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Semmm'y 

Winfree has developed mathematical models for his phase resetting experiments on biological 
clocks. These models lead him to ask a number of mathematical questions concerning dynamical 
systems. This paper deals with these mathematical questions. In Winfree's terminology we show the 
existence of isochrons and establish some of their properties. 

This paper deals with questions raised by Winfree [7] regarding the behavior 
of "isochrons" in mathematical models of biological oscillations. These mathe- 
matical questions lie within the domain of dynamical systems [5], the qualitative 
study of ordinary differential equations. Our discussion will ignore the biological 
context of these questions, but we shall attempt to present our results in as 
non-technical a fashion as possible. It is our intention that the exposition be both 
accessible to non-specialists of dynamical systems and accurate insofar as is 
possible. Proofs of theorems are contained in the appendices. 

We begin with a description of the setting for Winfree's question. The object 
of ultimate interest is a biological "clock" or oscillation. A model is constructed 
for the oscillation based on the assumption that its dynamics are determined by 
the values of a finite number of physical and chemical parameters (temperatures, 
pressures, free energies, velocities, chemical concentrations, etc.). A multi-dimen- 
sional space M is constructed representing the possible values of all these 
physical and chemical quantities. To say that the dynamics of the system are 
determined by the values in M at any one time means that there is a flow 
• : M x ~ M  defined by the condition that • (x, 0 = y  if the state x becomes the 
state y after t units of time. The map • is to satisfy the usual flow properties 

• (x, 0 )=x  (1) 
and 

(x, tl + t2)= • ('~ (x, t0, t2). (2) 

One makes the additional assumption about the model that M is a smooth 
manifold (usually a domain in a Euclidean space) and that 4~ is a smooth map. 

a vector field X by the equation X ( x ) = - - ~  (x, 0). The flow then determines 
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260 J. Guckenheimer: 

Conversely, X determines ~. It is convient to speak sometimes of the flow 
and sometimes of the vector field X. 

Winfree assumes that 4~ has a stable limit cycle. The orbit of the flow • through 
x s M  is the set {~(x, t) l t~R}.  The orbit through x is periodic of period z > 0  
if z is the smallest positive number with the property that • (x, z )=  x. A periodic 
orbit y is a stable limit cycle if there is a neighborhood U of 7 with the property that 
if y s U ,  then d(~(y,t),,?)-*O as t ~ m .  The distance d here is the distance 
function for some metric on M. 

A simple example of a vector field whose flow possesses a stable limit cycle is 
given by the differential equations 

= - y + x  (1 - x  2 _y2)  

) = x + y (1 - x 2 - y  2) 

in the plane ~ 2  In polar coordinates these differential equations become 

0 = 1  

i . = r - r  3. 

The circle r = 1 is a periodic orbit of period 2 re. It is stable because/" > 0 inside the 
circle (except at the origin) and ~ <0  outside the circle. This implies that r is a 
monotone function on each orbit and that all orbits except the origin tend to 
the limit cycle r = 1. 

If y s M, x is on a stable limit cycle 7, and d (4~ (x, t), 4~ (y, t))-~0 as t -*m,  then 
the eventual behavior of the points x and y looks almost the same° Winfree 
describes this situation by saying that y is on the isochron of x. If some event 
occurs at one place along 7, then that event will eventually occur at the same 
times along the orbit starting at y as they will on the orbit starting at x. 
Winfree asks: 

Questioa A: Do isochrons exist? Is a neighborhood of a stable limit cycle par- 
titioned into the isochrons of points on the limit cycle. 

The answer to this question is yes if one places a nondegeneracy assumption on " 
the behavior of the flow near the limit cycle° The existence of isochrons in 
this case is a theorem of dynamical systems which has been known for a few 
years. We describe now the non-degeneracy condition and state a mathematical 
theorem answering Question A. A proof of the theorem is discussed in Appendix A. 

Let 4):MxN--*M be a flow with a periodic orbit 7 of period z and let x s 7 .  
A cross-section of ~ at x is a submanifold N ~ M with the following properties: 

(1) x s N and lq c~ ~ = (x}. N is the closure of N in M. 

(2) T ~ N + L T = L M .  

The second condition says that N is transverse to 7 at x. The Poincar6 map 0 is a 
map defined on a neighborhood V of x in N with image in N. The map O is 
characterized by the condition that if y ~ N, then O (y) is the first point of 
intersection of the forward orbit of y with N when this makes sense. Since the 
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flow ~ is continuous, 0 will be well defined in a neighborhood of x in N. The 
time of the first intersection will be near z for points near x. See Fig. 1. One 
then says that y is an elementary (or hyperbolic) limit cycle if the matrix D Ox of 
first partial derivatives of ~9 at x has no eigenvalues of absolute value one. 

Fig. 1 

The eigenvalues of D Ox are o f t e n  called the characteristic multipliers of Y. 
They are independent of the choices of x and N. If y is an elementary, stable 
limit cycle, then all of its characteristic multipliers have absolute value smaller than 
one. Every orbit in a neighborhood of Y tends toward Y exponentially fast. 
The existence of isochrons is equivalent to the existence of cross-sections to ? 
for which the time of first return is identically the period of Y- We seek a 
cross-section N for which ~, (N, ~) a N. If 7 is a stable limit cycle, such a cross- 
section will be the isochron of its intersection with 7. 
The concept of an isochron is closely related to the concept of a stable manifold 
in dynamical systems. If • is a flow on M and S is a subset of M, then the stable set 
of S, denoted W e (S), is the set of points y for which d (~ (y, t), ~ (S, t))---,0 as 
t - - .~.  The unstable set of S, denoted W" (S), is ( y l d  (~ (y, t), q~(S, t))--.O as 
t---, - cc ). If an (un)stable set is also a manifold, it is called an (un)stable manifold. 
The basic theorem we state regarding Question A is the following special case 
of the Invariant Manifold Theorem [2, 3]: 

Theorem A: Let (a: M x ~-- ,M be a smooth flow with an elementary, stable 
limit cycle ?. The stable set W e (x) of each x ~ 7 is 
(i) a cross-section of 7, 

(2) a manifold diffeomorphic to Euclidean space. 

Moreover, the union of the stable manifolds W e (x), x ~ 7, is an open neighborhood 
of ? and the stable manifold of 7. 

This theorem proves the existence of isochrons for the elementary, stable limit 
cycle ? of ~. Note that for any flow ~, W e (~ (x, t)) = ~ (W e (x), t). It follows from 
this observation that isochrons are permuted by the flow. In dealing with the 
second and third questions of Winfree, we shall assume that the limit cycle in 
question is elementary. 

The second question Winfree asks is a topological question about the stable 
manifold of a stable limit cycle. 

Question B: Suppose ~: ~ n x O ~ "  is a flow with" an elementary, stable limit 
cycle 7. Does the frontier of W e (7) have dimension >_ n - 2 ?  The frontier of a set S 
is S -  intS with S the closure of S, and intS the interior of S. 

18" 
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M. Hirsch pointed out that the answer to the question is yes for topological 
reasons. The space W S (7) is an open set of R ~ homeomorphic  to S t x ~"-  1. Its 
first homology group is non-zero since 7 cannot be deformed to a point in W ~ (,/). 
From the Alexander Dual i ty  Theorem E6] of algebraic topology, it follows that 
the complement of W ~ (7) has a non-trivial homology class of dimension n - 2  
that links 7. The existence of this homology class implies that the frontier of 
W ~ (y) has dimension at least n - 2 .  Details and specific references are given in 
Appendix B. 

We remark that the answer to question B is yes for a flow on a manifold M of 
dimension n whose homology group of dimension n - I  is zero. It is not true on 
any manifold M as the following example demonstrates. On the three sphere S 3, 
let X be a vector field which points "down" except at the north and south 
poles where X has an elementary singular point° Let Y be a vector field on the 
circle S t which is never zero. The sum X +  Y defines a vector field on S 3 x S t 
with two periodic orbits 71, 72 at the {north pole} x S t and {south pole} x S t 
respectively. The periodic orbit 72 is an elementary stable limit cycle. Moreover, 
WS (72)= $3 x S t -71 .  Therefore the frontier of W ~ (72) is ,& and the dimension of 
7t is 1 < 4 - 2 .  

The third question of Winfree concerns the behavior of the isochrons of a stable 
limit cycle 7 near the frontier of W ~ (7). 

Question C: For "generic" flows 4~: M x R ~ M  possessing an elementary stable 
limit cycle 7, is it true that every neighborhood of every point on rhe frontier of 
Ws (7) intersects every isochron of 't ? 

Questions A, B, and C motivate a number of experiments performed by Winfree. 
By adjusting a pair of experimental parameters, he is able to create experiments 
for which the initial conditions in a model lie on or near the frontier of W s (;~), 
7 a stable limit cycle. The experimental results for these values of the experimental 
parameters display one of two phenomena: (1) a destruction of the oscillation 
entirely, or (2) points arbitrarily close to one another lying on isochrons of 
every point of ;z The second possibility indicates that all of the isochrons 
of 7 are passing arbitrarily close to a single point on the frontier of W S (7). Since 
this situation is the one typically encountered in experiments, is it the one 
which is also typical of the models in an appropriate sense? This is a natural 
condition that a reasonable mathematical model should satisfy° The answer to 
Question C does not seem to exist in the literature of dynamical systems. Here 
we attempt an answer which appears almost satisfactory. 

We illustrate the kinds of phenomena relevant to Question C which may occur 
for a flow by means of a few examples. The first example is a flow q5 on the 
plane Nz whose vector field in polar coordinates is given by the differential 
equations 

0=1  

= r ( r  2 - r ) )  ( r  ~ - 2 P2)" 
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This vector field has two periodic orbits 7~, 72 given by r=r t  and r=rz 
respectively. The periodic orbit 7t is an elementary stable limit cycle. The stable 
manifold W S (7~) of 71, is the set {(r, 0) [ 0 < r < r 2 } .  If(r~, 01)=x ~7, Ws (x) is easily 
seen to be {(r, 0) I 0 < r < r 2  and 0=01} since the angular velocity of the flow is 
identically one. Thus • is a flow which has an elementary stable limit cycle but 
does not satisfy the conditions specified in Question C. The frontier of W ~ (yt) 
contains 7,.. If x ¢ 72, then a small neighborhood of x does not meet each 
isochron of 71. The isochrons of 7~ are contained in radial lines of the flow. 
See Fig. 2. 

I 
Fig° 2 

" - ' -  o~J; ; of 

The second example is obtained from the first by changing the parametrization 
of the flow in the first example without changing the orbits. Let f :  ~-- .~ be a 
smooth function with the properties that 

(1) f(r)_> 1, 
(2) f ( r ) =  1 unless r is near r 1. In particular f ( r z ) =  1, 

(3) f ( r t ) >  I. 

Let Y be the vector field f (r)X with X the vector field of the first example. 
The differential equations defining Y are 

O=f ( r )  
i" = f  (r) r (r 2 -- r{) (r a -- r~). 

The orbits of Y are the same as those of X. There are still periodic orbits of Y 
at 7z={(r, O)[r=rz};  i=  1, 2. Unlike the first example, the periods of '/1 and V2 
are different for the flow of K The periodic orbit 7t has a period 2 r~/f(rt), 
and the period of 72 is still 2 re. The effect of this perturbation is to bend the 
isochrons of Y. See Fig. 3. 

_ . -  ~ochmn 

[-'i g. 3 
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We are interested in whether the isochrons of Y satisfy the criteria of Question C. 
The key observation to be made is the following. If we follow the flow for 
time 2r~/f(rl) each isochron is mapped into itself, while if we follow the flow for 
time 2 ~, each point of 72 of Y2 on the frontier returns to itself. These two 
requirements are compatible only if the isochrons of Yt wind around the annulus 
r t < r < r  2 infinitely often as they as approach Y2. In appendix C we give the 
topological arguments which prove that Y satisfies the criteria of Question C. 

The first two examples considered above deal with vector fields in the plane. 
It is well known that there is a drastic difference in the qualitative behavior vector 
fields can have in two and higher dimensions. It is reasonable to expect that the 
discussion of Question C will be considerably more difficult in more than two 
dimensions° The third example is intended to demonstrated some of the compli- 
cations which arise in three dimensions. 

The third example is described by a pair of perturbations to one flow. Consider 
the flow ~ on N 2 x S t whose vector field X is defined by the differential equations 

/ .=r  ( 1 - r  ~ ) 

0 = 0  

4>=1 
with (r, 0) polar coordinates on ~2 and 4> the coordinate on S t. The flow 4~ 
has an elementary stable limit cycle , t={0}xS  t. The stable, manifold 
W ~ (7) = {(r, 0, 4>) L r < 1 }. As in the first example, the isochrons are easily described 
as the sets ~o = constant in g:~ (3'). Denote the frontier of W ~ (;:) by B. 

We now make two perturbations in X. The first perturbation Xt is obtained 
by adding a small vector field to X which has a component only in the 0 
direction and produces a vector field X t such that X t restricted to B has two 
periodic orbits ? t and 't2 given by the sets {(1,~, 4>) L 4> ~ S ~ } and {(1, - ~ 4>) 1 4> ~ S t } 
respectively. We assume that all other orbits of the flow of X t in B flow from 
,/1 to 72. The second perturbation X2 of X is obtained by multiplying Xt by 
a function f :  NZx S t--, N which is identically I outside a small neighborhood U 
of Yt and which is identically l +e  inside a smaller neighborhood of 7t. 

Does X 2 satisfy the criteria of Question C? To answer this question, it is 
necessary to describe the isochrons of X2o The isochrons of Xt are the same as 
the isochrons of X. If (r, 0, 4>) ¢ W ~ (7) has a forward orbit for Xz which does not 
intersect U~ then (r, 0, 4>) is on the isochron of the point (0, 0, 4>) ~ ? for X2 since 
the velocity of X,  in the 4> directionis identically one outside U. The period of 7 
for X z is 2 ~; therefore, the map obtained by following the flow backwards for 
2 z maps each isochron to itself. Since each orbit inside I,V ~ (7) eventually remains. 
outside U, by iterating the - 2 z map of the flow, one can determine to which iso- 
chron each point belongs. 

One finds that the isochrons look like the drawing of Fig. 4. The frontier of 
each isochron is the closure of a curve in B which approaches ~/t from both sides. 
If pc  B - ?  t, then small neighborhoods of p do. not intersect every isochron of 7. 
If p ~ Y t, then every isochron contains p in its frontier. On the '~half-cylinder" 
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\ 

Fig. 4 

0=~, this example looks like the second example considered above. Elsewhere it 
has the general features of the first example in relation to the criteria of 
Question C. 

We now state our results regarding Question c. By reparametrization of vector 
fields along stable limit cycles, it is possible to prove that the set of vector 
fields meeting the criteria of Question C is dense in the set of all vector fields 
having an elementary, stable limit cycle (in the space of C" vector fields with the 
C" topology). The question of whether the set is "generic" seems to be difficult. The 
results we have obtained are contained in the following three theorems. 

Theorem CI :  Let M be a compact oriented two dimensional manifold. In the space 
of C" vector fields on M having an elementary stable limit cycle Y, there is an 
open-dense set of vector fields for which every neighborhood of every point in 
the frontier of Fe "s (7) intersects each isochron of 7. 

Theorem C2: Let X be a C" vector field on a manifold M having an elementary 
stable limit cycle ~. In the space of vector fields Y such that Y= X on a neighborhood 
of the complement of 14 rs (?), there is a neighborhood ql of X and a generic subset 
of ql such that every vector field in c~ has a limit cycle fl with the property that 
every neighborhood of every point in the frontier of W "s (fl) intersects each isochron 
of ft. "Generic" here is used in the sense that a subset of a topological space is 
generic if it is a countable intersection of open-dense sets. 

Theorem C3: Let M be a compact manifold and let 2 be the space of vector 
fields on M satisfying Smale's Axiom A'~ the strong Transversality Property, and 
havino a stable limit cycle ?. There is a dense open subset of vector fields in 
with the property that every neighborhood of every point in the frontier of W s (7) 
meets each isochron of ~. 

Proofs of these theorems are given in Appendix C. The difficulty in removing the 
restriction to a class of structurally stable vector fields in Theorem C 3 lies in the 
fact that one has little control on the frontier of the stable manifold of a stable, 
elementary limit cycle. This frontier may be drastically altered by a perturbation 
of the vector field. There is no apparent relation between the behavior of two nearby 
vector fields on the frontier of a common stable limit cycle. 
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Appendix A: 
In this appendix we shall prove the existende of "isochrons" for an elementary, 
stable limit cycle. This results is not new [2]. Much more extensive theorems have 
been proved by Hirsch, Pugh, and Shub [3]. Our purpose here is to give a 
reasonably elementary, self contained proof of the result needed for our appli- 
cations. 

It is useful to reduce the problem somewhat and cast it slightly different terms. 
The initial assumption is that the flow ~ has a limit cycle ,/ of period v. The 
map f=qB (.,~): M-.*M has y as a set of fixed points. Moreover, if we consider 
D f  along y, it has an eigenvector with eigenvalue 1 along y. All other eigenvalues 
of D f  along y have absolute value less than one. This implies that we can find 
a neighborhood U of y and a metric on M with the properties f ( U ) c  U and 
d(f(x) ,7)<d(x,y)  for all x a U. We can parametrize U as a neighborhood of 
{0} x S ~ = ~" -  ~ x S t in such a way that at each x ~ y, Dfx leaves invariant the 
hyperplane of Tx M tangent to ~" -  1 and is a contraction on this hyperplane. 

Proposition: Let f :  R"- ~ x St-- ,~ " -  ~ x S t be the time v map of a flow • satisfying 

(1) {0} x S 1 is a periodic orbit y of • of periodv. 

(2) If x ~ y, then Df,~ leaves invariant the subspace tangent to ~" -  i and has norm 
smaller than one on this subspace. 

(3) Then there exist invariant manifolds W(x), x ~ y such that W(x) = (y ~ ~"- i × S' 
d ( f "  (y), x ) ~ 0  as n--,oo }. 

(4) The union of the W(x) is a neighborhood ofv. 

(5) The flow ~ permutes the W (x). 

(6) W(x)and ~" -  t have the same tangent space at x. 

The proof of the proposition uses the following lemma which uses the same 
notation as the proposition. 

Lemma: The sequences of functions {f"} and {Of"} are uniformly convergent 
sequences of functions in a neighborhood of 7. The function !irn D f" has constant 
rank 1. 

Proof: We need to establish some notation. If z = ( y , O ) ~ " - ~ × S  t then t zl ,  
1 Y I, and [ 01 will used for the norms of z, y, 0 in suitable coordinate systems on 
~ . -  ~ × S t, ~ . -  1, and S 1 respectively. We shall denote by zc t and rc 2 the projections 
of ~ . -1  ×S t onto ~"-~ and S ~, If ~>0, there is a neighborhood U of y such 
that if z=(y, O) ~ U, then the following estimates hotd 

(1) lxzf(z)--rC z(z) l_<elrtl (z)t. 
(2) I rc~ f (z) I < # I rt~ (z) [ for some fixed 0 < # < 1 independent of z. 

(3) I D f ( z ) - O  rt z(z) t<~lrc 1 zt. 

The first two of these estimates easily imply that the sequence {f"} is uniformly 
convergent in U. I fz  t, z z ~ U, then for large enough n we have 

t 
If" ( z l ) -  f"  (z2) l.< e +{ z~ 2 f"  ( z l ) -  ~2 f"  (z2) l 

since f "  (z)--*7 uniformly by estimate (2) above. Now estimates (1) and (2) imply 
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I ~2 f" (z ) -  =2 (z) l _<_ ~ 1 ~2 f~ ( z ) -  ~2 f~-  ~ (z) I 
i = l  

8 

Hence I ~ z J ' " ( z t ) - z z f " ( z 2 ) l  < 1----~ (I ~ (zOl+l ~:1 (z2)l)+I ~2 ( z l ) - z z  (z2)[. 

This yields an estimate for I f "  ( z ~ ) - f  ~ (zz)l independent of n, proving that the 
sequence f "  is uniformly convergent. 

To prove that D f"  is uniformly convergent, it suffices to note that 
. . . . .  D f ( f ( z ) ) o D f ( z ) .  We have an estimate for each 

term of this composition as D ~2 + E~ where t Ei I < ~ #i- ~ I rot z I. Since D rc 2 is a 
projection (D rc z o D rc z =D ~2), this yields an estimate for D f  ~ (z) as D rc 2 +t nl z].  
bounded term. Thus D f"  is uniformly convergent. 

It remains to prove that the rank of lirn D f "  is identically one. Since f "  (z)~v 
uniformly at an exponential rate, it follows from the mean value theorem that, 
for sufficiently large m, n -  1 of the eigenvalues of D f "  will be arbitrarily close 
to zero. Hence the kernel of lira D r "  will have dimension n -  i. This finishes the 
proof of the lemma. 

The lemma implies that the function g =l i rn f "  is a submersion in a neighborhood 

of y. The implicit function theorem [1] implies that the inverse image of x ~V 
is a smooth submanifold W (x) transverse to ~/. If z ~ W (x), then f "  (z)~ W (x) 
and f ' ( z ) - - . x  as m-.-,oo. Therefore W(x) is the manifold required by the pro- 
position in a neighborhood U of ~. To find the remainder of the isochron of x 
inside W ~ (?), we need merely form [..) f - "  (W(x)). Since 9 is a submersion, 

m>_O 

there is a neighvorhood D of x in W(x) which is diffeomorphic to a disk with 
the property that f ( D ) =  D. This implies that ~>_o f - "  (D) is diffeomorphic to 

Euclidean space since it is an increasing union of disks. 

Appendix B: 
This appendix is devoted to the proof of the following theorem: 

Theorem B: Let • be a flow on R" having an elementary stable limit cycle Y. 
If W is the stable manifold of 7, then the dimension of IV-  W is at least n - 2 .  
(IV is the closure of W.) 

As M. I-Iirsch pointed out to me, the proof is a corrollary of the Alexander 
Duality Theorem ['6: p. 296, 6. 2. 16] which states that Hq ( ~ " - A ) = R  "-q-x (A) 
if A is a compact subset of ~". The aotation here is that Hq is the reduced singular 
homology group of dimension q and/~k (A) is the direct limit of the cohomology 
groups H k (U) for neighborhoods U of A. 

If IV is compact, we apply the theorem with A = IV-  W and q = 1. The theorem 
implies H t ( R " - ( I V -  W))=H "-z ( IV-  W). Now Wis a component of ~ " - ( I V -  W) 
and Ht (W)=HI  (7)=Z. Hence ~ " - 2 ( I V - W ) ~ 0 .  This implies that the Cech 
(n-2)-cohomology of I V - W  is non-trivial ['6: p. 316, 6. 6. 2 and p. 334, 6. 8.8]. 
This means that the dimension of IV-  W is at least n -  2 as was to be proved. 
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The case in which g/ is  not compact is easily reduced to this one° Form the one 
point compactification S" of ~" and apply the above argument on S" inside 
of Rn. Note that there is a flow on ~3 with a stable limit cycle ~/ such that 
the complement of the stable manifold of 7 is a line in ~a. This line is not a 
homology I-cycle of Rn. See Fig. 5. 

Fig, 5 

Appendix C: 
This appendix contains proofs of theorems providing partial answers to Question C 
of Winfree. These theorems are new results on dynamical systems. Throughout  
this appendix ~ will be a flow with vector field X on a manifold M. The flow • is 
assumed to have a stable elementary limit cycle 7 of period z with stable manifold 
W. The frontier gz_  W will be denoted Bo A point x ~_ B will be called phasetess 
if every neighborhood of x intersects the stable manifold (isochron) of each 
point of 7- 

We shall first consider the case in which M is two dimensional and ~ M  is 
compact. Peixoto's Theorem [4] implies that there is an open-dense set of 
vector fields on M having 7 as an elementary stable limit cycle which are 
structurally stable on a neighborhood of g,'. If X is structurally stable in a neigh- 
borhood of ~ ,  then X has a finite number of singular points on B, all of which 
are saddles or sources. There are no non-periodic recurrent orbits in B. We shall 
assume that X has these properties. For  each component  of B, there are two cases 
to consider: (1) the component  of B contains a singular point of X, or (2) the 
component  of B is a periodic orbit of X. 

Case 1 : If a component  13 of B is a single point, it is phaselesso If/3 is larger than 
a single point and contains a singular point of X, then/3 contains a saddle point 
p of X. The unstable manifold W ~ (p) is an 'o rb i t  of the flow. Hence W~(p) 
intersects each isochron transversely. Let a be a closed curve consisting of a 
segment of W ~ (p) and a segment of an isochron f, both ~ flow units apart and 
chosen so that a is not contractible in the annulus A between ~ and ~/. Under 
the - z  time map of the flow ~, ~r is carried onto another closed curve }ying in 
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I w W~(p). As the map ,~_, is iterated, 4)(~, - n  z) tends toward/5. Since # is a 
cycle in the annulus A, it follows that /5 will be contained in the closure of 
[J 4) (#, - n t) = I w l,w (p). This implies that/5 is contained in the closure of I. 

We have proved that if/5 contains a saddle point, then every isochron contains/5 
in its closure. 

Case 2: The boundary c o m p o n e n t / / o f  B is a periodic orbit of X. We assume 
that A is a two dimensional annulus with boundary/5 w y and that every orbit 
of the flow in A goes from/5 to y. Both/5 and y are elementary limit cycles of X. 

Proposition: If the period 3' of fl is different from the period : of y, then each 
point of/5 is phaseless. 

Proof:  Let I be the stable manifold (isochron) of x ~ y. Consider ~r ~/5. This is a 
closed set invariant under the t i m e ,  map of the flow. We assert that r ~/5 is also 
connected. If 7 n /5  can be written as the union of two disjoint, closed sets K and L 
and if U and V are disjoint neighborhoods of K and L, then all but a compact 

portion of I ~ A lies in U w V. This is impossible since I keeps returning to 
both U and V as one approaches/5 on I. Therefore I n /5  is connected. If 1:' 4: n t, 
then the time z map of the flow is not the identity on t5. A non-trivial rotation 
of the circle contains no non-trivial closed connected invariant sets. Thus, if -d is 
not a multiple of z, T c~/5 =/5. This proves the proposition unless z' is a multiple 
of~. 

If z' is a multiple of ~ but ~ :# ~', then we can apply the above argument to the flow 
of the vector field - X ,  interchanging the roles of/5 and y. The argument then 
proves that the unstable manifold of each point of/5 for X contains y in its closure. 
We conclude that the unstable manifold of each point of/5 intersects the stable 
manifold of each point of y. This implies the proposition. 

These arguments for flows on two-dimensional manifolds combine to prove the 
following theorem. 

Theorem C l: On a compact, oriented two dimensional manifold M, there is 
an open-dense set of vector fields in the space of C" vector fields (i < r < oo) with the 
property that if y is an elementary stable limit cycle, then every point on the 
frontier of the stable manifold of y is phaseless. 

The theorem follows from the above discussion upon noting that the period of 
an elementary limit cycle is a continuous function on the set of structurally 
stable vector fields. 

In order to deal with Theorem C2 on higher dimensional manifolds, it is useful 
to consider rather specific perturbations of a given flow. Let ¢ be a flow with an 
elementary, stable limit cycle y. We denote the stable manifold of y by W and 
the frontier of W by B. There is a differmorphism p: R n-1 x S t - - W  such that 
the image of # (R"- 1 x {0}) is the stable manifold of # (0, 0). The map # establishes 
a coordinate system on W which is well suited for our purposes. The vector field 
of q0 will be denoted by X. 
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We want to consider flows ~' which are reparametrizations of 4. The vector 
field of 4) is f X -- X' for some function f. We shall assume that f is a function of 
a particular sort. 

Choose a neighborhood V of 7 so that d V, the boundary of V, is smooth and 
transverse to 7 and choose s > 0  a small number. We require: 

(i) The function f is to be identically (1 + ~) on V. 

(2) The function f is to be constant on each translate of 0 V under the flow 4. 

(3) There is a translate U of V so that f is identically 1 outside U. 

(4) X.  df>O on U -  ~. 

I f f  is chosen in this manner and if 4~' is the flow o f f .  X = X ' ,  then the isochrons of 
4~' "wrap around" W in the coordinate system described above. Our meaning is 
described more precisely by the next lemma. 

There are two functions we wish to consider. The first p: W -  V---,0~ + is defined by 
p (z) = t if 4 '  (z, t) ~ 0 K The second is the S t coordinate function 7r: W~S ~ defined 
by identifying S t and 7 and mapping the isochrons of W for 4) to their intersection 
with 7- 

Lemma: (!) Let J be an isochron of ~' and R a level surface of p. Then r~ is 
constant on J ~ R. Equivalently J c~ R lies in an isochron of 4~. 

(2) Let ct: N---, W - V  be a curve such that (i) e (0)s d V, (ii) the image of :c is 

containedinanisochronJof 4)', and (iii)dp (-~7~>6 for some 6>0.  Then 
k ~ , ~ /  

is positive and bounded away from zero in W -  U. 
ds 

Proof: The first assertion of the lemma is a direct consequence of the definition of 
f. There is ~ ~ R and 0 s S' such that 0 V m re- t (0) flowed backwards for time t 
under the flow 4'  is the set J ~ R. In the coordinate system determined by the 
map #, the component  of X'  in the S t coordinate direction is constant on sets of the 
form 4~' (0 V c~ rr- t (0), t). This implies that ~ remains constant on each set of the 
form 4 '  (0 V ~ rr- ~ (0), t). 

Consider the map (p, re): W--*~ x S 1 given by (p, rc)(z)=(p (z), re(z)). As a con- 
sequence of the first part of the lemma, (p, Tr) l J  has a smooth curve as its 
image. This reduces the proof of the second part of the lemma to a two dimensional 
problem. Outside 9, we assert that the image of (p, rc) l J is a curve of positive 
slope. The reason is that the component of X' is the S t direction is a decreasing 
function ofp  in U -  V. Moreover, p (z) represents the 4~' time it takes z to reach g V. 
Thus, in c~'(V, - ~ ' ) - V ,  the larger the value of p the longer it takes a point to 
return to another point with the same S 1 coordinate. This means that the 
images of isochrons of 4~' by the map (p, 7z) have positive" slope outside of •o 
The rate at which the slope changes at a point z is determined by f (z) - (1  + e). 

Lemma: Let K be compact neighborhood of ,! in W, let [ be an isochron of 4), 
and let J be an isochron of 4)'. Then [ ~ J separates W - K  into at least two 
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components. (Indeed, I ~ d separates W - K  into a countable number of com- 
ponents.) 

Proof: The compact set K is contained in a set (z I ; (z) < r} for some r > O. Thus 
we may assume that K is a set of this form. The image of I ~ J by the map 
(p, zr) is a one dimensional set which is the union of two curves. The image of I is 
a set of the form {(p, O) I 0=0o} for some 0o. The image of J is a curve along 
which p (0) is a function with positive derivative bounded away from zero outside 
the image of U. It follows that the image of I has repeated intersections with I, 
and that the image of (I w J ) - K  contains curves which separate R x S 1 -  (p, n) (K). 
Since I ~ J = (p, rr)- 1 ((p, r0 (I w J)). I w J separates W -  K. 

Let us return now to the consideration of a flow ~ and a point z ~ B which is not 
phaseless. There is an isochron I of • such that z ~ i. If ~' is a perturbation of 
obtained by reparametrization of 4~ in the manner described above, then we 
assert that z is phaseless for ~'. If U is a neighborhood of z and 3 is any curve 
connecting B c~ 0 to 7 in W - / ,  then ]~ must intersect each isochron J of ~' 
outside a compact neighborhood of 7- This implies that each isochron J inter- 
sects U. This z is phasetess for 4~'. 

Let us go farther. Consider the space F of vector fields which equal X in a 
neighborhood of the complement of W= W ~ (7)- We shall say a flow belongs to F 
if its vector field is in F. If z, ~, and 4~' are as in the last lemma, we assert that 
z is phaseless for all flows belonging to F which are close enough to ~'. 
Flows (O" near 4~' will satisfy the previous lemma. Isochrons of ~"  will intersect 
the isochrons of • transversely; consequently, they will "wind around" S t in the 
coordinate system used in the lemma. The same argument which implies that z is 
phaseless of ~' establishes that z is phaseless for ~". Moreover, note that the 
set of points in the frontier of W which are not phaseless for • form an open set. 
The perturbation ~' and further perturbations 4~" make all these points phaseless. 
This discussion is summarized by the following proposition: 

Prolmsitiou: Let F be the space of vector fields which equal X in a neighborhood 
of the complement of W= W ~ (7)- If z in the frontier of W is not phaseless for 
the flow ~ of X, then there is a neighborhood U of z in the frontier of IV, a 
perturbation ~' of 4~ belonging to F and a neighborhood og of 4)" in the space of 
flows belonging to F such that if z' ~ U and ~" ~ ~ ,  then z' is phaseless for ~". 

With this proposition, we are finally in a position to consider theorem C 2. 

Proof of theorem C2: Consider" a one parameter family of reparametrizations of 
the flow • of the type considered in the above lemmas with the period of 7 an 
increasing function of the parameter. Each point of the frontier of W ~ (7) is not 
phaseless for at most one value of the parameter. Moreover, if z is not phaseless 
for the parameter value t, then there is a neighborhood of z in the frontier of 
W~ (7) which is not phaseless for the parameter value t. With the exception of at 
most a countable number of parameter values, the flows in the one parameter 
family will have the property that all points in the frontier of W ~ (7) will be 
phaseless. This proves the density assertion of theorem C2. In addition, we have 
proved that the dense set of flows we have found are interior points of the set 
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of flows for which all points of the frontier of W ~ (7) are phaseless. This proves 
theorem C 2. , 

We now consider theorem C 3 : 

Proof of rheorem C 3: The density assertion of theorem C 3 follows from theorem C 2. 
The openness assertion will be proved by examining the periodic orbits in the 
frontier of W s (7)- First, we reduce the openness question to one involving periodic 
orbits. This requires a digression concerning the qualitative structure of vector 
fields in ~. Unfortunately, this discussion relies much more heavily on difficult 
theorems from dynamical systems than the remainder of the paper. The arguments 
are presented in much less detail than the previous ones. 

If X is a vector field in ~ with flow 4, then there are a finite number of 
compact sets f2 t . . . . .  ~ ,  with the properties: 

(1) Each f2~ is invariant under the flow ~ and contains an orbit of q~ which is 
dense in t?i. 

(2) The set of periodic orbits in f2~ is dense in f2~. 

(3) The set of co-limit points of each orbit is contained in one of the sets f2~. 

(4) Each point in ~i has stable and unstable manifolds of complementary di- 
mensiono The union of the (un)stable manifolds of points in f2~ is the (an)stable 
set of f2~ [5]. 

Denote the frontier of W' (y) by B. From the first property listed above one can 
conclude that either f2~ and B are disjoint or f 2 ~ 0 .  We shall ignore those f2~ 
which do not intersect B or 7. (Note that V is one of the ~2~.) Let 13~ be a periodic 
orbit in f2~ if f2~ is !arger than a single point. Then the openness assertion of 
the theorem reduces to the following two [emmas: 

Lemma: If each Bi is phaseless for q~, then every point of B is phasetess for 4~. 

The vector fields of ~ are structurally stable. This implies that the f2~ and the ¢}~ 
vary continuously with perturbation. The periods of the ~ also vary continuously 
with perturbation. Therefore, there is an open-dense of vector fields in £ for which 
the period of each/?~ is not a multiple of the period of 7. 

Lemma: If the period of ¢}~ is not a multiple of the period of V for the flow 4~, 
then the points of/}~ are phaseless for 4. 

To prove theorem C3, it remains to prove these two lemmas. The proof of the 
second lemma follows the same argument as the proof of theorem C 1. If I is an 
isochron of y and v is the period of y, then I" ~ 13i is a closed, connected subset 
of ]3~ invariant under the time z map of 4. If the time v map of 4~ is not the identity 
on ~, then ¢}~ = i for every isochron I. This proves the second lemma. 

Only the proof the first lemma remains. The key observation is that the inter- 
section of W ~ (~3 with any isochron I is always transverse. The reason is that I is 
transverse to the vector field X and X is tangent to W ~ (173. If x ~_/3~ and y a W ~ (x), 
it follows that W" (y)~ W ~ (x). Moreover. if I ~ W ~ (x) .~0, then the transversality 
observation made above implies that I ~ W" (y). This implies y ~ i, The unstable 
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manifolds of the fl~ contain dense subsets of the f2~. Consequently, the union of the 
W" (fl~) contains a dense subset of B. Since the set of phaseless point is closed in B, 
every point of B is phaseless. This finishes the proof the first lemma and 
theorem C 3. 
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