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Summary 

This paper is concerned with the estimation of parameters when mathematical models are fitted to 
data. Two new algorithms are presented. The first is fast (economical in computation time), requires 
no initial estimates, but is not so accurate. The second requires more computation time, and fairly 
accurate initial estimates, but achieves high accuracy. The models discussed consist of sets of 
coupled, non-linear differential equations, but the second algorithm is applicable to wider classes of 
models as well. 
The accuracy of the computed values of the parameters depends on the number of data points, and 
the errors in the data. The sensitivity of the different parameters to errors may differ by orders of 
magnitude. A method of calculating the expected errors in the parameters is described, and the results 
of some applications of the method are presented. 

An important part of the construction of mathematical models in biology is their 
verification. This involves a comparison with experimental data. Often a model 
contains parameters that must be adjusted to obtain a best fit to the data. 
Many models have been described which have not been compared with the 
data, and these must stand alone on the reasonableness of their assumptions. 

The problems considered in this paper are: 

1. The Parameter Estimation Problem: When a model has been chosen, it may 
contain parameters which must be adjusted to obtain the best fit to the observed 
data. 

Although there is a great deal of literature on this subject, there is a shortage of 
effective algorithms, especially for cases in which the systems cannot be easily 
linearized. In this paper two new algorithms are described. They may be used 
together. One is fast, and may be used to find initial estimates of the parameters, 
while the second which is slower can be used for maximum accuracy (after the 
first algorithm has provided good starting values). 

* This investigation was supported in part by USPHS Training Grant No. 2-T01-GM 00829 from 
the National Institute of General Medical Sciences. 
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2. Accuracy of Parameter Estimates: It is important for several reasons that the 
accuracy of the parameter estimates be known. This information is useful in 
planning experiments, and evaluating parameter estimation techniques. Also, in 
some instances the prime reason for constructing a model is to determine the 
rate of the process, so it is important to know the accuracy of this determination. 

The accuracy of the parameter estimate depends on the nature of the data, the 
noise in the data, and the structure of the model. In some circumstances a small 
error in the data will cause a vastly magnified error in the parameters. The 
technique of Rosenbrock and Storey [1] for estimating the accuracy of the 
parameter evaluations is described and the results of applying the technique to 
several test systems are presented. 

Type of Model Treated 

The model systems we have treated are described by sets of coupled, first order 
differential equations. Systems described by both linear and non-linear equations 
have been considered, Biological systems to which these models have been 
applied include biochemical kinetic systems, ecological systems, and physiological 
systems. Most of our techniques are applicable to a more general class of model 
than described by first order differential equations, but otlr applications have been 
limited to models of this type° 

In general, the systems treated in this paper are described by sets of differential 
equations of the form: 

dX,, 
dt =2 k'~ Xi+ 2 k~XiXj , m=l  ..... n. (1) 

i i . ]  

The Xi are the state variables, and the k i and the kij are the system parameters. The 
parameter estimation problem is solved by finding the values of the parameters 
that make the predictions of the model agree most closely with the experimental 
data. Agreement between model and data is measured in different ways by the 
functions F x and F 8 which are defined by equations 2 and 3 respectively. The 
subscript l indexes the time of measurement of each data point. Thus X,,.~ is the 
1-th measurement of the variable m: 

Fa = 2 F~, ' (2/ 
r t l  

= E wL, (x,,.,- 2 Yl 
l t i , j  

2 
ra 

(3) 
B 2 , Y.,= ~ W~,l (X,,.~-X,,.~) ~. 

l 

The X*. ~ are the values of the state variables calculated by integrating equations (1). 
The weighting factors W,,.t may be chosen in accordance with the accuracy of the 
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corresponding data point. In general, we have used the weighting factors 
i 

W,,. t = , where o-~. ~ is the variance of the measurement of X,,. l. This weighting 
O'm, l 

function is suggested by the maximum likelihood principle. 

Description of Parameter Estimation Techniques 

The literature contains many techniques for parameter estimation, and for some 
systems some of them perform excellently. There are, however, many systems 
for which no technique performs well. For these systems the existing techniques 
are either too slow, fail to converge to the correct values, require starting 
guesses better than those available, or simply are not accurate enough. For a survey 
of parameter estimation techniques used in biological systems the reader is referred 
to papers by Davis and Ottaway [2], Swann [3], and Himmelblau [4], and the 
thesis by Swartz [5]. The paper by Davis and Ottaway presents the results of tests 
with several important methods, and ~tiscusses their usefulness and limitations. 
The limitations of other methods in current use are discussed in the thesis by 
Swartz, the paper by Himmelblau, and in papers by Chandler [6], et al, and 
Squire [7]. 

Our method 1 is straightforward, requiring no initial parameter estimates and little 
computer time. We minimize the function F A (equation.(2)) by applying the 
conditions. 

OF A ~F A 
=0 or ~ = 0  (4) Oki 

for each parameter. Since the X~.t are linear functions of the parameters, F A 
is a quadratic function of the parameters. That is, the highest order terms in 
F A will contain the square of a parameter, or the product of two parameters. 
Hence, the equations formed by setting the partial deviatives of F a with respect 
to the parameters equal to 0 will be linear. There will be one such equation 
for each parameter. Thus the equations constitute a set of exactly determined 
linear equations which can be solved by a technique for solving the matrix 
equation A X = b. Equations (4) are called the normal equations. 

Smoothing the Data 

The greatest problem in using this method is the difficulty of making accurate 
evaluations of the derivatives from the experimental data. Small errors in the 
measured values of the state variables can produce large errors in numerical 
differentiation. 

Calculations of the derivatives will be greatly improved by fitting a curve to the 
data. The fitted curve will have much of the random error averaged out of it, and so 
will give a better approximation to the function and its derivatives. The techniques 



244 J. Swartz and H. Bremermann: 

of Squire [7] and Himmelblau [4] are similarto our method 1, but they do not 
involve smoothing the data, and hence are less accurate. 

We have performed smoothing by fitting polynomials to the data. Over a small 
region most functions can be reasonably well approximated by polynomials. We 
have fitted a polynomial locally to a number of data points. For example, the 
first polynomial would be fitted to the points i to 9, and be used to calculate the 
derivative at point 5. The second polynomial would be fitted to points 2 through 
10, and used to calculate the derivative at point 6, etc. For our purposes it is not 
necessary to fit a polynomial to the entire set of data. The only purpose of 
the polynomial approximation is to calculate the local derivatives. 

To fit a polynomial we use M points, with M > N + 1, where N is the degree of 
,v 

the polynomial, and we minimize F. The polynomial is: Y=f (x )=  ~ ki X ~ and 
F is defined: i = o 

Y=y_., - kiX . (5) 
l--1 

In other words we make a least squares fit. 

The minimization of equation (5) can be accomplished by the standard technique 
of setting the partial derivatives to 0. 

OF 
~ = 0  (6) 

and solving the resulting normal equations by matrix inversion. 

To test the smoothing technique we have run some trials in which the derivatives 
were calculated by least square polynomials (as described above), Lagrange 
polynomials (using Lagrange interpolation formulas where M =  N +  1), and the 
tangent method (i.e., using two neighboring points to calculate the slope). The 

Table 1~ Comparison of Derivatives Computed by Different Methods with 1% Noise 

Variable Point Exact Tangent Lagrange Least squares 
derivative method method polynomial method 

1 10 
26 
42 
58 
74 
90 
[0 
26 
42 
58 
74 
90 

- , 2 2 7  
.00399 
.193 
.0188 

- .221  
0.185 
.00228 

- . 1 9 6  
.0148 
.222 

- .0221  
- .191  

.281 

.0604 

.178 

.0439 
- . 1 8 3  

.034t 

.0328 
- . 2 3 7  
- .0721  

.284 

.0628 
- . 1 1 5  

- . 3 3 8  
.0192 
.200 
0606 

- . 1 6 0  
.0339 
.60t 

- . 2 5 7  
- . 1 2 0  

.282 
0113 

- . 0776  

- . 2 3 7  
.0090 
.189 
.026 

- .221  
.0122 

- . 0137  
- . 1 7 5  
- ,0221  

~214 
- .021  
- . i 9 8  
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curve used was one generated from the following system of Volterra-Lotka 
equations. 

2 1 = X  t - X  l X2, ~'2 = Xt  X 2 - X  2 . (7) 

Table 1 presents a comparison of some derivatives computed by different 
methods. The error in each data point was chosen at random from a uniform 
distribution which varied between 1% and - 1% of the Y value at that data point. 
The results in Table 1 indicate that the least squares polynomial method of 
computing derivatives is consistently and significantly superior to the other 
methods. A more detailed discussion of the procedure can be found in reference 
[5]. The reader is also referred to a discussion of the problem by Ralston [8]. 

Method Two 

Our second method consists of minimizing the function F B (equation 3) 

Fa= ~ F~, 
m 

B 2 F,,= ~ W~., (X,,.,-X*~) 2. 
l 

The X*., are the values calculated by integrating the system equations 1. 

The procedure used is as follows: 

1. Initial estimates for the parameters are provided. In most cases the initial 
estimates were the values calculated by method one. 

2. The system equations 1 are integrated numerically, using a fourth order 
Runge-Kutta technique, and F B is calculated. 

3. The global optimization technique of Bremermann [9J is used to improve the 
estimates. 

4. The process is iterated. It is terminated either after a predetermined number 
of iterations, or after F B remains approximately constant for several iterations. 

The global optimization technique works as follows: 

1. F B is evaluated at the initial estimates for the parameters K. 

2. A random direction r, in parameter space is chosen. The probability distri- 
bution for each element of r, r;, is chosen to be Gaussian. In practice it 
may be desirable to choose the direction in normalized parameter space, that 
is let the r, define a percentage change, rather than an absolute change in the 
parameters. Another possibility is that the logarithms of the parameters be 
used in place of the parameters. 

3. F B is computed at the values K ° + 2 r ,  K°+r. K °. K ° - r ,  K°-2r. These five 
points define a fourth degree polynomial in a parameter ,~. The polynomial 
is a Lagrangian 5 point approximation of the function F B on the line K ° +,i  r. 

4. The value of 4, ).,, which gives the minimum of the polynomial is calculated, 
and the new approximation for the parameter becomes K = K ° + ,i.,, r. 
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The global optimization method has the advantage over many standard tech- 
niques of being able to extricate itself from a local minimum. For a discussion 
of the convergence properties, the reader is referred to reference E9]. 

It is shown in references [9] and [5] that the optimization technique performs 
best when all the unknown parameters are equally well determined. This suggests 
that an improvement in the efficiency of method two could be made by transforming 
the parameter values so that the expected error in each is the same. The trans- 
formation was performed by weighting the parameters by the reciprocal of the 
error expected in their evaluations. This latter quantity was calculated by the 
technique described below. This variation on method two will be referred to as 
method two B, and the results of a trial with this method are presented in the 
section on test systems. 

Technique for Calculating the Accuracy of the Parameter Estimates 

We have utilized the technique of Rosenbrock and Storey [1] for evaluating the 
accuracy of the parameter estimates. 

The method works as follows: Let the system be denoted by J~=f(X,K, t) 
where X is the vector of state variables, K is the vector of the parameters, 
K =(kl, kz, ...). 

Let the function F B be minimized, and assume that the errors in the parameter 
estimates are reasonably small so that if J( is expanded in a Taylor series 
around K, and only the first order terms are retained, a good approximation is 
obtained° 

The details of the derivation and the method of calculation are presented in 
reference [1]. Here we state only the results. 

Let a matrix D (h) be defined for the time of each measurement t~ by 

0 X, 
D,.j (t,)=-0---~-j (K, h) (8) 

and let the matrix H be defined by 

H = ~  D rW,D,  and P=H -l  (9) 
l - - I  

where W is the weighting function for each data point. Then a, .2, the expected 
variance for the i-th parameter is 

.) 
Cr'~ = Pii" ( 1 O) 

The errors predicted by equation (10) are the errors expected if the optimal 
parameters are actually found, that is if the exact minimum of Fs is located. 
The proximity of the actual errors to the predicted errors gives an indication 
of the efficacy of the parameter estimation technique. 

In studying the effectiveness of a parameter estimation technique, it is necessary 
to compare the actual errors with the expected errors. An effective technique will 
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find parameter values with errors in the neighborhood of the predicted errors, 
while for an ineffective technique the errors will be significantly larger. Moreover, 
the effectiveness of a technique may depend strongly on the errors in the data. 
For example, several of the techniques similar to method one performed well when 
there was little or no noise in the data, but performed very poorly when there 
was a slight increase in the noise. For all our studies on test systems both the 
actual and predicted errors are included. 

Results of Experiments with Test Systems 

To test our algorithms and the error prediction technique it is necessary to 
know the true values of the parameters. This is not possible with actual experimental 
systems. Therefore, we have constructed test systems from which artificial data 
points were generated and perturbed to include noise in the data. 

First, a system of differential equation -is chosen, which we then integrate 
numerically, using a fourth order Runge-Kutta technique. Noise, simulating 
experimental errors, was added to the data, according to the formula 

/ "/ x,,.,=x°., 1+(R-.5) (II) 

where X°~,,t is the exact data point, X,,,t is the data point perturbed by noise, 
R is genes'areal by an algorithm that generates random numbers between 0 and i 
with a uniform distribution. 

Thus if the maximum percentage error in the data for a particular experiment is E, 
then the error at each data point will be between E/IO0 times the value of the 
data point and -E/IO0 times the value of the data point. The distribution 
between extremes is uniform. The amount of noise in the data will be referred 
to by E, i.e., a system with E~o noise is one which the error varies between 

E and - E 1---~- ~ of the value of the data point. 

Test System 1 Volterra-Lotka System 

The first system studied is a Volterra-Lotka system. It is described in a paper 
by Bellman et al. [10] in which the authors detail the results of using the 
quasi-tinearization technique to estimate the parameters. The equations for the 
system are 

)fl =kl  X t - k 2  X 1 X 2 
(12) 

z3~'2 ----- k 3 X I X 2 -k~, X 2 . 

The initial conditions are X1 (0)= 1.2, X2 (0)= 1.1. The time interval was from 0 
to 10 time units, with 100 observations made at equally spaced intervals. A graph 
of the system appears in Fig. I. 

In Table 2 we present the r~sults of using method one to evaluate the parameters 
for noise values of 1% and 10% (Fig. 1). 
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Fig. I. Prey and predator for Volterra system 

Table 2. Results O[ Usinq Method One to Evaluate Parameters for Volterra-Lotka System (Test System 1 ). 
[n Each Case the Exact Value for Parameters is 1.0 

Parameter Value of Data Noise 
error using method I 

l 5.6 x 10-* 0 ~  
2 5.6 x I0-* 
3 3.0 x 10 -4 
4 3.0 x 10-* 

l 7.9 x 10 -3 
2 8.5 x t0 -3 
3 - 7.6 x I0 -3 
4 -7.1 x [0 -3 

t% 

1 - . 1 2  
2 - .10 
3 - .22 
4 - .21 

~o% 

W e  n o t e  tha t  the  resul ts  are,  in genera l ,  good ,  a n d  tha t  the  a c c u r a c y  dec rease s  

wi th  i n c r e a s i n g  noise .  T h e  to t a l  t i m e  r e q u i r e d  on  the  C. D.  C. 6400 c o m p u t e r  for  

m e t h o d  o n e  was  5.5 seconds .  

W e  then  used  m e t h o d  two  to i m p r o v e  the resul ts  f o u n d  by m e t h o d  o n e  in the  

case  wi th  100/o noise.  F o r t y  five i t e r a t i o n s  were  used  r e q u i r i n g  32 s e c o n d s  
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computer time. The iteration process was terminated in this case (and for the 
other systems investigated) when F 8 remained approximately constant over 
several iterations. In Table 3 the results of this computation are displayed 
along with the expected error values, and the values determined by Bellman et al., 
using the quasi-tinearization method [ i0]. 

Noise = lO /o. Table 3. Results o f  Using Method Two on the Votterra-Lotka System (Test  System 1). " o/ 
45 Iterations Were Used. The Exact Value for  Each Parameter = 1.0. A Comparison with the Results 

Obtained by Quasi-Linearization Is Included 

Parameter Starting Found by Error with Error with Expected 
value method 2 method 2 quasi-tin, error 

I 0.885 1.016 .016 - .018 .035 
2 0.899 0.967 - .033 .026 .034 
3 0.782 0.963 - .037 .065 .038 
4 0.790 0.993 - .007 .019 .038 

Our results using method two show a significant improvement over those obtained 
by method one, and compare favorably with those obtained by quasi-tinearization. 
The errors are equal to or less than the errors predicted by the Rosenbrock and 
Storey technique. 

The total time required on the C.D.C. 6400 to produce these results, using no 
initial guesses, was about 37 seconds. Results with similar accuracy were produced 
with the quasi-linearization technique in about two minutes on the I. B. M. 7044. 
The quasi-linearization technique requires reasonably accurate initial estimates 
for the parameters, and the authors do not report the initial estimates they used. 

Test System 2; Linear, Chemical System 

The next system studied is a linear system of coupled chemical reactions taken 
from a paper by Himmelbtau et al. [11]. The equations describing the system are 

X~=k 2 X 2 - k l  Xt 

X2 = kl X~ - ka X3 -(k2 + k3) X2 (13) 

Xa=k3 X z - k s X 3 .  

31 data points were used, spaced at intervals of. 1 time units. The initial conditions 
were X1 (0)= l, X 2 (0)=X3 (0)=0. Fig. 2 shows variables 1 and 2 as a function 
of time. 

In Table 4 we present the results of using our identification methods on this 
system for 5 percent noise. The table includes the results using method one, the 
results using method two starting with the values found by method one, and the 
expected errors° Thirty interations of the second method were used requiring a 
total time of 14.2 seconds (Fig. 2). 
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Fig. 2. Test system 2 

Table 4, Results of Using Parameter Estimation Techniques on Test System 2; 
Linear, Chemical System 

Parameter Exact Error using Error using Expected 
value method one method two error 

1 1.0 - .041 .012 .0095 
2 0.5 - .040 ,021 ,014 
3 10.0 --.61 - ,17  .31 
4 5.0 - .39  ,07 .I8 

The results show that our methods of parameter estimation used in conjunction 
have produced parameter values with good accuracy (the errors are in the same 
range as the expected errors) in a small amount of time° It is also worthwhile 
to note that this system is linear. Although there are special techniques available 
to handle linear systems, these frequently do not work well. The results from 
this system demonstrate that our methods can be effective on linear systems. 

Another test system studied is taken from a paper by Garfinkei [11] on simulations 
of ecosystems. It is a model of a two trophic level ecosystem with one herbivore 
(X 3) eating two*types of grass (Xt and X,). The equations for the system are 

X'l=kl  X l - k 2  X1 X3-k3 X~, 

X2-~-k~ , X 2 - k  5 X 2 X 3 - k  6 X 2, lid-) 

=fro k, xl x -k, x -k, 
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100 data points, spaced at intervals of .036, were used. The starting values were 
XI (0)=5 x 10 '~, X2 (0)=5 x 10 '~, X 3 (0)=2.5 x 103. Fig. 3 shows X 1 and Xz as a 
function of time. The exact parameter values are: kt=1.0,  k z = l . 0 x 1 0  -3 
k3 = 1.0 x 10 -5, k , =  1.2, k s - 1 . 0  x 10 -3, k6= 1.2 x 10 -5, kT= 1.0, ks =8.0 x 10 -5 
For this system both method two and the variation of method two (method two B) 
in which the parameters are weighted inversely by the expected error, were used 
to improve the values found with method one. Method two B was tried because 
the percentage errors found with method one for two of the parameters were 
unexpectedly large, and the use of method two was unable to improve these 
values. The results for 90/o maximum noise are presented in Fig. 4. For each 
version of method two, 18 iterations were used, requiring 79 seconds on the 
C. D. C. 6400 (Figs. 3 and 4). 

fo 4 

9 
8 

7 

10 3 ..... 

O 
It 

$ 

m o 
$0 

I 
,o 21o 31o 

TIME 

I 

4,0 

• = X  I 

• = X 2 

Fig. 3. Variables I and 2 for Grasseater system 

The results were generally good, with the error in the final value, in most cases 
being in the neighborhood of the predicted error. In the cases of parameters 3 
and 6, for which the errors with method one were large, method two B was able 
to improve the accuracy of the values significantly, whereas method two was 
unable to produce improvement. These results indicate that weighting the probe 
step in the optimizing technique by the expected error does in fact improve its 
effectiveness. 
A final test system studied is a model for inducible enzyme synthesis discussed in a 
paper by Roth and Roth [12]. In reference [12] Roth and Roth discuss the results 
of using the quasi-linearization algorithm to identify the parameters for the system. 

J o u r n .  M a t h .  Biol .  1/3 17 
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Their calculations, in general, were unsuccessful, even when exact data was used. 
Using our methods, we were able to identify the parameters when there was no 
noise in the system, but had poor results when even a small amount  of noise was 
added to the data. The difficulty in this case apparently stems from the fact that 
the system is extremely ill-conditioned. It is possible that the parameters could be 
determined if the initial conditions were changed. 

Accucary of Parameter Estimates for Sums of Exponentials 

Compartment  analysis and numerous chemical, biological, and biomedical prob- 
lems require the fitting of sums of exponentials to data. Unfortunately this task 
is highly ill conditioned if the exponents are of the same order of magnitude. 
Lanczos [13] (among others) has analysed this problem exemplified by the 
following example: 

X (~)---k t e - ~ ' t +  k 2 e - k S ' +  k 3 e -k~t ( [ 5 )  

k i = .0951 k, = 1.0 
k 2 = .8607 k 5 = 3.0 
k 3 = 1.5576 k 6 = 5.0 
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Following Lanczos we have simulated, this system over 1.2 time units with 
24 equally spaced data points, with a random error at each data point uniformly 
distributed between -0.005 and 0.005. The values at the data points ranged from 
2.5 to 0.6, thus the maximum error at each point ranged from .2~o to .83~o, an 
accuracy rarely met under experimental conditions. We calculated the expected 
errors for the parameter estimates with the method of Rosenbrock and Storey 
and obtained predicted errors between 1205/o and 3000~o. Calculations with our 
algorithms bore out these error estimates. This enormous amplification of small 
errors in the data is intrinsic to the problem and does not depend upon the 
specific computational method used. Inspite of this fact new computational 
algorithms for fitting sums of exponentials keep on being published while the 
effect of noisy data on parameter accuracy is often completely neglected. Since 
experimental errors are rarely as small as our simulated errors, results based on 
exponential fits may be so much in error as to be meaningless. 

Paramecia System 

We applied some of our techniques to a system of competing species of paramecia. 
Vandermeer [14] studied the growth of four species, individually, in pairwise 
competition, and in four way competition, and attempted to fit the logistic 
equation to the data. For one species growing alone the equation is 

dN r N ( K - N )  
= (16)  

dt K 

N is the number of organisms, r is the growth constant, K is the saturation constant. 

dN 
In order to put the equation in a form in which ~ is linear in the parameters, 
we have written equation t6 as 

dN 
dt =kt N - k 2  N2" (17) 

When there are m competing special equation (17) becomes 

dNi r N dt = i i - s ~ N ~ -  ~, kl jNiNj.  (18) 
j = t  

Vandermeer used the technique described by Gause [ 15] to estimate the parameters. 
Since this procedure requires drawing a smooth curve through the data by eye, and 
the separate estimation of the parameters rather than using all the data together 
to determine the best fit, it is likely to be somewhat inaccurate. We used our method 
two to calculate the parameters for the system under several conditions. 

In Table 5 the values of the parameters calculated by the Gause method and 
method two are compared for individual growth*. In Table 6 interaction 

* [n Fig. 5 a comparison between the number observed and the number predicted by the model 
for species PB growing alone is presented. The curves for the other species are similar, and 
this one is presented as a representative example. 

17" 
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coefficients calculated by each method are presented, kij is the interaction 
coefficient measuring the effect of the j-th species on the i-th species. The expected 
errors are given in the cases in which they were calculated. Twenty-six iterations 
were used in each case, with the values found using the Gause method as the 
starting values. 

i represents species PA, 2 represents species PB, 
3 represents species PC, 4 represents species BL. 

T a b l e  5. Results of Usiny Method Two to Calculate Parameters of Logistic Equation for Individual 
Growth for Paramecia System 

P a r a m e t e r  F o u n d  by  F o u n d  by E x p e c t e d  e r r o r  
O a u s e  m e t h o d  m e t h o d  t w o  

l. Species PA 1 1.05 8 0 9  .008 

2 1.51 x 10 -3 [ .068 x I0 -3  0 0 2 8  x [0 -3  

2. Species PB I 0 .470 0 .546 
2 2.04 x i0 -z  2.58 x 10 -3 

3~ Species PC 1 1,07 1.27 .02 
2 2°90 x 10 -3  3.41 x 10 -3 .16 x 10 -3  

4. Species BL 1 0 . 9 |  0.95 
2 4.7 x 10 -3 5 . 2 x  10 -3  
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Table 6. Results of Usin 9 Method Two to Calculate Interaction Coefficients for Paramecia System. 
kq is the Interaction Coefficient Measurin 9 the Effect of the J th Species on the I th Species 

Parameter 
• Value X i0 -3 Value X 10 -3 

found by found by 
Oause method method two 

kt2 -2.13 -2 . I2  
kt3 1.86 1.64 
k14 6.7I 7.44 
kzl 1.27 1.23 
kz3 22.0 2.12 
kz4 1,29 1.46 
k31 1.03 - .065 
k32 1.70 1.41 
k3* 2.04 - 8.58 
km 1.25 1.19 
k4z - 2.50 3.29 
k~3 3.00 2.60 

In some cases there is good agreement between the parameters found by the 
two methods, while in others the parameters differ greatly. Twentysix iterations 
were used in each case to calculate the interaction coefficients. 

The parameters computed above were used to simulate 4 way competition 
between all the species. The simulations do predict the general trend of the 
data, i.e., that species PlY and BL become extinct while species PA and PC sur- 
vive. The actual fits are, however, poor, indicating the inadequacy of the model. 
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Fig. 6. Species PC in 4-.way competition 
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The results of the simulation for species PC and BL are presented in Figs+ 6 and 7. 
These are the best fits, one for a case in which the species persists, and one for 
a case in which it becomes extinct (Figs+ 6 and 7). 
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Fig, 7, Species BL In 4-way competition 

Summary 

Two new procedures for parameter estimation have been demonstrated, and have 
been shown to work well on a range of test systems+ The first technique involves 
smoothing the curve of the state variables in order to calculate the derivatives 
from the curve, and is suitable for finding initial parameter estimates. The 
second technique, based on the global optimization technique of Bremermann, 
has been used to improve parameter values found by the first method. 

In addition, calculation of the expected accuracy of the parameter estimates have 
been made. This has been done with a technique by Rosenbrock and Storey. 
These have been compared with the accuracy actually attained by our methods, 
and in many cases the accuracy of our parameter estimates compare favorably to 
the predicted accuracy. This calculation has been used to demonstrate the difficulty 
of identifying the parameters in systems whose solutions are sums of exponentials. 

References 

[1] Rosenbrock, H., Storey, C.: Computational Techniques for Chemical Engineers. Oxford: 
Pergamon Press 1966. 

[2] Davis, R.° Ottaway, L : Applications of optimization procedures to tracer kinetic data. Math, 
Bios. [. 13, 265 (1972). 

[3] Swann° W. H+ : A survey of non-linear optimization techniques+ F. E. 13. S. Letters 2, 539 (I969). 
[4] Himmelblau, I3. M+, et al.: 13etermination of Rate constants for comptex kinetic models+ ind. 

Eng+ Chem. Fundam. 6, 539 (1967)+ 



Parameter Estimation in Biological Modelling 257 

[5] Swartz, J. : Parameter estimation in biological systems. Ph.D. Thesis, University of California, 
Berkeley, 1973, 

[6] Chandler, J., et al. : A program for efficient integration of rate equations and least-squares 
fitting of chemical reaction data. Comput. Biomed. Res. 5, 515 (1972). 

[7] Squire, W.: A simple integral method for system identification. Math. Biosi. 10, 145 (1971). 
[8] Ralston, A. : A First Course in Numerical Analysis. New York: McGraw-Hill 1965. 
[9] Bremermann, H. : A method of unconstrained global optimization. Math. Biosi. 9, 1 (1970). 

[10] Bellman, R., et al. : Inverse problems in ecology. L Theoret. Biol. l l ,  164 (1966). 
[1 i] Garfinkel, D. : A simulation study of the effect on simple ecological systems of making rate of 

increase of population density-dependent. J. Theoret. Biol. 14, 46 (1967). 
[12] Roth, R., Roth, M. : Data unscrambling and the analysis of inducible enzyme synthesis. Math. 

Biosi. 5, 57 (1969). 
[13] Lanczos, C. : Applied Analysis. Engiewood Cliffs, N.J. : Prentice-Hall 1956. 
[14] Vandermeer, J.: The competitive structure of communities: an experimental approach with 

protozoa. Ecology 50, 362 (1970~. 
[15] Gause, G. : The Struggle for Existence. New York: Hafner 1934, reprinted 1964. 

Dr. J. Swartz 
School of Public Health 
Environmental Health Sciences 
University of California 
Berkeley, CA 94720, U. S. A. 

Prof. H. Bremermann 
Department of Mathematics 
University of California 
Berkeley, CA 94720, U. S. A. 


