10 °'°°°ix- f(x) in 
a much larger domain. (See Bertin, 1968 and Hajri, 1986 for additional 
examples). In order to distinguish the two kinds of graphical ambiguity, 
the former one will be called partiality and the latter one equivocity. 

Finally, many algebraic representatives are also ambiguous, for two 
possible reasons: One is the frequent failure to specify a domain for a 
function; the other is that there is no unique formula representing a function. 
For example, the formulae y = 4 x - 12 and y = 4(x - 3) define the same 
linear function; similarly, the expressions Ixl and V/(x 2) define identical 

objects; whether or not x + 3 and ~ do, depends on the role which 
is assigned to the domain of a function and exemplifies the ambiguity 
arising from this source. Algebraic ambiguities have received far more 
attention than the tabular or graphical ones; for example, Kieran (1989) 
discriminates between the different forms that an object can take in the 
algebraic setting. 

2.2. Curricula and Ambiguities 

All these distinctions may seem subtle, if not pedantic. Why care about the 
accuracy of a drawing, or about the fact that what looks like a straight line 
is perhaps not? And indeed, curricula and teachers usually avoid dealing 
explicitly with ambiguities due to partiality and equivocity. Instead, they 
tacitly use conventions; for example, graphs and tables are used in spite of 
being partial if they exhibit as many properties of the function as are deemed 
sufficient; hereby sufficiency cannot be defined absolutely but may depend 
on such extraneous factors as curricular goals, grade and ability level, and 
even on the particular problem under consideration. A graph might be 
deemed sufficient if it displays domains of increase, extrema, points of 
inflection and zeros. Similarly, the problem of equivocity is circumvented 
by using conventions. For example, a smooth graph is assumed to preserve 
its smoothness when undergoing magnification (see, however, the local 
straightness approach by Tall, 1991). 

In contrast to graphs and tables, algebraic ambiguities are dealt with 
extensively in most school curricula: students manipulate algebraic expres- 
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sions in order to find out whether two algebraic formulae define the same 
function or not. 

The fact that educators dodge most problems of ambiguity causes sur- 
prising effects: graphs, tables, and formulae representing the same function 
are grasped as separate static entities, as mathematical objects in their own 
right, instead of as distinct representatives of a single object; thus stu- 
dents do not experience the need to analyze a graph, because they consider 
it as displaying all the properties one needs to know. Instruction often 
concentrates simply on translation skills between these separate objects; 
and these skills tend to become mere technicalities for the students. As a 
consequence, they do not have the opportunity to appreciate the overall 
structure of the notion of function (Schoenfeld, Smith and Arcavi, 1993). 
It is then not surprising that research has shown that most translation 
skills taught in schools are difficult, including interpretation of graphs, 
translation between graphical and algebraic settings, or fitting an algebraic 
expression to a table of values (e.g., Leinhardt, Zaslavsky and Stein, 1990). 
In summary, instead of being grasped as an object through the different 
settings, functions are apprehended as formal entities, the only possible 
actions on them being algebraic. Avoiding the problem of ambiguity gives 
rise to compartmentalization of knowledge about functions. 

We suggest that ambiguity problems are avoided in standard curricula 
because students do not have the tools to cope with them. Reordering tables 
of values according to various criteria is tedious, at best. Drawing a single 
graph of a function is so time-consuming that drawing several graphs 
at different scales for comparison purposes cannot be made a standard 
activity. Moreover, the technical load when drawing graphs is such that 
beginning students cannot be expected to simultaneously think at the higher 
level needed to decide which bounds and scales are appropriate to a given 
task. Instead of becoming the objects of transforming actions, graphs and 
tables are thus given or constructed once and for all. As Kaput (1992) 
notices, they are display notation systems as opposed to the algebraic 
setting which is an action notation system in which the student can compute 
values or transform formulae. 

This situation is compounded by the fact that in principle, graphs are 
themselves abstract. Mathematicians distinguish between the graph which 
is an abstract entity, and the concrete realization of this graph: For mathe- 
maticians (and for all the students who learned in the 60's!) the graph of a 
function is the set of all the points (x, fix)) in a Cartesian plane. Therefore, 
the abstract mathematical graph is disconnected from any concrete embod- 
iment: no system of coordinates, and no units. Throughout this paper, the 
term "graph" will designate a concrete realization of the abstract graph. 
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Fig. 1. Two graphical representatives of  f(x) = x(20 - 2x) 2. 

As mentioned in the introduction, concept acquisition is intimately 
linked to actions. The lack of such actions in certain settings implies that 
properties may not be seen as invariant through several settings. Such 
properties may, for the learner, become features of formal objects (graphs, 
formulae or tables) rather than properties of the concept itself. This is why 
the above compartmentalization of students' knowledge occurs. 

This situation caused us to take a theoretical position which makes 
explicit the difference between a setting, say the graphical one, and the 
objects which correspond to a given function in this setting, i. e. the pos- 
sible graphs of that function; these objects will be called representatives. 
Our position is closely linked to the profound impact which systematic 
use of specifically designed software can have on the notion of function as 
an abstract entity to be constructed. We argue that the computer medium 
replaces each of the canonical objects of the settings by a variety of rep- 
resentatives which may be created by the student, and that the problems 
of ambiguity arising in traditional instruction can be tackled by means of 
the actions made possible by the software. This ontological shift allows to 
consider all settings as action settings where the actions are on representa- 
tives. In the following subsection, we shall first discuss the meaning of the 
term representative and then state what we mean by action on representa- 
tives. 

2.3. Representatives of Functions 

In the graphical setting a representative is obtained by choosing a viewing 
window characterized by the bounds of the x-values and of the y-values. 
For example, Fig. 1 shows two representatives of the function f(x) = 
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x(20 - 2x) 2. It is important (though obvious) to note that new represen- 
tatives of a graph can be obtained simply by changing the units of the 
axes. 

In the algebraic setting, specific formulae with or without domain spec- 
ification are representatives. Tabular representatives are simply all the 
possible tables obtained by choosing a set of x-values with correspond- 
ing y-values. An additional type of representative is intermediate between 
the tabular and the algebraic: computer environments allow one to auto- 
matically generate a set of x values with corresponding values of y = 
f(x). The resulting representative resembles a table of values, but the fact 
that the values appear automatically and in the form f(x) confers to this 
kind of representative a dynamic, algebraic character. We will call these 
representatives of the search type. 

We distinguish two kinds of actions. The first kind changes the function 
itself. Such actions allow one to define and study an auxiliary function in 
order to solve a problem. Examples include shift and stretch transforma- 
tions, derivatives in function discussions, and squaring, say, to replace the 
search for extrema of fix) by the search for extrema of the simpler function 
g(x) = (f(x)) 2. Such activity is typical in more advanced mathematics and 
therefore this kind of action is rarely included in introductory courses about 
functions. 

The second kind of action does not alter the function but only its rep- 
resentatives. A typical aim is to generate a representative which shows 
a particular property of the function. Such actions are made possible in 
typical functions software by means of a set of operations such as scaling, 
rearranging a table according to a particular criterion such as decreasing 
x-values, or refining the step of a search type representative (Schwartz and 
Yerushalmy, 1989). By means of such actions on representatives, students 
can discover properties which are invariant under change of representative 
and which are thus characteristic of the function itself. Realizing the exis- 
tence of such invariant properties is likely to give the student access to the 
concept of function at a level transcending that of representatives. 

3. A BRIEF TAXONOMY OF FUNCTION SKILLS 

As has been explained in Section 2, whenever one solves a problem about 
a function, one is in fact dealing with (acting on, operating on, transform- 
ing .. . .  ) one or several representatives of that function. Solving any such 
problem whatever, will require "thinking about functions". The study of 
"thinking about" is usually dealt with in terms of "thinking skills". This is 
not because of the wish to equate the knowledge of a particular concept 
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The function f satisfies f(1) = 3 f(1.1) = 3.10 f(l.2) = 3.30 f(1.3) = 3.60 f(1.4) = 4 f(1.5) 
= 4.50 f(1.6) = 5 f(1.7) = 5.40 f(1.8) = 5.70 f(1.9) = 5.90 f(2) = 6 
Which of the following graphs is the 'best fit' for f? 

(1 ,3) fl ,3) U ,3) 

(2  , 6 7 

(1 ,3) (1 ,3~ (1 ,3) 

Fig. 2. Q3: Translating from numerical to graphical information. 

2,6) 

with the knowledge of a list of skills, but because a taxonomy of skills 
constitutes a syntax for dealing with these concepts (Astington and Olson, 
1990). While these skills may express, imply or require understanding 
about the (abstract) function, they will always be carded out on represen- 
tatives of the function. Skills may link comparable actions on different 
representatives and compare features of representatives which originate 
in the same properties of the (abstract) function; skills may infer prop- 
erties of the (abstract) function from representational information. In the 
present section, we list and classify the skills which are central for an 
understanding of  the function concept in those terms. This classification is 
not all inclusive, but most of the skills which are not considered here, are 
assumed to be held by all the students, for example the fact that an element 
of the domain of a function has only one image. 

3.1. Overview of Skills 

To begin with, let us consider a problem that will be designated as Q3 
later on (see Fig. 2). There are several ways of solving this problem. 
But in whichever way one solves it, one needs to translate the numerical 
information which is given in an algebraic notation into graphical infor- 
mation which will be given in terms of points or slopes. Moreover, one 
needs in some way or other to deal with the fact that the given numerical 
information is partial - it contains only eleven points out of a continu- 
um. When integrating all moves towards the solution, one needs to read 
abstract functional properties (in this case increase and rate of increase) 
from information given in the numerical or algebraic setting. 
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Similar analysis of large sets of problems led to the following classes 
of skills: 

SI: Be able to cope with the fact that representational information is 
partial. 

$2: Be able to link between representatives belonging to different settings. 
$3: Be able to carry out transformations between representatives within 

the same setting. This includes mainly dynamic transformations on 
graphs. 

Each of these classes of skills can be performed at different levels, from 
technical manipulation to the recognition of abstract properties of function. 
For example, $2 can stand for (i) simple translation of information such 
as points over (ii) integration of information from several settings to (iii) 
"seeing" one setting "in" or "through" a representative from another one. 
In the following subsections, these classes of skills are concretized by 
listing specific pertinent skills and illustrating them by means of problems 
in whose solution they are useful. 

Remark: As with any classification, this one is not completely clean. It 
will be seen below that one skill (linking parts of a graph) will be classified 
into two classes because in one way or another it belongs to either. A few 
skills could not be classified at all; but it was gratifying to find out, and it 
confirmed our belief in the usefulness of the proposed classification, that 
the few skills which could not be classified were either too general (general 
problem solving skills) or too trivial (remembering the shapes of certain 
graphs) to be important at the level of this discussion. 

3.2. Partial Information 

Representatives, to whatever setting they belong, generally present partial 
information. "Advanced" representatives, in particular formulae, may at 
least implicitly contain most of the possible information about a function. 
For example, if a mathematics teacher in a calculus course refers to "the 
function f(x) = 1/x/(x 2 - 4)", the well educated student might infer that 
f(x) is a real valued function defined on the set of reals greater than 2 and 
smaller than - 2  which assigns to any x in this domain a real number y 
given by the relationship y = f(x). From this, tables of values and graphical 
settings of various kinds for the same function can be constructed. On 
the other hand, information about a function given in graphical form is 
necessarily always partial because of the choice of a viewing window and 
limited precision of any graphing tools. Similar remarks apply to tables 
of values. If it is assumed that a rounded picture of the function concept 
includes representatives from such settings, that in many cases they give 
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Given the function f(x) = -2x 3 Which of the following graphs cannot be a part of the graph 

of f? 

i J 
Fig. 3. Q2: Recognizing whether graphs have the same or different concavity properties. 

The graphs below represent a function f in three sub-domains. Draw the graph of the 

function in one single coordinate system. 
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Qla: Integrating several partial graphs of a function into a single graph. 

a required global picture of the function and that they are sometimes the 
only available choice, beginning students need to learn how to deal with 
the partiality. 

Sla: PARTIAL DATA: To be able to recognize discrete numerical and/or 
graphical information about preimage-image pairs (graphed, tabulat- 
ed, or listed as in Q3) as belonging to a continuum of data points. 
Being able to infer properties such as increase of the function from 
this discrete information. Such recognition is closely linked to skill 
Slb. 

S lb: INTERPOLATION, particularly, interpolation between points of a 
graph; often, interpolation needs to be sufficiently smooth to take 
concavity into account. This is the case, for example, in Q2 displayed 
in Fig. 3: here, it is necessary to recognize whether two graphs have 
the same or different concavity properties. 

Slc: PARTIAL GRAPH: To be able to recognize and use the fact that any 
representative from the graphical setting has properties that derive 
from the abstract mathematical graph. Question Qla in Fig. 4 illus- 
trates this skill. 
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The graph of the function f passes through the points shown in the figure. 
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Fig. 5. Q4~: Using the arbitrariness of functions. 
1. Which of the following values of x gives the minimum of the function? 
(a) x = -3 (b) x = -2 (c) x = 3 = (d) Other (e) Undecidable. 
Explain your answer. 
2. The minimum satisfies which of the following conditions? 
(a) f(x) = rq (b) f(x) < [] (c) f(x) > [] (d) Other (e) Undecidable. 
Explain your answer• 

Sld:  LINKING PARTS OF A GRAPH: To be able to integrate into a 
single graph of  a function several partial graphs of that function from 
different, possibly partially overlapping domains and with possibly 
different scales (see for example QIa). 

Sle:  ARBITRARINESS:  To be conscious of the fact that a function is 
"arbitrary" and to use this in order to think in a flexible manner 
about several/many/all possible interpolations (see skill S lb), even 
if the given data suggest a very specific interpolation. For example, 
in Question Q4a in Fig. 5, the student needs to guard against what is 
suggested as natural, namely a linear interpolation. 
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3.3. Links between Different Settings 

The skills of transferring information between different settings have been 
widely discussed in the literature and we will therefore limit their descrip- 
tion to the minimum; however, in view of the curricular goals described 
above, such transfer skills are considered as prerequisites to skills which 
go beyond transfer and lead to integration of information into a single, uni- 
fied concept image (Tall and Vinner, 1981). These integrating and unifying 
skills are included here under the same headings with the transfer skills 
because only in specifically designed and well controlled situations have 
we been able to make a founded judgment on whether a student is simply 
transferring information or also integrating it. Research results from such 
a situation have been presented in Schwarz and Dreyfus (1993) and will 
be recapitulated below (Section 5.3). 

S2a: LINKING BETWEEN GRAPHICAL AND NUMERICAL INFOR- 
MATION: This includes, for example, the ability to move points from 
a table or list into a graph, such as in the problem described above 
(Q3). But it also includes the ability to induce numerical information 
using qualitative properties of graphs. 

S2b: LINKING BETWEEN NUMERICAL AND ALGEBRAIC INFOR- 
MATION: Realize that any algebraic rule is the representative of a set 
of (numerical) preimage-image pairs and be able to reason within this 
framework; in other words: be able to handle functional properties as 
relationships between these ordered pairs. A more advanced aspect 
of this skill is symbolization from numerical information; e.g. find a 
quadratic function with vertex at (0, 5) which goes through (5, 0). 

$2c: LINKING BETWEEN ALGEBRAIC AND GRAPHICAL INFOR- 
MATION: This includes graphing on the basis of algebraic infor- 
mation, including many levels from point plotting to calculus based 
function discussion. An example from Q5 is, whether f(x) = 2 + 1/x 
is increasing in x > 0? This question requires a very high level of 
algebraic reasoning. The reverse direction, symbolization, includes 
dealing with graphically given data by means of symbols such as the 
inequalities in Q4a; more advanced symbolization skills have been 
investigated by Ruthven (1990). 

3.4. Transformations of Representatives 

In view of what has been explained in Section 2, establishing links between 
different representatives from the same setting becomes equally important 
as establishing links between representatives belonging to different set- 
tings. In most cases, this concerns dynamically transforming (parts of) 
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graphs into each other; but it also includes transformations within the 
algebraic setting (such as simplifications), which will be omitted from 
consideration here and transformations within the numerical settings such 
as the following skill: 

S3a: REORDERING TABLE: Understand that order in a table is irrelevant 
and be able to reorder a table, e.g. according to increasing values of 
the independent variable. 

S3b: SCALING: This is the prototype link within the graphical setting. It 
is the ability to recognize and to carry out, at least intuitively, a stretch 
(or shrink) transformation on one or both axes of a graph; in other 
words: to construct the transform of a given graph under a different 
(linear) scaling. This is a visual, analytic rather than an algebraic 
skill. Qla directly addresses this skill: the behavior of slope under 
scale transformations is considered; Q2 requires an understanding of 
the fact that the absolute value of slope can be changed by scaling, 
but not its sign, and that properties such as smoothness, and concavity 
are qualitatively preserved under scaling, but not the values of slope 
and curvature. 

$3c: LINKING PARTS OF A GRAPH: (Note that the same skill is listed 
in Subsection 3.2 as skill Sld; it belongs to both classes.) The ability 
to integrate into a single graph of a function several partial graphs 
of that function from different domains and with possibly different 
scales (see for example Qla). 
TRANSFORMING FUNCTIONS2: The ability to create new func- 

tions from given ones by specified rules such as shifts and reflections. 
These transformations were hardly used in this research and the skill 
is listed primarily in order to provide an outlook onto where a classi- 
fication of more advanced function skills could lead. 

S3d: 

3.5. Complex Function Skills and Abstraction 

The skills discussed hitherto are high level skills in the sense that they 
are complex: they concern a network of mutually interconnected pieces 
of information. They involve in most cases several representatives, often 
from different settings; they go beyond simple functional skills such as 
plugging a value into a formula, or reading coordinates in a graph: they 
establish and use connections between the ways in which different repre- 
sentatives exhibit the same functional properties; they are used to mentally 
add information to one representative that can only be gleaned from anoth- 
er one or to integrate different properties of the same function on the basis 
of representatives expressing different parts of that function. 
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For example, the skill S ld  (linking parts of a graph) requires the estab- 
lishment of links between different partial graphs of the same function; 
hereby, the scales on the x-axes of the two graphs may be different, the 
scales on the y-axes may be different, and the two ratios between the 
respective units on the y- and x- axes may be different so that even if the 
two windows overlap (which they may) the corresponding representatives 
may look qualitatively different. The student thus needs to conceptually 
connect and carry out comparisons between the different scales, as well as 
corresponding sub-domains (on the x-axes) and corresponding representa- 
tives. 

Conceivably, such a global complex skill can be taken apart and ana- 
lyzed into its constituent skills; a start of such a decomposition has been 
carded out in the previous paragraph. However, learning about these com- 
ponents will not usually bring a student very far in acquiring the global 
skill because very often, the components make sense only within the larger 
framework of the global skill. 3 In designing learning activities, we thus 
considered the skills globally from the top down, rather than by trying to 
help students to construct them out of constituent skills. A leading idea of 
this top down approach was to help the students generate links between 
functional settings by stressing the parallels between them. We argue that 
the skills listed above support the formation of such links and thus the 
ability to handle abstract properties of functions. For example, the ability 
to recognize the property that a function increases from any of its graphical 
or numerical representatives can be based on skill Sla; it is much harder 
to recognize increase from an algebraic representative (without differenti- 
ation) directly. However, we will see that, by linking algebraic, numeric, 
and graphical representatives (S2b and $2c), it is possible to acquire a well 
developed sense of the concept of increase. 

Similarly to the property of increase, the general property of "linearity" 
is generally easier to recognize in the graphical and the algebraic settings, 
than in the numerical one. Here also, knowing linearity stems from studying 
partial data, from constructing links among representatives from different 
settings, and transforming representatives from the same setting into each 
other. 

4. MULTIREPRESENTATIONAL SOFTWARE FOR FUNCTION SKILLS 

Because of the globality and the complexity of the skills at which we were 
aiming, we decided that open ended problem solving activities should 
be a central feature of the curriculum; sample activities will be given 
below, in Sections 4.2 and 5.1. The curriculum has been described in more 
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detail elsewhere (Schwarz, Dreyfus and Bruckheimer, 1990; Schwarz and 
Bruckheimer, 1990). Here we limit ourselves to those aspects that are 
relevant for the experimental part of the research. 

The curriculum was built around a software environment for the fol- 
lowing four reasons: first, because appropriately designed software envi- 
ronments support problem solving (Dreyfus, 1991); secondly because in a 
software environment it can be made easy for students to generate repre- 
sentatives; one role of the software is thus to be a factory for representatives 

- and a very flexible factory at that; the third reason is that the software 
environment can make it easy to move between representatives, whether 
the move is within one setting such as in a rescaling operation or between 
different settings. Finally, as will be seen in the following subsection, 
a software environment can be designed in such a way as to stress the 
parallels between settings. 

4.1. The Triple Representation Model Environment 

In the present research TRM played the role of a tool that supports students 
in using representatives from several settings to solve function problems 
and, at the same time, allowed the researchers to identify the setting in 
which the students act, the representatives they are using, and the progress 
they make towards solving the problem. Thus it was both, a learning tool 
and a research tool; many design decisions were taken because of their 
(presumed) cognitive effectiveness; others were introduced in order to 
adapt TRM to the research needs; often, the two aims resonated with each 
other. 

TRM is structured into three distinct settings: Table (later abbreviated 
as T), Graph (G) and Algebra (A). Only one TRM setting is active at any 
given time. There are two ways in which the student can, from the active 
setting, access the passive settings: Reading from and switching to another 
setting. This significant design decision was taken for didactic reasons and 
because of our research aims. It forces the student to make a conscious 
choice, in which setting to work; this choice, in turn, enables the researcher 
to identify in which setting the student acts, at any given moment. Within 
each setting, TRM is structured operationally. Next, the TRM operations 
relevant for this paper are described separately for each setting. 

Table. The most important operation of the tabular setting is Findlmage. 
The Findlmage operation can be used if a function has previously been 
defined by means of an equation, in the algebraic setting. Findlmage can 
be used to display the y-values corresponding to given x-values in a table. 
The table thus produced is a particular representative of f. 
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Graph. The most important operation of the graphical setting is Draw. 
Like FindImage, Draw is used to generate representatives of a function 
which has been defined algebraically. The representatives generated by 
Draw are graphical. Figure la  shows the graph produced by y = f(x) 
= x(20 - 2x) 2, after the student has specified the bounds 0 < x < 10, 
and 0 < y < 200. Obviously, the graph may look quite differently after 
a change of the viewing window. Figure lb shows a different graphical 
representative of the same function. Another operation, Plot, allows one 
to read and plot points on this graph. 

Algebra. The operation in the algebraic setting which corresponds to 
Findlmage (in T) and Draw (in G) is Compute. In fact, Compute is identical 
to Findlmage, except for the manner it is presented on the screen. In 
Compute, the x-value is entered into the blank space of the form "f( ) = " 
and TRM produces the corresponding y-value after the equality sign. 

Another important operation in the algebraic setting is Define. Define 
allows one to specify a function by means of a formula and a domain. 

A crucial operation in the algebraic setting is Search. It produces rep- 
resentatives of the search type (see Section 2.1). It allows one to check 
for which x-values within a given interval a certain algebraic condition is 
satisfied. For example, a student who requires an answer to the question 
for which values of x, in the interval 0 < x < 10, the condition f(x) = 
x(20 - 2x) 2 > 500 holds, may specify the numbers 0 and 10 for the interval 
boundaries, 0.2 for the stepsize and the condition _> 500. TRM then selects 
and displays all values of x at which the condition is satisfied. Search thus 
produces a representative from which it is possible to infer the answer. 
Search can be made very powerful through sophisticated conditions; for 
example a condition of the type f(x) > f(x + e) allows one to check where 
f is decreasing. 

The design of TRM systematically stresses parallels between the three 
functional settings: For example, zooming in on the viewing window 
0 < x < 10, 0 < y < 500 is parallel to searching for those (x, y) - pairs 
which satisfy the condition f(x) < 500, where the search is carded out from 
x = 0 to x = 10. Similarly, changing the stepsize of the Search condition is a 
form of scaling. Like other multirepresentational function software, TRM 
makes the construction and comparison of many representatives an easy 
matter. It was, however, not the software environment but the problem 
solving activities in the curriculum, i. e. the "jeux de cadres" (Douady, 
1986), which systematically drew students' attention to the fact that they 
were dealing with representatives and made them explicitly confront this 
fact. For example, Q2 (in Section 3.2) specifically addresses the issue of 
the variety of graphical representatives of the same function; but similar 
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situations arose naturally during more extensive problem solving activities 
such as when one student obtained the graphical representative in Figure 
lb, rather than the one in la, while he was supposed to look for the 
maximum of the function in the interval 0 < x < 10. In the next subsection 
some typical activities with TRM are presented. 

4.2. TypicaI Activities with TRM 

The overall goal of the TRM-based curriculum was to tackle the prob- 
lem of ambiguity and to strive for unified integrated images of functions 
by creating links between representatives within and among settings. The 
TRM curriculum creates situations in which representatives need to be 
constructed, compared, transformed, and coordinated, i. e. problem situ- 
ations which are solved by what we call an arithmetic of representatives. 
Situations included: (i) activities in which the student is asked to construct a 
given representative of a function; (ii) activities for which only some of the 
settings and operations of TRM were made accessible, the student being 
invited to reach conclusions under these restrictions; (iii) problem-solving 
activities requiring the use and comparison of representatives from differ- 
ent settings; (iv) activities in which several representatives are in conflict, 
the student having to explain why the conflict is apparent only. 

A typical activity exemplifying (i) can be generated by asking students 
to construct, in the graphical setting, the representative appearing in Figure 
1 a, for the function f(x) = x(20 - 2x) 2. 

For solving the following problem, only algebraic tools were made 
available: 

Find the minimum of the function fi 

f: {x natural, 0 < x < 100} ~ ~, f(x) = x 5 - 5x 4 - 9x 3. 

In spite of the lack of non-algebraic tools, this problem can be solved with 
TRM, e. g. by choosing judicious Search conditions. This activity thus 
illustrates (ii). 

The Box Problem (described in Section 5.1) is an example of an activity 
of type (iii) which invites students to coordinate actions from several 
settings. 

Finally, the following problem illustrates activities of type (iv): 
Students are asked to produce three representatives of the function: 

f: {x I -10 < x < 10} --~ ~R, f(x) = 72x 3 - 54x 2 + 13× - 1 

and to conclude something about its domain of increase. The representa- 
tives are: 

a) a Search representative with step l, 
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b) a Search representative with step 0.2, 
c) a graph in the domain 0 < x < 1. 

The Search representatives show an apparent conflict which is solved by 
the graphical representative. This example shows that a function satisfying 
a condition such as f(x) < f(x + e) does not necessarily increase within 
the interval [x, x + e]. In this activity, the problem of ambiguity is tackled 
directly by the arithmetic of representatives. 

5. THE EXPERIMENT 

The experiment described in this section aimed to investigate whether the 
skills listed in Section 3 were acquired during the experiment. We already 
indicated that the term "skills" is misleading, especially when one comes 
to deal with the three general classes of skills pertaining to an arithmetic 
of representatives. The whole picture of the effect of TRM on students 
will uncover a conceptual shift, that is linked to the new ontology of the 
concept of function defined in Section 2. 

5.1. The Tools of the Research 

In this subsection, the tools used to assess the effects of the software 
are described. These are the Box problem, the Rectangles task, and a 
Questionnaire. The Box problem and the Rectangles task were given to 
TRM students, whereas the Questionnaire was used as a comparative tool 
between experimental and control students. 

5.1.1. The Box problem 
The BOX problem is a maximum problem which is ordinarily given in 
introductory calculus courses. Software sustaining the development of an 
arithmetic of representatives makes this problem accessible to junior high 
school students: An open box is constructed by removing a square from 
each corner of  a 20 by 20 cm square sheet of tin and folding up the sides. 
Find the largest possible volume of such a box with an accuracy of10 -4. 

This problem can be solved in many different ways. One could, for 
example, first compute the volume of the box for several dimensions of 
the comer square. Thus, if the edge of the comer square is chosen to be 
x = 7, the volume will be y = 7(20 - 2 • 7)(20 - 2 • 7) = 252. One could 
construct a table with different values of x and y, and draw a Cartesian 
graph in which these (x, y)-values are plotted. One could then evaluate 
the maximum by linking the points of the graph by linear segments, and 
by "reading" from the graph the maximum, with a low accuracy. A more 
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The graphs of the two undisclosed functions for the Rectangle task. 

systematic and accurate way to reach the solution is to express the volume 
of the box algebraically. The formula is y = f(x) = x(20 - 2x) 2. The 
maximum can then be obtained by searching for the domains of increase 
and decrease. A formal condition for increase is of the type f(x + e) > 
f(x); a formal condition for decrease is of the type f(x + e) < fix). Students 
may automatize such symbolic methods, without developing a real sense 
for what they are doing. Such a sense is more easily developed with 
graphical and tabular methods. As worded in Section 1, the Box problem 
enables the application of "interplay between settings" (jeux de cadres), 
namely the algebraic, graphical, and tabular settings, and subsequently, 
it provides good opportunities to investigate the nature of students' links 
among settings, i.e. the skill class $2, discussed in Section 3.3. 

5.1.2. The Rectangles task 
In the Rectangles task, an undisclosed continuous function is chosen by 
TRM; the student is presented with a rectangle and asked to find out whether 
the graph of the function passes through the rectangle. "Compute" is the 
only operation made available to the students for this task. Two such tasks 
were presented to the students: in one, the graph does cut the rectangle 
but at a very steep angle; in the other, the graph does not pass through the 
rectangle but follows it closely. Figure 6 displays the graphs of the two 
undisclosed functions together with the respective rectangles. 

In some way, these functions are likely to create a conflict: students need 
to deal with the question whether they may rely on (linear) interpolation 
in order to predict values of images. In the first task, linear interpolation 
leads to points in the given rectangle; on the other hand, the second task is 
more problematic; while interpolation is a good strategy, it does not give 
a definite answer to the student who understands the arbitrary character of 
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functions. In short, the Rectangles task was tailored to give information 
about the partiality class of skills, especially "partial data", "interpolation" 
and "arbitrariness". 

5.1.3. The Questionnaire 
The questionnaire was designed to study most of the skills fostered by 
TRM, and to compare experimental and control students. A crucial fact 
is that none of the questions needed familiarity with TRM. The TRM 
curriculum was problem based (see Section 4), and thus did not foster the 
intensive learning of specific skills. Consequently, the Questionnaire tasks 
were transfer tasks for both groups. Questions Qla, Q2, Q3, Q4a, and Q5 
described above are five among the eleven questions constituting it. The 
partiality class of skills (S1) is appropriate to solve Qla, Q3, and Q4~; the 
ability to link between settings ($2) is relevant for solving Q3, Q4a, and 
Qs; and the transformation skills ($3) are useful for Q~,~, and Q2. Thus, 
there is no one-to-one correspondence between skills and questions, but 
since students were asked to justify their answers, it was often possible to 
discern how the different skills were used to solve the questions. 

5.2. Global Evaluation 

Even though the questions asked in the Questionnaire did not contain 
any direct allusion to the software, it is important to put limitations to its 
validity as a comparative tool: Experimental students worked in pairs; the 
role of the teacher was less directive than in the control classes; and the 
commitment  to a new, computer-based curriculum may have positively 
affected extrinsic motivation. Nevertheless, such an "en bloc" approach is 
valuable because it enabled us to develop an explanatory frame linked to 
the nature of the tools used by the students. The comparison was mainly 
based on a qualitative analysis of answers given to the Questionnaire. The 
Box problem, and the Rectangles task that were given to TRM students 
only, were used to characterize some of their cognitive processes. 

5.2.1. The research design 
Three 9 th grade classes used the TRM curriculum, Expl  (n = 30), Exp2 
(n = 23), and Exp3 (n = 25). An achievement test was given to the 
three experimental classes and to several other classes, in order to choose 
from them control classes which would match the experimental ones. The 
achievement test checks the prerequisite arithmetic, algebraic and graphical 
skills. Its reliability is high (O~Cronbach ---- 0.85, n = 956) and it discriminates 
well between different ability levels. The test results led to the choice of 
control class C1 matching Expl ,  C2 matching Exp2, and C3 matching 
Exp3, in each case with a slight advantage for the control class. 
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TABLE I 

Mean scores of the experimental and the control groups on the questionnaire 

Question Skills Expl CI Exp2 C2 Exp3 C3 
n=14+16 n=I1+12  n = l l + 1 2  n = l l + 1 0  n=12+13 n=20+ 18 

Qla S 1 S 3 0.49 0.31 0.53 0.35 0.82 11.57 
Qlb S 1 S 3 0,54 0.34 0.58 0.40 0.97 0.64 
Q2 S 2 S 3 0,43 0.40 0,40 0.56 (}.68 (}.53 
Q3 S 1 S 2 0.69 0.30 0.76 0.29 (I.81 0.74 
Q4a S 1 S 2 0.64 0.47 0.68 0.49 0.72 0.52 
Q4b S 1 S 2 0.56 (I.31 0.58 0.39 0.85 11.57 
Q5 $2 0.61 11.41 0.70 0.41 0.71 0.69 
Q6 $2 0.67 0,35 0.61 0.41 0.64 I}.69 
Q7 s 2 s 3 0.52 0.16 0.63 0.14 0.72 0.31 
QSa S 1 S 2 0.71 0.35 0.86 0.43 0,86 0.58 
Qsb S 1 0.55 0.00 0.79 0.(}5 0~64 0.18 

The control classes were taught a current Israeli functions curriculum 
over the same 12 week period which the experimental classes worked with 
TRM. Most of the activities in this curriculum were about interpretation 
within settings, or translation between settings, and only a few were about 
modeling, constructing, or acting on functions. The Rectangles task was 
given to Expl and Exp2 as an intermediate test during the experiment; each 
student's performance was recorded in a dribble file. After the experimental 
period, the Questionnaire was administered to all control and experimental 
classes. Finally, about half of the TRM students (n = 43) were chosen 
randomly but in equal numbers from each of the experimental classes and 
given the Box problem to solve with TRM. The data of all 43 students 
were collected in dribble files. In order to cope with the problem of inter- 
pretability of students' actions, we asked them to use as few operations as 
they could to find the solution. 

5.2.2. Global comparative results 
Table I contains the mean scores for the experimental and control classes 
for the eleven questions of the questionnaire. Some questions (those with 
subscript) were asked of half of the class only, hence the two-part value 
for n at the head of each column. The scores for each question were ranged 
between 0 and 1. 

A quick examination of Table I shows that the achievement of students 
in Expl and Exp2 is substantially higher than that of C1 and C2 (except 
for Q2). Achievement in Exp3 is the highest, and higher than that of C3 for 
all except Q6. Only a small part of the analysis is reported in the remainder 
of this section (see Schwarz 1989, for more details). This analysis is orga- 
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nized by classes of skills pertaining to the arithmetic of representatives: 
"partiality" (S1), "links" ($2) and "transformations" ($3). 

5.3. Partiality Skills 

Table I shows that all the questions for which partiality skills were useful 
uncovered very substantial differences between experimental and control 
students: The results of Qla show that TRM students succeed to link 
several partial graphs, whereas this activity was difficult for the control 
students; similarly, Qlb showed that TRM students recognized through 
one graphical representative properties that were hidden in another one. 
Results on Qsa and Qsb show the superiority of TRM students in inferring 
graphical continuous information from discrete numerical data. 

From Q3, and Q4a, it appears that TRM students are able to interpolate 
the general shape of a graph from discrete numerical data. The results for 
Q4a are eloquent: 22% of the TRM students gave the full answer, 20% gave 
the answer "x undecidable, f(x) undecidable", and 45% the answer x = 3, 
f(x) = -3" .  For the control students, the distribution is very different: 2%, 
10%, and 59% respectively. The correct answer, "x undecidable and f(x) < 
- 3 "  suggests that the student knows that a function with an infinite domain 
cannot be determined by a finite number of images (arbitrariness). The 
answer '°x undecidable, f(x) undecidable", though not completely correct, 
suggests that the student grasps that the graph can pass under the point 
(3, - 3 )  arbitrarily. Question Q4bwas similar to Q4a, except that a specific 
quadratic formula was given as the rule of the function; its minimum was 
close but not equal to the lowest point shown in the graph. The answers 
to this question were similar to those to Q4a with an interesting variant 
for TRM students: while many of them answered that it was impossible 
to decide about the exact location of the minimum, others hypothesized 
its location by using trial-and-error methods and checked their hypotheses 
by computing a number of images in the neighborhood of the lowest 
point they found. Such a behavior shows an ability to correctly interpolate 
values: on the basis of the given partial data, it is reasonable to "try a 
graph" whose minimum is near to the lowest among the given points. 
These answers suggest that experimental students were able to infer global 
properties of functions (here the meaning of minimum, that is "for any x 
in the neighborhood of the minimum, the function is bigger than for the 
minimum") from discrete data. 

In summary, the scores and the distribution of answers to the Question- 
naire strongly suggest that experimental students handled skills from the 
"partiality" class well. They could interpolate between points of graphs 
(for example, Q4~ and Q4b). They were able to recognize that any repre- 
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Fig. 7. Eilat's trials for the first Rectangles task. 

sentative from the graphical setting has "intrinsic" properties (Q2). They 
could integrate into a single graph of a function several partial graphs of 
that function from different, possibly partially overlapping domains and 
with possibly different scales (Qla). Finally, they were conscious of the 
arbitrariness of a function, and used in a flexible way of several/many/all 
possible interpolations, even if the given data suggested a specific interpo- 
lation (Q4a). 

The Rectangles tasks give richer information about this class of skills. 
Figure 7 shows graphically how Eilat solved the first of these tasks using 
twelve Compute operations (see Figure 6 for the undisclosed function). Her 
first trial, for x = 3, yields a negative y-value, far below the rectangle which 
is positioned between y = 2 and y = 3. She then tries × = 4, and obtains 
another negative y-value. For x = 5 (third trial), on the other hand, she 
obtains a very high value for y, far above the y = 3 bound of the rectangle. 
Her following trial is x = 4.4, presumably because she observed that for x 
= 4 the y-value is nearer to the rectangle than for x = 5. In the following 
trials, Eilat attempts to "frame" a value which falls into the rectangle. For 
example, trial 4 is between 2 and 3, 5 is between 2 and 4, 6 is between 2 
and 5, etc.. This process of framing is not flawless; for example, trial 8 is 
not between 7 and 5; but the trend is for the solution process to converge 
quickly and efficiently. During this process of framing, Eilat appears to 
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interpolate, most of the time successfully, the probable behavior of the 
function from the discrete data she already uncovered. 

The rectangle for the second task is {3 <_ x < 5} × {3 _< y < 4}. 
Eilat's first trial was x = 1, and the second x = 4. The y-value for x = 4 is 
very close to 3, (the lower bound of the rectangle); Eilat then tried x = 5, 
which also yielded a value very close to but still below the rectangle. All 
following trials were made for relevant values of x (within the x-bounds 
of the given rectangle). After nine trials, she stated that the function does 
not pass through the rectangle, although, when asked about whether she is 
sure of it, she said "I think it does not pass, but I am not certain". It seems 
that she did not completely exclude the possibility that the function might 
pass through the rectangle. 

In summary, Eilat constantly interpolates, although she is aware that 
such a strategy does not assure one to determine the behavior of the function 
with absolute certainty (arbitrariness). Figure 8 shows that Eilat's solution 
was typical in the sense that the results for the Rectangles task were 
excellent for most of the TRM students. 
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TABLE II 

Justifications of two clauses for question 5 

Class a b c d wrong 

Expl 52% 17% 0% 5% 26% 

Exp2 59% 0% 7% 0% 34% 

C3 30% 28% 13% 5% 23% 

5.4. Links Skills 

Table I shows that the experimental students achieved substantially better 
results than the control students on the questions which related to links 
between settings (Q3, Q4a, Q4b, Qs,  Q6,Q7 and Q8,~). As an example, we 
focus here on the analysis of Q3. 

Students' justifications to Q3 were  categorized into four groups: 

(a) Correct verbal justification without graph, such as: "First the function 
increases moderately, and then its climbs quickly, and then its rise 
slows down again". 

(b) Construction of a graph and correct comparison with the six presented 
graphs. 

(c) Computation of the rates of change and comparison with the graphs. 
(d) Correct answer without justification. 

Table II compares the classes Expl and Exp2 to C3 with respect to the 
justifications for their answers to Q3. We chose to compare Expl and Exp2 
to C3, because C3 was the best control class (pre-test) whereas Expl and 
Exp2 achieved less than Exp 3 on the pretest. Therefore, the data in Table 
II which show an advantage of the experimental classes over C3 is highly 
significant. The most salient fact from Table II is that the students from 
Expl and Exp2 generally used neither graphs nor rates of change to find 
that the fourth graph matches the series of values. In contrast, students 
from C3 used graphs and rates of change very often. 

In other terms, Table I! shows that many TRM students fell into Cate- 
gory (a), i.e. they did not need any new information to interpret the graph 
in numerical terms, or to interpret the numerical values in graphical terms. 
Category (a) could be interpreted in two different ways. 

(i) The student compares the graph and the numerical data. 
(ii) The student sees the graph through the numerical data. 
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TABLE III 

Eilat's operations during the BOX problem 

Operation 

1 A define 

2 GDraw 0 < x < 10 0_< y < 200 

3 G Draw 2 < x < 8 260 < y < 1000 

4 GDraw 3 < x < 4 550 < y < 610 

5 A Search From 3.285 To 3.378 Step 0.0001 If f(x) > 593 

6 A Search From 3.3 To 3.34 Step 0.001 If f(x) > 592.58 
7 A Search From 3.316 To 3.36 Step 0.0001 If f(x) > 592.59259 

8 A Search From 3.336 To 3.36 Step 0.001 If f(x) > 592.59259 

9 A Search From 3.382 To 3.334 Step 0.0001 If f(x) > f(x + 0.0001) 
10 A Search From 3.3322 To 3.3334 Step 10 -5 If f(x) > f(x + 0.00001) 

11 A Search From 3.3332 To 3.3334 Step 10 -5 Iff(x) > f(x + 0.00001) 

Both are manifestations of  skill S2a - linkage between graphical and 
numerical  settings; they differ, however,  in the level of  depth of  the skill 
(see Section 3.1): (i) shows coordination among the settings, while (ii) 
indicates a (unified) level in which information from different settings is 

integrated. F rom students'  written answers, it was impossible to discern 

between these two interpretations. However,  both go far beyond simple 
translation of  information and point out meaningful coordination (i) or 

integration (ii). 
Just like the Rectangles task provided richer information on the S 1 skills, 

so the Box problem provides richer information on the $2 skills. This task 

created a problem space in which passages between settings were natural 
moves.  We will show that the analysis of  students'  solutions to the Box 
task corroborates the analysis of  Q3; in many cases, we could also show 
when students coordinated between representatives from different settings, 
and when they could integrate (or see through) representatives. 

In order  to illustrate how, we discuss Eilat 's solution of  the Box problem 
in detail. Table III shows the sequence of  her eleven operations. Eilat started 
in the algebraic setting and defined the function modeling the volume of  
the open box. She then moved  to the graphical setting and generated three 
representatives of  the function. Figure l a  shows her first graph; it was 
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truncated. The next one she created had the appropriate bounds 2 < x < 8, 
260 < y < 1000 (Figure lb). Finally, she passed back to the algebraic setting 
and used seven Search operations to gradually refine her knowledge about 
the position of the maximum. These operations used various conditions: 
In operation 5, f(x) > 593 (a value she presumably read from the graph 
during the fourth operation); in operation 6, f(x) > 592.58 (the maximal 
value which appeared on the screen while running the previous Search); 
in operations 7 and 8, f(x) > 592.59259 (the maximal value while running 
Search for the sixth operation; and from the seventh operation on, f(x) > 
f(x + ~) for different e within ever smaller x-intervals. 

Intuitively, it appears from these operations that Eilat consistently took 
advantage of what she learned from previous operations to decide about 
the next one. There are no "dead moments". Eilat seems to constantly 
link among the different representatives she creates. These representatives 
are graphical or numerical-algebraic (with the Search operation); thus, 
the links express all skills of class $2. This intuitive impression about 
Eilat's solution path can be made precise, and this work has been carried 
out elsewhere (Schwarz and Dreyfus, 1993). Here is a summary of the 
methodology and results from that work: 

The approach was computational. Two numerical indices were com- 
puted on the basis of student's TRM operations while solving the Box 
problem. The main result of the paper was to show that the indices can be 
reliably interpreted in terms of 

(i) the significance the students were able to give to the information they 
received as feedback to their operations from TRM, and 

(ii) the extent and level at which they were able to pass information 
between, and coordinate or integrate information from different set- 
tings. 

Eilat's Indices were high, meaning that she correctly interpreted the feed- 
back she received, and that she could coordinate between the different 
representatives she created, in order to progress rapidly in the solution of 
the problem. 

It is quite difficult to know whether Eilat integrated the properties of 
all the representatives at a unified level or whether she was only able 
to coordinate between the different representatives. For several students 
such as Eilat, the alternative between integration and coordination was 
undecidable on the basis of the data. Other students, however, solved the 
Box problem in a way which could clearly be interpreted as integration 
between settings. Such was the case of Ayelet. 

Table IV shows Ayelet's operations. During the entire solution process, 
Ayelet remained in the algebraic setting and used Search operations only. 
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TABLE IV 

Ayelet's operations on the Box problem 

Operation 

1 A Define 

2 A Search From 0 To 10 Step 1 If f(x) > 0 

3 A Search From 3 To 4 Step 0.1 If f(x) > 588 

4 A Search From 3.20 To 3.30 Step 0.01 If f(x) > f(x + 0.01) 

5 A Search From 3.30 To 3.40 Step 0.01 If f(x) > f(x + 0.01) 
6 A Search From 3.33 To 3.34 Step 0.001 If f(x) > f(x + 0.00l) 
7 A Search From 3.333 To 3.334 Step 0.0001 If f(x) < f(x + 0.0001) 

Her solution process converged very quickly. All her actions indicate that 
she took optimal advantage of TRM's feedback to decide on further oper- 
ations. For example, in Operation 2, she wrote the condition "From 0 to 
10 Step 1, If f(x) > 0" and apparently noticed that the largest value of f is 
obtained when x equals 3 and f(x) equals 588. Thus she was able, in the 
following operation, to use the condition "fix) > 588" for x between 3 and 
4. Her remaining Search conditions were of the form f(x) > f(x + e), check- 
ing where the function decreases. She finally concluded that the maximum 
lies between 3.3333 and 3.3334, because the decrease condition is fulfilled 
for x _> 3.3334. 

In conclusion, Ayelet was very skillful at interpreting algebraic oper- 
ations to find the solution. Since she worked exclusively in the algebraic 
mode, it is impossible to draw conclusions about her ability to pass infor- 
mation to and from other settings on the basis of her operations alone. 
However, the interviewer profited of three occasions (Operations 2, 5, and 
7) during which a Search condition was "running", to present Ayelet with a 
graph that showed a rise, followed by a drop and ask her in which interval 
the Search operation ran; on all three occasions Ayelet was able to answer 
this question without hesitation by pointing to the appropriate portion of 
the graph. It seems probable that she used graphical representatives men- 
tally but felt no need to physically construct one, i. e. that Ayelet integrated 
representatives from all settings into a unified image, at a high conceptual 
level. For her, deciding on conditions of the kind f(x + 0.0001) > f(x), was 
a way to interpret her graphical image of the function. She could inter- 
pret the numerical data "running" during the Search operation in terms of 
properties such as increase. 
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Eilat and Ayelet were typical among the 43 TRM students who solved 
the Box problem. We categorized these students according to the values 
of their indices into four categories. This classification showed that many 
of the students' solutions are similar to Ayelet's or Eilat's: seven students 
used the algebraic setting exclusively (like Ayelet); they created various 
Search conditions to find the maximum; sixteen students used several 
settings, consistently took advantage of TRM feedback to their previous 
operations in the same or in another setting, and their progress towards the 
solution was rapid (like Eilat's). In other words, more than half of the TRM 
students who solved the Box problem fully coordinated and/or integrated 
the information gleaned from various representatives they created. This is 
a very high achievement for grade 9 students who had just learned about 
functions for two hours per week during twelve weeks. Moreover, for most 
of the remaining 20 students, coordination was flawed at the beginning of 
the solution process only. With few exceptions, the number of operations 
did not exceed fifteen. In summary, the Box problem solutions showed 
that in a problem solving situation, most TRM students were able to link 
between representatives of the same and of different settings, that many of 
them did so consistently, and that some of them used the representatives 
at a unified level where properties of the function were the objects of their 
actions (see Schwarz & Dreyfus, 1993, for details). 

5.5. Transformation Skills 

Although in some of the activities during the experimental teaching phase 
transformation skills were useful, this class of skills was somewhat less 
systematically stressed than the two previous ones. Transformations of 
representatives, especially scaling, was used as a tool but did not itself 
constitute the center of attention for any of the activities; transformations of 
functions (translations, stretches) were not dealt with at all. Moreover, the 
research design did not include an interview situation set up to investigate 
transformation skills in a manner similar to the one in which the Rectangles 
problem was used to investigate partiality skills and the Box problem was 
used to investigate linkage skills. The analysis of transformation skills 
therefore has to be based on the questionnaire results and some observations 
from the teaching phase. 

The results on transformation questions in the questionnaire (Qla, Qlb, 
Q2, and QT) clearly favor the experimental students, with one exception 
(Q2) where performance was about equal. Qla and Q2 concerned trans- 
formations of the graphical setting (Skills S3b and $3c). Q~a demanded 
from the student to figure out how graphs look like after undergoing a scal- 
ing action. In Q~b, representatives with different units had to be created 
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(again scaling) and assembled (linking different parts of a graph). Similar- 
ly, Q2 could serve as paradigm of a graphical rescaling task. Surprisingly, 
experimental students performed clearly less well on Q2 than on Q1. 

We could not clarify the reasons for this "failure" beyond any doubt 
since we only have the answers from the written questionnaire. However, 
there are a number of observations concerning transformation skills which 
contribute to clarify the picture: 

(i) Familiarity of the control students with the third power function would 
explain the results: In fact, it is known from another study (Eisenberg 
and Dreyfus, 1994) that function transformations are far more acces- 
sible when they concern familiar functions than when they concern 
unfamiliar ones. The third power, is one of the most convenient ele- 
mentary examples (beyond linear and quadratic functions). 

(ii) The types of mistakes of the experimental students on Question 2 
tended to be different from those of the control students. Control stu- 
dents tended to disqualify the linear graphs (II and IV). Experimental 
students often accepted II and IV. It thus appears that control students 
were convinced that the function was not linear, whereas many of 
the experimental students were misled by their realization that "any" 
function can locally look like a linear function. Therefore, even the 
wrong results of the experimental students show that they do not see 
the graph of a function statically but can imagine it undergoing a 
"metamorphosis". 

(iii) It may be inappropriate to check transformation skills in a paper- 
and-pencil test because such skills are inherently linked to dynamic 
changes. 

The experimental results show that the experimental students have a 
better command of transformation skills than the control students but the 
difference between the groups is somewhat less striking than for the other 
two classes of skills. 

6. CONCLUSIONS 

The most salient results of this research indicate that working with the TRM 
environment led most of the experimental students (1) to cope with partial 
data about functions (e.g., problems of interpolation and arbitrariness), (2) 
to recognize invadants (properties of functions) while coordinating actions 
among representatives pertaining to different settings, (3) to recognize 
invariants while creating and comparing representatives pertaining to the 
same setting. 
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As described in Sections 3 and 4, the series of activities around TRM 
created an appropriate environment for enabling students to apprehend the 
conservation of objects under manipulations. Ambiguity pertaining to set- 
tings was lifted: students did not deal with given graphs or tables in which 
information is partial or equivocal; instead, they could reach information 
by acting on concrete objects, the representatives, because these became 
of an extensive nature: Graphical representatives could be distorted, cut, or 
zoomed on; formulae could be expanded to numerical lists of preimage- 
image pairs that fulfill algebraic conditions; tabular representatives could 
be created, or ordered. Moreover, the TRM activities fostered the creation 
of links among settings. As a consequence, properties such as linearity, or 
maximum, emerged as the invariants conserved under actions on repre- 
sentatives. Students acquired the ability to recognize in one representative 
many invariants and to compare two representatives in order to decide 
whether they arose from the same abstract function. 

Studying the acquisition of functional thinking with multirepresenta- 
tional software necessitates the tracing of dynamic processes. This endeav- 
or is delicate. Several assessment tools were created to give an answer to 
the ensuing methodological problems: the Rectangles task and the Box 
problem gave some indications about how students cope with problems of 
arbitrariness or of partial data in "real time", and showed that some students 
integrated information collected from the creation of several representa- 
tives. However, other kinds of assessment tools need to be developed to 
encompass the complexity of functional thinking in multirepresentational 
environments. 
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NOTES 

1. The term "setting" may sound somewhat unusual. A more common term is "represen- 
tation". However, we have systematically avoided the term representation, because 
it is misleading: Functions are represented not by representations, but by particular 
formulae, graphs, tables, etc.. We thank Pat Thompson for making this point clear to 
tlS. 

In spite of avoiding the term "representation" otherwise, we kept the original name 
'Triple Representation Model" to desiggate the software used in this study. 
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Transformations should be well distinguished mathematically from rescaling: In 
rescaling the function is preserved but its graph may look different because it is 
presented in a different(ly scaled) coordinate system; in transformations, however, 
the function itself is changed, i. e. a new function is generated from the given one 
(Eisenberg and Dreyfus, 1994). 
In almost no case, a specific skill can be claimed to be necessary for answering a 
question. Whether or not a student has a specific skill can therefore never be judged 
on the basis of the performance of the student on a single question, and far less so if 
that question was presented in a questionnaire only. How to identify skills anyway 
will be addressed in Section 5. 
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