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ABSTRACT. Pedagogical content knowledge is made up of several components. In this 
paper we concentrate on one of these: teachers' planned presentations of the subject-matter. 
We deal with two main sources of this component of pedagogical content knowledge: 
knowledge about the subject-matter and knowledge about students. Illustrations are given 
in two mathematical domains: functions and undefined mathematical operations. The paper 
concludes with a discussion of the nature of teachers' knowledge and the interconnections 
between the three constructs: subject-matter knowledge, knowledge about students, and 
knowledge about ways of presenting the subject-matter. 

INTRODUCTION 

The recognition that pedagogical content knowledge is an important char- 
acteristic of teacher knowledge is growing fast. One major issue related to 
this kind of knowledge is its sources. Obviously, the teacher's own expe- 
riences, both as a learner and as a teacher, influence pedagogical content 
knowledge. Exposure to relevant developmental and cognitive research, 
including learning theories, and interactions with students, are other fac- 
tors. Another source of pedagogical content knowledge is the nature and 
depth of teachers' own subject-matter knowledge of the material they 
teach. 

Not only does pedagogical content knowledge derive form different 
sources, it is made up of several components. In this paper we concen- 
trate on one of these: teachers'planned presentations of the subject-matter. 
Special attention is paid to teachers' planned reactions to students' ques- 
tions and hypotheses. We deal with two main sources of this component of 
pedagogical content knowledge: knowledge about the subject-matter and 
knowledge about students. 

S u b j e c t - m a t t e r  

Even though it is usually assumed that teachers' subject-matter knowledge 
and pedagogical content knowledge are interrelated there is little evidence 
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to support and illustrate the relationships. A simplistic explanation for this 
situation draws attention to the fact that "pedagogical content knowledge" 
is a relatively new notion (Shulman, 1986). However, there is more to 
this issue than initially meets the eye. Different conceptions of teachers' 
subject-matter knowledge have evolved throughout the years. Not many 
years ago, teachers' subject-matter knowledge was defined in quantitative 
terms - by the number of courses taken in college or teachers' scores on 
superficial standardized tests (Ball, 1991; Begle, 1979; Wilson etal., 1987). 
But these "measures" are problematic. In recent years, teachers' subject- 
matter knowledge has been analyzed and approached more qualitatively, 
emphasizing cognitive processes and understanding of facts, concepts and 
principles, and ways in which they are connected and organized. Episte- 
mological knowledge about the nature of the discipline has also received 
more attention (Ball, 1988, 1991; Even, 1990; Leinhardt and Smith, 1985; 
Shulman, 1986; Tamir, 1987). 

Another possible explanation for the lack of research on the interrela- 
tions between teachers' subject-matter knowledge and pedagogical content 
knowledge has to do with different conceptions of the role of the teach- 
er in the process of learning. Curriculum development during the 1960's 
and 1970's viewed the teacher's role as that of implementing an expert 
made curriculum. Teacher-proof curricula, the extreme outcomes of this 
process, assumed that children could learn directly from ready-made cur- 
riculum materials while the teacher, instead of teaching, would adopt a 
role of manager and facilitator. This was most apparent during the period 
of individualized instruction. Accordingly, most studies of teachers that 
were conducted in those days adopted a similar approach. Process-product 
research and the later research on effective teaching were basically "con- 
tent free" and tried to identify generic teacher behaviors that seemed to be 
effective (Brophy and Good, 1986; Gage, 1978). The identified "effective" 
instructional behaviors tended to be connected with the management of 
classrooms rather than with content pedagogy. The mid 1980's marked a 
change in conceptions of the teacher's role in promoting learning; which 
now came to include setting mathematical goals and creating classroom 
environments to pursue them; helping students understand the subject- 
matter by representing it in appropriate ways; asking questions, suggesting 
activities and conducting discussions. Subject-matter knowledge is much 
more critical for this "new" role of the teacher. 

Shulman (1986) distinguishes between two kinds of understanding of 
the subject-matter that teachers need to have -  knowing "that" and knowing 
"why": 
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We expect that the subject-matter content understanding of the teacher be at least equal to 
that of his or her lay colleague, the mere subject-matter major. The teacher need not only 
understand that something is so; the teacher must further understand why it is so (p. 9). 

Students 

Shulman (1986) also argues that, in addition to knowledge of the subject- 
matter per se, teachers' knowledge should include: "the ways of repre- 
senting and formulating the subject that make it comprehensible to others" 
(p. 9). He further emphasizes the need to consider students' ways of think- 
ing, stating that teachers need to be familiar with the conceptions and 
preconceptions that students bring with them to the learning. 

This last component of teachers' knowledge necessitates a body of 
knowledge of common students' conceptions. Such knowledge has been 
gathered mainly in the last two decades of extensive cognitive research on 
student learning, which has yielded much useful data on student concep- 
tions and thinking in mathematics. Many studies have shown that students 
often make sense of the subject-matter in their own way which is not always 
isomorphic or parallel to the structure of the subject-matter or the instruc- 
tion (e.g., Even, 1993; Hershkowitz et al., 1987; Kieran, 1992; Schoenfeld 
et al., 1993; Tirosh and Graeber, 1990). 

Knowledge about students is one aspect of teachers' pedagogical con- 
tent knowledge. Another aspect is that of teachers' choices of presentations 
of the subject-matter to students. To make appropriate decisions for helping 
and guiding students in their knowledge construction certainly requires an 
understanding of student ways of thinking. A teacher who pays attention 
to where the students are conceptually can challenge and extend student 
thinking and modify or develop appropriate activities for students. Start- 
ing from students' limited conceptions, the teacher can help build more 
sophisticated ones. 

Research on teaching has only recently started to include investigations 
of teacher knowledge and understanding of students' ways of thinking 
related to specific topics, as well as the issue of the nature and quality 
of teachers' responses to students' questions, remarks and ideas (Ball, 
1988; Even, 1989, 1993; Even and Markovits, 1993; Leinhardt et al., 
1991; Maher and Davis, 1990; Peterson et al., 1991; Strauss and Shilony, 
in press; Tirosh, 1993). One explanation for the lack of research in this 
direction has to do with the fact that research on learning and learners, and 
research on teaching and teachers have been following separate tracks for 
a long time. 

In this paper we concentrate on two main sources of teachers' choices 
of ways of presenting the subject-matter: one is related to subject-matter 
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knowledge, the other to understanding students' ways of thinking. Follow- 
ing is a discussion of these sources in the context of teaching mathematics. 
Illustrations of the sources and their effect on teacher presentations of the 
subject-matter are taken from our studies in two mathematical domains: 
functions and undefined mathematical operations. Let us start with a short 
background description of these studies. 

FUNCTIONS AND UNDEFINED MATHEMATICAL OPERATIONS 

Function is one of the most important and fundamental concepts in mathe- 
matics. A mathematical function is defined as any correspondence between 
two sets which assigns to every element in the domain exactly one ele- 
ment in the range. Functions do not have to be described by any specific 
expression, follow some regularity, or be described by a graph with any 
particular shape. However, explicit requirements of functions are: (1) they 
should be defined on every  element in the domain, and (2) for each element 
in the domain there should be only one element (image) in the range; this 
condition is also known as univalence. 

A quick way to tell if a given graph is the graph of a function is to use 
the "vertical line test": A graph is the graph of a function if and only if 
each vertical line cuts the graph in no more than one point. 

As the history of the development of the concept of function shows, 
univalence was not required at the beginning. Freudenthal (1983) attributes 
this requirement to the desire of mathematicians to keep things manageable. 
The development of advanced analysis created the need to deal with differ- 
entials of orders higher than one, and, therefore, to distinguish independent 
from dependent variables. Therefore, it became too difficult to work with 
multivalued symbols and the univalence requirement was added to the 
definition of a function. 

All basic mathematical operations on the real numbers (e.g., addition, 
subtraction, multiplication, division, exponentiations and roots) are func- 
tions. Thus, the definitions of mathematical operations should fulfill the 
requirements of functions, namely the univalence requirement and the 
requirement that the operation should be defined for every element in the 
domain. Apart from that, a definition of a mathematical operation should 
fulfill the general requirements for any mathematical definitions, that is, it 
should be non-contradictory, non-circular and well defined (i.e., the def- 
inition of the operation should not depend on the representatives of the 
numbers involved in the operations). Problems with defining a mathemat- 
ical operation on the real numbers arise when any possible definition of 
the operation cannot fulfill either one of the requirements for mathemat- 
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ical definitions, or one of the requirements for functions. This happens 
when: 

(1) any possible definition of the operation contradicts other acceptable 
definitions or theorems of the mathematical system. For instance, 
any definition of 4/0 violates the definition of multiplication as the 
inverse of division - if 4/0 is the number c, then c x 0 should be 4, 
but c x 0 = 0, therefore 4/0 is undefined; 

(2) the operation cannot be defined for all elements in the domain. In this 
case, it is possible to restrict the domain for which the operation is 
defined. For instance, the operation of division is defined for all real 
numbers, except for a zero divisor; 

(3) the definition depends on the representatives of the numbers involved 
in the operation. One example is related to the attempt to extend the 
definition of exponentiation as b ~/'~ = ~ / ~  when b is a negative 
number and m/r~ is a rational number. Let us refer, for instance, 
to ( - 8 )  ~/3 and ( - 8 )  2/6. Extending the definition of exponentiation 
results in assigning different values to the different representatives of 

( -8 )1 /3  1/3: //(-8) ( - 8 )  2/6 
1 

_ _  

= = - 2 ;  = ~ / ( - 8 )  2 = 2; 

(4) the definition violates the univalence requirement, as there are at least 
two possible definitions for the operation. In these cases one of the two 
following possibilities is selected - either only one of these numbers 
is chosen as the definition of the operation, as in the case of v~ ,  
which could have been defined as either 2 or - 2 ,  but is defined as 2; 
or a choice is made not to define this mathematical operation, as in 
the case of 0/0 which could have been defined as any number. Such 
undefined operations are sometimes called undetermined. 

Functions and undefined mathematical operations are part of the school 
curriculum. Function is a major topic at the secondary school level, and 
undefined mathematical operations are taught within the framework of 
specific topics. 

In what follows we shall use data from our studies on teachers' con- 
ceptions of functions and undefined operations as sources of illustrations. 
All the items to which we refer are included in the high-school curriculum 
in Israel. Even though some are not taught explicitly, teachers who are 
expected to teach this material ought to understand them thoroughly. 

Participants in the study of teachers' knowledge about functions were 
162 prospective secondary mathematics teachers in the last stage of their 
formal preservice preparation at eight midwestern universities in the USA. 
Data were gathered in two phases. During the first phase, 152 prospec- 
tive teachers completed an open-ended questionnaire. This questionnaire 
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included non-standard mathematics problems addressing several interre- 
lated aspects of function knowledge (Even, 1990), and "students" mistak- 
en solutions or misunderstandings to be analyzed or responded to. After 
responding to the questionnaire, in the second phase of data collection, an 
additional ten prospective teachers were interviewed. The probing focussed 
on subjects' explanations of what they had answered on the questionnaire 
and why, on their reactions as teachers to students' conceptions and on 
questions related to the questionnaire but requiring more general, longer 
or more thoughtful responses related to the teaching and learning of the 
concept of function. 

The study on teachers' conceptions of undefined mathematical opera- 
tions explores 33 Israeli secondary mathematics teachers' conceptions of 
four undefined mathematical operations (4/0, 0/0, 0 °, (-8)~/3). The par- 
ticipant teachers were first asked to answer a questionnaire which included 
defined and undefined mathematical expressions by providing numerical 
solutions if possible, and if not, by explaining why not. All the subjects 
were then individually interviewed and were asked to describe their in- 
class reactions to a list of suggested definitions of 4/0, 0/0, 0 ° and to 
( - 8 )  1/3 which were presented as if they were made by students. 

SUBJECT-MATTER KNOWLEDGE 

During the last years research on teachers' mathematics knowledge has 
been going through a new blooming. This research focuses mainly on 
studying teachers' understanding of specific mathematical topics which 
are included in the school curricula (Ball, 1990; Even, 1989, 1993; Tirosh 
and Graeber, 1990). By and large, it was reported that many teachers do 
not have a solid understanding of the subject-matter they teach. In fact, 
serious misunderstandings were found at the level of mere knowledge of 
rules, procedures and concepts of almost every topic investigated (i.e., 
the concept of zero, division, proof, function). Thus, insufficient subject- 
matter knowledge, on the part of teachers, does not seem to be a sporadic, 
infrequent phenomenon, but rather a widespread one whose consequences 
for the actual teaching should be investigated. 

Although "disaster studies" on teachers' mathematical content knowl- 
edge have been known for quite sometime, only recently attempts are being 
made to study how such problems affect teachers' reactions to students' 
questions and ideas related to specific mathematical topics. 
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Knowing that 

The most basic level of subject-matter knowledge is "knowing that". This 
includes declarative knowledge of rules, algorithms, procedures and con- 
cepts related to specific mathematical topics in the school curriculum. 
"Knowing that" is certainly important as a basis for adequate pedagogical 
content knowledge; for questions teachers ask and activities they suggest. 
This claim seems trivial but "knowing that" is not always straightforwardly 
and easily identified, as we can learn from the following. 

When asked to define a function most prospective teachers in the study 
correctly mentioned the univalence requirement. They also correctly clas- 
sified given mathematical objects into functions and non-functions, basing 
their judgement on this requirement. Yet, further probing often revealed 
that their knowledge of this requirement was rather superficial as is illus- 
trated in Brian's case. 

At the beginning of his interview, Brian seemed to know that functions 
have to be univalent. He used the univalence requirement in his definition 
of a function (the emphases in the following quotations were added): "A 
thing which maps every element in a domain set onto another unique 
element in the range set." When asked to give an alternative version of this 
definition for a student who does not understand it, he also emphasized the 
univalence requirement: "For every number you put into a function you 
get only one number back out." 

In addition to memorizing the univalence requirement, Brian correctly 
based his decisions as to whether given objects were functions by using 
this requirement. For example, he decided that the following: 

z, if z is a rational number 
9(z) = 0, if z is an irrational number 

is a function because: "There is an assignment of a single value to each 
number." He also correctly used the "vertical line test" to support his 
decision to accept a given graph as a function. 

As we can see, Brian seemed to know that functions must be univalent 
and he understood how to use that requirement in the process of deciding 
whether a mathematical object was a function. However, at the same time, 
Brian thought that familiar graphs such as circles and ellipses are functions 
(even though they do not satisfy the univalence requirement and therefore 
are not functions). Having these two contradictory pieces of knowledge 
about functions simultaneously did not cause any conflict for Brian until 
he was asked to explain the "vertical line test" which he referred to as 
important to teach to students. He drew the graph of a circle. At this 
moment he faced a conflict: "Uh, a circle is a function, but a circle doesn't 
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pass the line test." And the confusion continued: "I have a problem trying 
to make an ellipse and call it a function based on my definition." 

Brian did not have any problem in using the univalence property until 
he was confronted with a contradiction: "A circle is a function, but a 
circle doesn't  pass the line test." So, even though it seemed at first that 
Brian did know whether something is (or is not) a function, apparently he 
had conflicting schemes in his cognitive structure. On the one hand, he 
(correctly) "knew" that functions have to be univalent. On the other hand, 
he (wrongly) "knew" that a circle and an ellipse are functions. 

This contradicting knowledge left its marks on Brian's pedagogical 
content knowledge. As we saw earlier, before becoming aware of the con- 
flict, his presentations of functions to students followed the ones that he 
encountered as a student, and correctly included the univalence require- 
ment. However, after becoming aware of the conflict, Brian wrongly decid- 
ed that the vertical line test (which is a quick way to check univalence) 
"is an over-generalized tool" and said that he would use it with his stu- 
dents only for linear functions - an unnecessary, pedagogically unwise 
restriction. 

In the above case most participant teachers had some ade~quate knowl- 
edge about the task. This did not happen when teachers ~in the unde- 
fined operations study were presented with ( - 8 )  1/3 . In fact, the vast 
majority of the teachers incorrectly argued that ( - 8 )  1/3 = ~ - 2  because 

= = - 2 .  

The teachers were then asked to assume that one of theft students 
suggested that ( - 8 )  1/3 = - 2  because ( - 8 )  ~/3 = x~/Z~ = -2 , 'whi le  
another student argued that (-8)~/3 = 2, because ( - 8 )  1/3 = ( - 8 )  2/6 ~- 

~ / ( - 8 )  2 = ~ = 2. The reactions of those who knew that ( - 8 )  1/3 

is undefined largely differed from those whose own responses were that 
( - 8 )  ~/3 = - 2 .  Teachers who correctly argued that ( - 8 )  1/3 is undefined 
struggled with the suggested definitions, each of which, on the one hand, 
seemed reasonable, but on the other hand, contradicted their knowledge 
that ( - 8 )  ~/3 is undefined. They were quite sure the students' definitions 
were inadequate, and attempted to assess what could be wrong with them. 
The majority of the teachers who argued that (-8)1/3 = - 2  also remained 
convinced their own definition was correct. A common reaction of these 
teachers consisted of ruling out the second student's definition by using 
a wrong mathematical argument as an explanation. Gal exhibited such a 
reaction: 

Gal: I'm sure that ( - 8 )  1/3 = -2. I am sure that the second student is wrong. 
Interviewer: Can you explain...? 
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Gal: [interrupting] This is what I am trying to find out. There is a mistake here which I 
have not yet found. I know both arguments cannot be true. If both were true (-8)~/~ 
would have been undefined, but it is defined. The second student needs to understand 
that all undefined mathematical operations include 0 [sic]; (-8) ~/3 does not include 
0, and thus (-8) ~/3 is defined and is -2. 

Another common reaction consisted of partially accepting the student's 
definition but, at the same time, remaining convinced that ( - 8 )  ~/3 = 
- 2 .  The following snapshot, taken from an interview with Einat, is one 
example. 

Einat: I'll explain to him that 1/3 and 2/6 are the same, but in this case, if you use 2/6 
instead of 1/3, you get a different, incorrect answer. 

Interviewer: So, do you think that 1/3 and 2/6 are the same number? 

Einat: It is the same quantity, but it is not exactly the same. 

Interviewer: Is it the same point on the number line? 
Einat: Yes, but the appearance of 1/3 is different from that of the 2/6. This difference must 

have some meaning and it really has. In this case, (-8) 1/3 = -2, but (-8) 2/6 = 2. 

Both these reactions reflected the teachers' limited understanding of 
undefined mathematical operations. Gal's reaction reflected her under- 
extended notion of undefined mathematical operations. Einat's fragile 
conception of  equivalent fractions, according to which 1/3 and 2/6 are 
not always the same, allowed her to accept that ( - 8 )  1/3 is one number 
while ( - 8 )  2/6 is another, a conclusion that violates the requirement that a 
mathematical definition should not depend on its representatives. 

Teachers, especially when they let their students explore and raise ques- 
tions, may find themselves in unplanned situations such as has happened to 
Brian, Gal and Einat in the interviews. These cases illustrate how teachers' 
pedagogical decisions are based, in part, on their most basic subject-matter 
knowledge - "knowing that". In these cases, inadequate knowledge on the 
part of  the teachers led them to provide the students with responses that 
were mathematically inadequate. 

Knowing why 

"Knowing that" though certainly important, is not enough. Knowledge 
which pertains to the underlying meaning and understanding of why things 
are the way they are, enables better pedagogical decisions. The following 
sections illustrate how "knowing why" affects teachers' decisions about 
the presentation of  the subject-matter. 

Most of  the subjects who participated in the undefined operations study 
knew that 4 divided by 0 is undefined. However, when asked to explain 
"why",  most could not supply any appropriate explanation. Some provided 
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a rule-based argument  - both to themselves  and to students. Vered, for 
example ,  argued that "in mathemat ics  there is such a rule that one cannot 

divide by 0." She also advocated this rule-based approach as adequate 

to students '  inquiries. The fol lowing snapshot  describes her reaction to a 
s tudent 's  suggestion that 4 divided by 0 is 0. 

Vered: I'll tell them that it is forbidden to divide by zero. 
Interviewer: And if they ask why? 
Vered: I will tell them that that's how it is. My students will never ask such a question 

because I will tell them and they will know, and I won't invite them to suggest their 
own definitions. I'll tell them that there are certain axioms in mathematics that they 
should memorize. 

Interviewer: And if you get a very stubborn student and he still asks why? 
Vered: I'll tell him that it is not allowed to divide by 0. I'll explain that mathematics and 

physics are different. In physics I can explain everything in terms of nature, of reality. 
Mathematics is not like that. In mathematics we have rules, and we operate according 
to them. These rules often do not seem reasonable. When studying mathematics, one 
has to adopt these roles and to operate accordingly. There is no reason and there is 
no point at all in looking for explanations. One just has to accept them. 

Evidently, this short illustration reveals Vered's  own limited concep-  

tions of  the reasoning behind the decision not to define 4/0. It seems that 

she had memor ized  the statement that a/O is undefined, and was willing 

neither to a t tempt  to question the logic behind this decision nor to challenge 

it. 

Apparently,  Vered viewed mathemat ics  as a bag of  unexplainable rules 

that students should accept,  memor ize  and use. She considered the teaching 
of  mathemat ics  as a process  in which students absorb what they are told. As 

a result she could not seriously consider  students '  responses. She expected 
her students to unquest ioningly memor ize  the rules, much like she had 
done. 

A similar v iew of  mathemat ics  was observed when teachers who par- 

t icipated in the function study were asked about the issue of  univalence. 

Mos t  were  famil iar  with the univalence requirement  and included it in their 
definition of  a function: "A function is a relation such that a number  in 
the domain  can only be matched to one number  in the range" (emphasis  
added). They  also used the requirement  as a criterion for checking whether  
given mathemat ica l  objects were functions. 

When  asked to explain the importance of  univalence,  the subjects gave 
two kinds of  immedia te  responses which showed that they did not really 
know. They  either s imply stated they did not know or c laimed that the role 
of  univalence  was to distinguish between functions and non-functions.  
Even  after prompting,  most  did not know why it should be important  to 
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distinguish between functions and non-functions. Like in Vered's case, 
some described the origin of the requirement as arbitrary: 

It seems like that whoever decided to call that a function just made it one of the requirements: 
if it looks like a graph, like this, and has only one, and I'm going to call that a function. 

Not knowing why univalence is needed and accepting it as an arbitrary 
requirement influenced the prospective teachers' pedagogical content- 
specific decisions. Obviously, they could not explain to a student why 
univalence was needed. More than that, when asked to explain what a 
function is to a student with difficulties, many did not do so. Instead, they 
tended to provide the student with the "vertical line test" as a rule for 
getting the right answers without needing to understand: "By graphing 
the function and doing the vertical line test, a line never crosses the graph 
more than once." These prospective teachers chose to present students with 
easy rules that overemphasize procedural knowledge at the expense of and 
without concern for meaning. One of the subjects claimed: 

If they're told to figure out whether it's a function or not, using the definition, they probably 
wouldn't be able to do it. If they know the vertical line test works, even if they don't know 
why it works, they can see right away why this is a function, because they can go through 
with a ruler or a straight edge and vertically go across the function, looking for places 
where there are two points. 

Another task that asked teachers to explain "why" referred to quadratic 
functions. In this case, in contrast with the previous ones, some teach- 
ers attempted to go beyond simply providing the students with rules to 
follow. 

The general form of a quadratic function is , f ( x )  = a x  ~- + bx + c. "a" in 
the expression is positive (negative) if and only if the graph opens upward 
(downward). When presented with the following question (see Figure 1) 
almost all the prospective teachers correctly stated that when the graph of 
a quadratic function looks like N, "a" (in the equation) should be negative. 
A vast majority of the subjects stated a rule as an explanation: "a < 0 
since the graph opens downward." When asked to explain why  the rule 
works, most did not explain the "why" but rather admitted that they just 
memorized it. 

Again, not knowing why the rule works influenced the prospective 
teachers' pedagogical content-specific choices. The subjects were present- 
ed with a situation where a student asked them w h y  "a" in the quadratic 
equation had to be negative if the parabola looked like 2/. Those who 
treated the relationship between the graph and "a" as a rule to memorize, 
suggested a nice exploration of quadratic functions with positive and neg- 
ative "a"s  so that the student could find the pattern. The only problem with 
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This is the graph of the function f(~:) = a z  ~ + b~c + c. 

State whether a, b and c are positive, negative or zero. 

Explain your decision. 

Fig. 1. 

X 

The relationship between the coefficients and the graph of a quadratic function 

this approach was that it did not help the student understand why the rule 
works: 

I think that the best way to teach this is when you're having students graph them. Give 
them a whole set of these, interchanging negatives and positives .... And then have them 
see if they can find the pattern....Have them make several different graphs. And then cut 
them out and try to put them in groups...,Some would, probably, group all the ones that are 
down the same and all the ones that are up .... And by that way, kids can say, "What was 
common in this to make it a group?" And then, as a class, I think that they could come up 
with it. And then they would remember it. By reading it in a book I don't think they will. 

By asking students to try several examples and find the pattern, these 
people ignored the fact that the student has already found a rule, and they 
did not relate to the essence of the student's question: Why does this rule 
hold? 

In contrast with the above approach the following excerpt illustrates 
an approach based on better subject-matter understanding - understanding 
why the rule holds. Both the first described approach and the following 
one start with the sketching of graphs. However, instead of suggesting 
the sketching of several graphs in order to find a pattern, the following 
approach suggests to sketch the basic graph of y = z 2 and then to follow 
the change in the graph when the ~¢-values are multiplied by a negative 
number: 

Start from graphing several parabolas, using basic ~ /=  :e 2 so f ( z )  = z 2. And showing how 
that changes (going back to the translations) and having them realize they're essentially 
multiplying the y values by a negative so they are rotating the whole thing about the z-axis. 

• And that what forces it to point down, the opening down. 
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A student was asked to find the equation of a line that goes through A and the origin O (see 

Figure 1). She said: "Well, I can use the line ~/ = z as a reference line. The slope of line 

y Y L ~ y = x  

oA 

> ' x  > x  c / 
Fig. 1 Fig. 2 

AO should be about twice the slope of the line ;~ -- z, which is 1 (see Figure 2). So the 

slope of line AO is about 2, and the equation is about ! /=  2z, let's say V = 1.%." 

What do you think the student had in mind? Is she right? Explain. 

Fig. 2. The slope of a line 

KNOWLEDGE ABOUT STUDENTS 

A teacher ' s  decision about  whether  a certain student 's  response is cor- 

rect is based  on that teacher ' s  content knowledge.  But this, by itself, is 
not enough for developing a reaction that can help the student construct 

his/her knowledge.  Such reaction should take account  of  c o m m o n  stu- 
dents '  concept ions  and ways of  thinking related to specific mathematical  

topics ( "knowing  that"). S/he should be able to understand the reasoning 
behind students '  concept ions and anticipate sources for c o m m o n  mistakes 
("knowing why") .  

Understanding students '  ideas and the reasoning behind them often 

constitutes a real challenge, as we can learn f rom the following. Teachers 

were presented with a situation (see Figure 2) in which they had to respond 
to a s tudent ' s  explanat ion which resembled a mistake that students often 

make  when they learn about  linear functions: That the slope of  a linear 
function varies in straight proport ion with the angle between the line and 

the z -ax is  (e.g., twice the angle means twice the slope). 

A large group of  the subjects who did not understand the reasoning the 
student used described what  the student did as estimation: 

"She had the right idea but she was off in her gross approximation of ~/= 2at." 

"She was thinking that the slope needed to be steeper which is good. She thought using a 
decimal would make the graph tighter." 
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"No, the slope of AO is not necessarily twice that of ?t = a:. She must be careful in 
her estimation." 

While estimation can serve as a description of what the student did, 
these teachers completely ignored the (wrong) connection between angles 
and slopes which the student had made. Telling the student that she must 
be careful in making estimations would not help the student realize that 
her assumption about the linear relationship between a slope and an angle 
was wrong. 

The above kind of  explanations of  the student's way of thinking is 
very different in its nature from the type of  explanation that about half of  
the participating teachers gave. These teachers did identify the student's 
mistaken way of  thinking. This is illustrated in the following excerpt: 

The girl thinks that because the ~t = z line, which is a 45 degree angle (whether she knows 
that's a 45 degree angle or not) and the ~ axis is twice that, 90 degrees. So she thinks that 
this has slope 1 [points to the graph of ~ = z], so this one has slope of 2 [points to the 
y-axis]. I can see where she made a mistake, so she says this [the slope of line AO] is just 
a little bit less than this [the "slope" of the ~/-axis], so that's going to be 1.9. That's what 
she did. 

The above was said by a teacher who knew that the slope of  a linear 
function does not vary directly with the angle between the line and the 
z-axis. On the basis of  this knowledge the teacher not only realized that 
the student was wrong, but also pinpointed the source for the mistaken way 
of  thinking. However ,  as in the case of  Brian's knowledge of  univalence, 
"knowing that" the slope of  a linear function does not vary directly with 
the angle between the line and the z-axis,  is not a matter of  "knowing" 
or "not  knowing".  It is more a matter of  "situated knowledge",  as became 
clear when the teachers were asked to estimate the slope of  the line AO. 

Assuming that one unit on the z-axis equals one unit on the ~/-axis, one 
can estimate the slope of  the given line AO by comparing A~/'s with the 
corresponding Az ' s .  The slope approximated this way is 9. Interestingly, 
even teachers who realized that the student was wrongly using angles to 
estimate a slope, based their estimation on a similar hidden assumption. 
This is illustrated in the following excerpt: 

It's going to be just a big number over a little number. That's all I can say about it. The 
slope is going to be a real big number. I'd say 100. I don't know. It's just going to be a 
really big number. 

These  people  knew that slope is "rise over  run". But they did not use 
this knowledge.  They  looked at the graph and assumed that the result of  
dividing vertical change by horizontal change would be "very big". More  
than that, those who tried to find the ratio of  vertical to horizontal change, 
counted and found a slope o f  10-15. This number  was counter-intuitive 
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to their feeling that a line "close" to vertical (a large angle) should have a 
huge number for slope: 

Urn, the slope would probably be (pause), may be about  5' = 15z. l might  be wrong, l am 
probably  wrong. Because  1 know the vertical line has an infinite slope. It 's  a pretty steep 
slope. 

These teachers recognized the wrong use of angles for estimating slopes 
when dealing with the familiar case of slope 2, but used exactly that 
mistaken way of thinking when the situation involved non-familiar linear 
graphs. It is probable that these teachers would not be able to identify 
certain adequate responses as such. 

In the cases described above, the teachers were presented with a com- 
mon students' response and explicitly asked to explain its possible sources. 
A student's response, by itself, usually does not provide enough informa- 
tion for detecting his/her way of thinking. In many cases it is necessary 
for the teacher to pose assumptions about the student's ways of thinking, 
to test them, and to construct a reaction accordingly. 

In the case of  4/0, teachers were provided with two common students' 
responses. One suggested that "4 : 0 = 4. When you divide by zero, you 
cannot actually perform the division, and thus you're left with the entire 
quantity." The other said that "4 : 0 = 0, dividing by 0 is impossible 
and thus the answer is 0." The teachers were asked to describe their in- 
class reactions to each of these students. They were not explicitly asked to 
provide explanations for the sources of the students' mistakes. Obviously, 
these mistakes could evolve from conceptualizing zero as nothing, from 
viewing division only as sharing, from both these conceptions, or from 
others yet to be explored. Therefore, the first response to these students 
should have consisted of further probing in an attempt to better understand 
their line of reasoning, and then to react accordingly. 

The analysis of the teachers' reactions to students' definitions however 
revealed that most of them did not attempt to make this initial inquiry to 
better understand their reasoning. In fact, the vast majority of the teachers 
judged the students' answers only in terms of being right or wrong, and 
provided them with their own explanations for the right answer. Avi was 
one of these teachers. 

Avi: The  second s tudent  says that it is impossible  to perform division by zero. 1'11 explain 
to h im why divis ion by zero is undefined. I ' l l  start with 8 : 2 = 4, and I ' l l  ask them 
why this is so. The  answer  should be that 4 x 2 = 8, and I think they know it. Then 
I ' l l  explain that in order to see what  4 : 0 could be, we shall divide 4 by various 
numbers  that  get closer and closer  to 0. We shall then calculate 4 : 2, 4 : 1, 4 : l / 2 ,  
4 : 1 /4 ,  and we shall see that when  the divisor  gets smaller  the quotient  gets bigger. 
We shall then do the same with 6 : 2, 6 : 1, 6 : 1 /2  and so on. Later we shall try with 



16 1~. EVEN AND D. TIROSH 

4 : ( -2) ,  4 : ( -  1), 4 : ( -  1/2) and they will see that in this case, when the divisor 
gets bigger the quotient gets bigger. They will then get the feeling that 4 : 0 cannot 
be defined. 

Interviewer: Does this also hold for the first student? 
Avi: Yes. I can use this explanation for him too. 

Avi  cons t ruc ted  his react ion upon  an intuitive sense o f  limit. This reac-  

t ion was  based  on the p rob lemat ic  not ion o f  divis ion by  posi t ive and nega-  

t ive fract ions.  W h e n  such an approach  is used,  there is a need to careful ly  

assess s tudents '  unders tand ing  o f  these notions.  In fact, the appropr ia teness  

o f  us ing  this approach  is partially de te rmined  by  the s tudents '  unders tand-  

ing o f  these not ions.  Yet, it seems that Avi was  unaware  o f  the need to 

assess  the s tudents '  concep t ions  o f  these divisions.  Further, his immedia te  

conc lus ion  that  this same react ion could  work  for  both students may  indi- 

cate that  he  m a d e  only  a superficial  a t tempt  to unders tand the reasoning  

beh ind  the s tudents '  sugges ted  definitions. 

Very few teachers  tried to careful ly  examine  the s tudents '  ways  o f  

thinking.  A ra ther  unique  react ion is that o f  M a y a  who  made  careful  

a s sumpt ions  about  the s tudents '  reasoning,  tried to find procedures  for  

val idat ing her  assumpt ions ,  and to define means  by which  she could  discuss 

these cases  not  on ly  with one specific student,  but  with the entire class. 

She tried to ident i fy  both  strengths as well as weaknesses  that should  be 

addressed  in the discussion.  

Maya: I'll first refer to the second student. It seems to me [pause]. It is possible that 
for him zero exemplifies nothing, and then the divisor is nothing, and then there 
is no division, which is, for him, nothing, which is zero. First, I need to better 
understand his thinking. What meaning does he assign to 'if we are not dividing?' If 
his understanding is in line with what I developed here, then it is important to free 
the operation from the specific content of division [pause] I mean, for instance, we 
shall have to check and see how he operates with negative numbers. We can start 
with division by fraction, for instance, 4 : 1/2, and try to build on the notion of 
division as the inverse of multiplication. [She goes on...] 

Interviewer: Does this also hold for the first student? 
Maya: [Thinking] With the first one [reading his suggestion] ... this is even more demand- 

ing. He says that it is 0, and it is not clear to me what he thinks about zero. It takes a 
lot to understand that a • 0 = 0 for a non zero a. It means that the class shall have 
to deal with the idea that division by zero means not doing division .... 

CONCLUSION 

P e d a g o g i c a l  con ten t  k n o w l e d g e  includes several  interrelated aspects.  In 

this paper  we  deal t  with teacher  presenta t ions  o f  the subject-matter,  espe-  

cially when  faced  with s tudents '  quest ions,  ideas or hypotheses .  Clearly,  
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teacher responses to students may have different aims, such as encourag- 
ing cooperative work among students, making students feel good, etc. We 
analyzed teachers' responses in light of the potential development of mean- 
ingful learning. Based on research in the field, we focused on two important 
sources of this aspect of pedagogical content knowledge: subject-matter 
knowledge and knowledge about students. 

In respect to the first source, we discriminate between "knowing that" 
and "knowing why". Within the mathematical education literature these 
two kinds of knowledge are frequently discussed and there is a gener- 
al agreement that understanding of the subject-matter requires both (e.g., 
Hiebert, 1986; Nesher, 1986; Skemp, 1976), and that teachers should there- 
fore have both kinds of knowledge (e.g., Ball, 1990; Leinhardt, 1988; 
Skemp, 1976). While in the literature "knowing that" and "knowing why" 
are rather sharply defined; when it comes to specific subject-matters and 
specific contexts, their respective scopes become vague. As we saw in 
this paper, it is not always clear what it means to "know that" about a 
function; or to "know why" about undefined mathematical operations. Our 
studies indicate that sometimes participant teachers did not "know that": 
they did not know the definitions or incorrectly solved problems presented 
to them. However, in many cases it was impossible to precisely determine 
if a certain teacher "knew that". For example, some could correctly quote 
definitions and at first seemed to know how to use them, but when faced 
with "problematic" cases (which, of course, are subjective) the teachers 
became unsure about their own original definitions and occasionally even 
changed them. When it comes to "knowing why", things are not less com- 
plicated. Some subjects knew why a specific case was set in a certain way, 
but could neither explain what lay behind the general structure nor correct- 
ly solve problems related to "extreme" cases. Therefore, even though we 
provided illustrations of the influence of teachers' subject-matter knowl- 
edge on their pedagogical content specific choices, the issue of the nature 
of teacher subject-matter knowledge needs further investigation. 

We have suggested that the terms "knowing that" and "knowing why" 
are also useful when dealing with teachers' knowledge about students. 
"Knowing that" in this context refers to research-based and experienced- 
based knowledge about students' common conceptions and ways of think- 
ing in the subject-matter. "Knowing why" refers to general knowledge 
about possible sources of these conceptions, and also to the understanding 
of the sources of a specific student's reaction in a specific case. In this 
paper we mainly refer to the first, i.e., teachers' understanding of possi- 
ble sources of a certain student's response. Our data suggest that many 
of the teachers made no attempt at understanding the sources of students' 
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responses. When asked directly, they found it difficult to explain why stu- 
dents reacted the way they did. Sensitivity to students' thinking becomes 
even more difficult under the pressure of real teaching instead of an inter- 
view setting. Therefore, we suggest that teachers' awareness of sources of 
students' responses be developed. This can be based on existing research 
literature. 

A main conclusion that can be drawn from this study is that teacher edu- 
cation should explicitly refer to topics included in the high-school curricu- 
lum, such as functions and undefined mathematical operations. These top- 
ics have already been studied by the teachers during their own high-school 
years. However, as we saw in this paper, one cannot assume that teachers' 
subject-matter knowledge with respect to the two aspects ("knowing that" 
and "knowing why") are sufficiently comprehensive and articulated for 
teaching. 

Clearly, teachers do not study explicitly about students' conceptions 
and ways of thinking in mathematics during their own studies in high- 
school. Therefore, teacher education should emphasize the two aspects of 
knowledge about students mentioned in this paper. 
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