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MAKING THE TRANSITION TO FORMAL PROOF* 

ABSTRACT. This study examined the cognitive difficulties that university students expe- 
rience in learning to do formal mathematical proofs. Two preliminary studies and the main 
study were conducted in undergraduate mathematics courses at the University of Georgia 
in 1989. The students in these courses were majoring in mathematics or mathematics edu- 
cation. The data were collected primarily through daily nonparticipant observation of class, 
tutorial sessions with the students, and interviews with the professor and the students. An 
inductive analysis of the data revealed three major sources of the students' difficulties: (a) 
concept understanding, (b) mathematical language and notation, and (c) getting started on 
a proof. Also, the students' perceptions of mathematics and proof influenced their proof 
writing. Their difficulties with concept understanding are discussed in terms of a concept- 
understanding scheme involving concept definitions, concept images, and concept usage. 
The other major sources of difficulty are discussed in relation to this scheme. 

1. INTRODUCTION 

In the United States the transition to proof is abrupt. The only substan- 
tial treatment of proof in the secondary mathematics curriculum occurs 
in a one-year geometry course. Lower-level university mathematics con- 
sists primarily of calculus, where few, if any, written proofs are required 
of students. In many calculus textbooks, precise definitions of limits, c-~5 
proofs, and other forms of rigor have been relegated to optional sections 
or removed altogether. Thus, many students begin their upper-level math- 
ematics courses having written proofs only in high school geometry and 
having seen n o  general perspective of proof or methods of proof. Fur- 
thermore, at many colleges and universities students are expected to write 
proofs in real analysis, abstract algebra, and other advanced courses with 
no explicit instruction in how to write proofs. 

This abrupt transition to proof is a source of difficulty for many students, 
even for those who have done superior work with ease in their lower-level 
mathematics courses. In order to address this problem, a growing number 
of universities and colleges offer transition, or bridge, courses to teach 
students how to effectively communicate in the language of mathematics 
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and, in particular, how to write formal proofs like those required in upper- 
level courses. A variety of textbooks are available for these courses (for 
example, Bittinger, 1982; Fletcher and Patty, 1988; Morash, 1987; Smith, 
Eggen and St. Andre, 1990; Solow, 1990). The present study was conducted 
in one such course to determine the nature of students' cognitive difficulties 
in making this transition to proof. 

Although a number of empirical studies have addressed students' dif- 
ficulties with proof, many have dealt with high school geometry, and rela- 
tively few have dealt with university students. Nevertheless, the literature 
suggests the following areas of potential difficulty that students encounter 
in learning to do proofs: (a) perceptions of the nature of proof (Balach- 
eft, 1988; Bell, 1976; Galbraith, 1981; Lewis, 1987; Schoenfeld, 1985), 
(b) logic and methods of proof (Bittinger, 1969; Duval, 1991; Morgan, 
1972; Solow, 1990), (c) problem-solving skills (Goldberg, 1975; Schoen- 
feld, 1985), (d) mathematical language (Laborde, 1990; Leron, 1985; Rin, 
1983) and (e) concept understanding (Dubinsky and Lewin, 1986; Hart, 
1987; Tall and Vinner, 1981; Vinner and Dreyfus, 1989). 

These studies suggest that the ability to read abstract mathematics and 
do proofs depends on a complex constellation of beliefs, knowledge, and 
cognitive skills. It is not at all clear, however, which of these factors are 
the most salient for capable undergraduate mathematics students taking a 
first course that emphasizes proof nor how these factors interact with one 
another. 

2. METHODOLOGY 

The purpose of the present study was not to verify an existing theory or 
to test a priori hypotheses. Rather, the intent was to develop a grounded 
theory (Glaser and Strauss, 1967) of the students' difficulties with proofs 
by observing the students in the context of a regular mathematics course 
and by attending to the professor's and the students' perspectives on the 
difficulties involved in learning to do proofs. 

I conducted two preliminary studies and the main study in undergrad- 
uate mathematics courses at the University of Georgia during the winter, 
summer, and fall quarters of 1989. I conducted the first preliminary study 
in an introductory group theory course and the second preliminary study 
and the main study in a new transition course entitled An Introduction 
to Higher Mathematics. (After a one-year trial period, the course became 
a requirement for a degree in mathematics.) According to tile instructor, 
Dr. Pierce, the major purposes of the course were to teach the students to 
read and do proofs and to introduce them to certain mathematical ideas 
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that pervade advanced mathematics. The topics covered during the course 
included mathematical logic and methods of proof, the principle of math- 
ematical induction, elementary set theory, relations and functions, and the 
real number system. The required proofs were short deductive proofs in 
which inferences were based largely on definitions and axioms. The profes- 
sor and the textbook (Fletcher and Patty, 1988) provided all the definitions, 
axioms, and theorems. 

Of the 16 students in the class, 8 were undergraduate mathematics 
majors, 6 were undergraduate mathematics education majors, and 2 were 
graduate mathematics majors. I selected two mathematics majors and three 
mathematics education majors as key participants. They represented a 
variety of mathematics backgrounds and abilities and were willing to meet 
with me for interviews and tutorial sessions outside of class. 

The data were collected primarily through nonparticipant observation of 
class each day, interviews with the professor and the students, and tutorial 
sessions with the students outside of class. The inductive data analysis 
procedures were influenced by the constant comparative method (Glaser 
and Strauss, 1967). 

3. FINDINGS 

Dr. Pierce relied largely on direct instruction and was very conscientious in 
explaining the concepts and proofs in detail. He explicitly taught standard 
methods of proof and involved the students in class by asking questions, 
encouraging them to ask questions, and soliciting examples. He attempted 
to maintain a pace that allowed the students to understand the material, and 
he was readily available for help outside of class. The students' comments 
about the professor and the course were invariably positive. 

Although some of the students' difficulties in learning to do proofs 
could be attributed to a lack of diligence, it appeared to me that many of 
their difficulties were cognitive and they would have encountered these 
difficulties despite diligent studying. Specifically, I found the following 
seven major sources of the students' difficulties in doing proofs: 

D1. The students did not know the definitions, that is, they were unable to 
state the definitions. 

D2. The students had little intuitive understanding of the concepts. 
D3. The students' concept images were inadequate for doing the proofs. 
D4. The students were unable, or unwilling, to generate and use their own 

examples. 
D5. The students did not know how to use definitions to obtain the overall 

structure of proofs. 
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D6. The students were unable to understand and use mathematical lan- 
guage and notation. 

D7. The students did not know how to begin proofs. 

In addition, the students' perceptions of mathematics and proof influ- 
enced their proof-writing performance and were sometimes a hindrance to 
their success. 

Figure 1 presents a model of the major sources of the students' difficul- 
ties in doing proofs. The boxes indicate the major areas of difficulty, and 
the arrows indicate that a difficulty or lack of understanding in one area 
led to further difficulties in another area. 

The seven difficulties and the students' perceptions of mathematics 
and proof are discussed in terms of the concept-understanding scheme 
illustrated in Figure 1. Because D1-D5 are directly related to the three 
parts of this scheme, the discussion will focus on these five difficulties and 
the students' perceptions of proof. Further discussion of D6 and D7 and 
other findings can be found in Moore (1990). 

3.1. The Concept-Understanding Scheme 

Vinner and others (Dreyfus, 1990; Tall and Vinner, 1981; Vinner, 1983; 
Vinner and Dreyfus, 1989) have distinguished between the definition of a 
mathematical concept, the concept definition, and the cognitive structure 
in an individual's mind associated with the concept, the concept image. 
The former refers to a formal verbal definition that accurately explains 
the concept in a noncircular way, as might be found in a mathematics 
textbook, whereas the term concept image refers to the set of all mental 
pictures that one associates with the concept, together with the all the 
properties characterizing them. The concept image is derived from the 
examples, diagrams, graphs, symbols, and other experiences one has with 
the concept. 

Whereas Vinner and others have been interested in the differences 
between the set of objects determined by the concept definition and the 
set of  objects determined by one's concept image, I found the distinction 
useful in clarifying the different ways in which one must understand math- 
ematical concepts to use them in proofs. Furthermore, the data revealed a 
third aspect of concept understanding, concept usage, which refers to the 
ways one operates with the concept in generating or using examples or 
in doing proofs. The term concept-understanding scheme refers to these 
three aspects of a concept: definition, image, and usage. This scheme was 
evident in the data from the professor, from the textbook, and from the 
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Perceptions of Mathematics and Proof 

View mathematics as computations and symbol manipulations 
View proof as procedures 
View proof as explanation, lack rigor 
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Fig. 1. Model of the major sources of the students' difficulties in doing proofs. 

students, and it was useful in explaining many of  the students' difficulties 
with proofs in the course. 

As an illustration of  the concept-understanding scheme, consider the 
equivalence class concept. 
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Fig. 2. Cherie's diagram for Ix]. 

Definition. Both the textbook and the professor gave the following 
definition: 

Let R be an equivalence relation on a set S, and let x C S. The equivalence class of x, 
denoted R[x] (or simply Ix] when R is understood), is the set {y E S : (x,y) E R}. (Fletcher 
and Patty, 1988) 

The professor also defined R[x] in words without using set notation: 
R[x] is the set of all second coordinates of ordered pairs belonging to R 
having first coordinate x. 

Image. The professor used a "family" metaphor to lead up to the equiv- 
alence class concept. Before introducing equivalence relations, he defined 
R[x] for a relation R (not necessarily an equivalence relation) that is a 
subset ofA x B as the set {y E B : (x,y) C R} and called it the family ofx. 
Thus R[x] contains all the "relatives" of x; it is all things related to x. 

The textbook authors suggested that an equivalence class be thought of 
as a b o x :  

The set Ix] is called the equivalence class ofx (but "box-x" is shorter and suggests the right 
way to think about [x]; it is a set after all, a box so to speak filled with x and all its relatives). 
(Fletcher and Patty, 1988, p. 94) 

When I asked Cherie, one of the five key students, what Ix] is, she 
replied, "That's wherever x is, you're looking for the y values." She drew a 
picture like Figure 2 to illustrate how she thought about equivalence class. 

Usage. There are several aspects of working with equivalence classes 
in proofs that students must learn. First, the definition says an equivalence 
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class is a set, and so they can work with equivalence classes in proofs the 
way they work with sets. Second, in order to use the defining property, 
students must know how to use the notation. They must know that the 
expressions z E R[x], (x,z) C R, x R z, and x -~ z all mean the same thing 
and be able to choose the best symbols for the particular task at hand. 
Third, one definition may be easier to use than another, and the students 
must learn how to use the various mathematically equivalent definitions of 
a concept and choose among them for different tasks. 

Although the professor did not explicitly think in terms of this concept- 
understanding scheme, on many occasions throughout the course his instruc- 
tion revealed the three aspects of the scheme. His comments to the class 
following the third test provide another example of the scheme. He began 
by telling the class that most of them had had trouble showing the function 
f.'~ ---+ ~ given byf(x) = 2x + 3 maps ~ onto IK 

You want to show t h a t f m a p s  N onto ItL What does that mean? Informally it means that 
everything in I~ gets hit. How do we say that formally? It means this: Vy 3x (fix) = y). 
Every y comes from some x - that 's what being on to  means. So for any y you have to find 
an x. So the way tosay  it is: Let y C N be given. And then your task is either to show that 
an x exists, by some fancy method, or just  exhibit the x that works. 

Notice that he began with an informal explanation of onto, then gave the 
definition, then gave a second informal explanation, and finally explained 
how to use the definition in a proof. 

The scheme applies to certain aspects of mathematical logic as well as 
to definitions. Tautologies play a role similar to that of definitions. The 
methods of  direct proof, contrapositive proof, and contradiction proof are 
the usage aspect of logic because these methods show how to use the 
tautologies to write proofs. 

3.2. Concept Definitions 

While tutoring the students outside of class, I observed a number of 
instances in which they were unable to state important definitions that 
had been emphasized in class (D1). For example, just before the second 
test Cherie and Alan could not define the terms relation and equivalence 
class of  x, even though these topics had been studied in class each day 
for more than a week. Because most of the proofs throughout the course 
depended largely on the definitions, not knowing the definitions was often 
a reason for the students' failure to produce a proof. 

A common reason for the students' difficulties with the definitions was 
that the concepts were seen as abstract by the students. They had difficulty 
finding or creating mental pictures of the concepts, and without an informal 
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understanding of a concept they could not learn the written form of the 
definition. 

Several of  the terms that the students seemed to have trouble learning 
were defined using set-builder notation. The notation used in those def- 
initions involves both symbols and language, including quantifiers, that 
the students had trouble understanding. For example, Cherie could not 
understand the set-builder definitions of image and inverse image of a set 
under a function without first gaining an informal understanding of those 
concepts through examples and diagrams. Furthermore, a student's con- 
cept image may be sufficiently different from the definition that he or she 
cannot translate the image into written symbols. 

The students' beliefs about mathematics and proof offer another expla- 
nation for why they neglected to learn definitions as they should have. 
Some students did not sense the important distinction between precise def- 
initions and informal explanations based on concept images. The clearest 
example of this lack of sensitivity to the precision required in definitions 
occurred in an interview with Vicki, a senior mathematics major, follow- 
ing the final exam of the summer course. One exam item required the 
completion of the following definition: 

The union of an indexed family of  sets {A,~ : a E A} is {x : ... }. 

(An acceptable answer is {z : x E A~ for some c~ E A}). 
As we discussed her work on this item, she complained about having 

trouble with writing out definitions. She felt that she should receive credit 
when she "understood" a definition but could not write it out in correct 
notation. 

V: And this one I didn't understand. When he starts talking about families 
of sets, that throws me. I know what union means, but - I wrote that 
I knew what it meant here [points to a diagram she had drawn in the 
margin of her exam paper], but I wrote that I 'm confused how he's 
giving -.  See, it says he wants the definition of union, and I know 
what that means. I can picture it. But then when he puts it like this 
[on the exam], I really get confused. It's just the notation. 

I: How do you picture it? 

V: How do I picture what union is? I drew a picture like A union this 
[points to her diagram]. I think of an x. The intersection is whatever's 
in both sets. Like say there's a 1, 2, and 3 in this and a 4 and a 5 in this 
set. The intersection would be null or empty set, but the union would 
be 1, 2, 3, 4, and 5 - everything in both sets. See, that's the definition, 
and I don't - .  

I: What if you had 10 of these circles? 
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V: Oh, well, then that depends on how you wrote it. If you had 10 circles 
and they were labeled A, B, C, D, and E, the union of B, C would be 
everything in B and everything in C. 

I: What's the union of all 10 of them? 

V: Everything, in all 10 of them. See, and I feel like I really understand 
it. I feel like it's not fair just because the notation throws me I lose 6 
points. But I guess that's the idea. I have to be able to understand the 
notation. 

Vicki felt that her concept image of union served as an adequate definition 
and that having to know the notation was a burden added to the task of 
learning the definition rather than an essential part of the definition. Thus, 
her perception of proof and rigor influenced what she learned - or did not 
learn - and how she thought about the concept, and because her perception 
differed from the professor's, she did not meet his expectations. 

3.3. Concept Images 

In many cases the students were unable to do a proof because they did not 
understand the theorem or the concepts involved. They could not produce 
a proof by working formally with logic and definitions but needed intuitive 
understanding before they could get started (D2). 

In both preliminary studies and the main study, the students fervently 
wanted and clearly needed examples to help them understand mathematical 
concepts and do proofs. Dr. Pierce observed that the students wanted 
two types of examples: (a) illustrations of definitions or concepts and 
(b) worked problems. It was through the examples, particularly those of 
the first type, presented by the professor and by the textbook that the 
students were able to build their concept images and, subsequently, their 
understanding of the definitions and notation. 

Even though examples, concept images, and informal approaches were 
helpful, and often necessary, for discovering a proof, they did not guarantee 
that a student could write a correct proof (D3). The students had to know 
definitions and be able to use them not simply because that was the required 
level of rigor in the course but because concept images were inadequate 
for several aspects of the proving process. 

1. Concept images lack the language needed to express mathematical 
ideas. The students often commented that they "understood" a proof, 
or a step in a proof, but did not know how to say it. Definitions provide 
the language - the words and symbols - for writing a proof. 
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Fig. 3. Ellen's diagram for her proof. 

2. Concept images do not supply the individual steps in a proof, whereas 
definitions often suggest the sequence of individual steps and provide 
the justification for each step. 

3. Concept images do not reveal the logical structure of a proof, as 
definitions do. 

These three points are illustrated below in the episode with Ellen and 
are discussed further in the subsequent section on concept usage because 
they accounted for many of the students' failures to do proofs. 

Ellen's Set Theory Proof. An item on the first test was a set theory proof: 

Prove that i rA and B are sets satisfying A n B = A, then A U B = B. 

Ellen, a mathematics education major who had had several upper-level 
mathematics courses requiring proofs, was one of several students who 
gave an intuitive argument. Here is her proof as she wrote it on her test 
paper. She began by drawing the diagram in Figure 3 in the left-hand 
margin of her paper. 

A n B = A says - by definition of intersection - that the members of A and the members of 

B that are the same are all the members of A. Therefore by definition of subset A C_ B. IrA 
is a subset of B all of its members are contained in B. When there is a union of a set and 
it 's subset the union then includes the whole set. Therefore A U B = B. 

As had been agreed upon in class, the professor wanted a proof based 
only on definitions, axioms, previously proved results, and rules of infer- 
ence. Thus, the proof should have shown A U B C_ B and B C_ A U B 
and explicitly used quantifiers and the precise definitions of set equality, 
subset, intersection, and union to justify each step. 

In contrast to the professor's expectation, Ellen's proof was based on 
her intuitive understanding of set equality, subset, intersection, and union 
and used her own informal language. She argued informally that A C_ B 
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and then claimed that "when there is a union of a set and it's [sic] subset 
the union then includes the whole set" - a claim that was intuitively clear 
but should have been proven from the definitions and axioms. 

Her intuitive notions and the overall strategy of her proof were correct, 
but she did not use the language and rules of inference that had been agreed 
upon in class. In the professor's words, she had not learned "the language 
and culture of how we write these things down." Her concept images were 
helpful in understanding the proposition and the concepts involved in its 
proof but were inadequate for presenting an acceptable proof at the required 
level of rigor. With reference to the three points listed above, the definitions 
as the professor gave them in class would have provided the language and 
notation for a proof, the individual steps and their justification, and an 
overall structure for the proof. Ellen needed to go beyond merely giving 
an explanation and learn to use definitions in these ways. 

The professor's comment about the "language and culture" of mathe- 
matics suggests that Ellen not only lacked an understanding of the defini- 
tions and how to use them in a proof (language), but also that her perception 
of proof and rigor (culture) were inconsistent with his. I talked with her 
about her proof. 

I: Why did you write your proof as you did? 
E: I thought about it, drew a picture, and then wrote an explanation. 
I: Would you have given a proof like Dr. Pierce's if you had realized 

what he wanted? 
E: I didn't think to show each set was a subset of the other. 
I: If you had thought of it that way, do you think you could have done 

it? 
E: (hesitates) I don't know. Maybe. 
I: What do you think was wrong with your proof?. Why did Dr. Pierce 

not give you full credit? 
E: I didn't explain it well enough. 

Not only were Ellen's concept images of the set theory terms inadequate 
for writing a proof, but also her concept image of proof as explanation was 
inadequate for meeting the professor's standards of rigor. 

The episodes with Vicki and Ellen illustrate the role of the students' 
perceptions of proof in their proof writing and learning of mathemat- 
ics. Although they were both seniors and had previously taken university 
mathematics courses requiring proofs, neither of them had grasped the 
significance of precise language and careful reasoning. In contrast to the 
professor's notion of rigor, they seemed to believe that an explanation is 
adequate as long as it makes sense, rather than because it follows accepted 
rules of logic. 
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3.4. Concept Usage 

The preceding section argued that the students' concept images were defi- 
cient in several operational aspects of the proving process. This section 
develops that point further by distinguishing three ways of operating with 
definitions and theorems in doing proofs: (a) generating and using exam- 
pies, (b) applying definitions within proofs, and (c) using definitions to 
structure proofs. On many occasions the students were unable to do proofs 
because they did not know how to operate with definitions in these ways. 

3.4.1. Generating and Using Examples 
Throughout the course the professor stressed the need to generate and use 
examples for understanding concepts, definitions, theorems, problems, and 
notation, and for discovering proofs. But the process of generating one's 
own examples demands cognitive skills different from those involved in 
studying examples given by the professor or the textbook, and so it was 
an inability to generate and use examples that particularly distinguished 
the students' mathematical activity from that of the professor and hindered 
their progress in understanding concepts and doing proofs (D4). 

One reason for the students' inability to generate and use examples 
is that they had only a limited repertoire of domain-specific knowledge 
from which to pull examples. In contrast, the professor already possessed 
knowledge of examples for many of the concepts and theorems. He could 
use these examples without having to generate any new ones. Furthermore, 
he knew techniques for generating examples. He told the students to be 
"cheap", that is, find examples that are as simple as possible, but on several 
occasions when I observed the students making up examples, they created 
examples that were more complicated than they could manage. 

3.4.2. Applying Definitions Within a Proof 
A second way of operating with definitions is to use them to suggest or 
justify individual steps in a proof. Definitions also supply the language, the 
verbal expression, for the steps in a proof. The students often commented 
that they had found a proof, they knew how it should go, but they did not 
know how to say it. In some of these instances it appeared that they lacked 
the ability to take the language and notation from a definition and use it as 
a line in the proof. 

3.4.3. Using Definitions to Structure Proofs 
A third way in which students must operate with definitions in doing proofs 
is to obtain the overall structure of a proof from a definition. By overall 
structure I mean the organization or skeleton of a proof, particularly how it 
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begins, how it ends, and how the beginning is linked to the ending by rules 
of logic and a definition, axiom, or theorem. In Ellen's case, the professor 
wanted a proof based on the definition of set equality, which dictated that 
two subset relations were to be shown. 

As another example, consider the definition of one-to-one: A funct ionf  
is one-to-one if and only if for all x and for all y in the domain off, ifflx) = 
f(y) then x = y. This definition gives a strategy for proving that a functionf 
is one-to-one: Let x and y be fixed but arbitrary members of the domain of 
f, assume thatf(x) =f(y), and then show, using these assumptions and other 
available information, that x = y. Thus, this form of the definition reveals 
the structure and logic (i.e., the universal quantifiers and the implication) 
of a proof that f is one-to-one. In particular, it shows how such a proof 
should begin (withflx) =fly)) and end (with x = y). 

Not all definitions of one-to-one so directly suggest how to prove that 
a function is one-to-one. Taking the ordered pair perspective of functions, 
the textbook (Fletcher and Patty, 1988) gives this definition: "A functionf 
is said to be a one-to-one function provided that no two distinct members 
o f f  have the same second term" (p. 115). This definition may be better for 
developing a concept image and for checking examples and nonexamples, 
particularly graphs in the Cartesian plane, whereas the statement that "if 
f (x l )  = f(x2) then Xl = X2" provides a general method, or structure, for 
proving that a function is one-to-one. Although a mathematician may not 
notice the distinction between the two equivalent definitions, a novice 
student who is learning to do proofs may not even see the connection 
between the two definitions. 

In some instances students knew a definition and could explain it infor- 
mally but could not use the definition to write a proof (D5). Linda, a senior 
mathematics major, knew that "a function f is one-to-one provided that 
no two distinct members o f f  have the same second term," and she was 
able to give examples and nonexamples, but she did not know how write 
a proof that a function is one-to-one. Even after I led her to the alternative 
definition - Vx~ VX2 Oe(Xl ) = f ( x 2 )  "-'+ Xl = X2] -- and explained its connection 
with the other definition, she could not tell me how to prove that a function 
is one-to-one. 

In many of the instances where the students appeared not to know how to 
use a definition to structure a proof, there was another confounding factor: 
They were confused by the hypothesis of the proposition. For example, 
consider the following proposition, which was on the final exam: 

Let fand  g be functions on A. If fog  is one-to-one, then g is one-to-one. 

All but one student incorrectly attempted to begin the proof with the 
hypothesis - f o g  is one-to-one - rather than by assuming that g(x) = g(y) 
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for fixed but arbitrary x and y in A. It is not clear to what extent their failure 
to prove the proposition was because they did not know how to show that a 
function is one-to-one, as opposed to being confused by the hypothesis and 
not knowing how to begin the proof. In either case, however, the students 
did not know how to use their mathematical knowledge to produce a proof. 

4. DISCUSSION 

4.1. Interactions Within the Scheme 

The sequence "Images ~ Definitions ~ Usage" within the Concept Under- 
standing box in Figure 1 illustrates that the students' ability to use the def- 
initions in proofs depended on their knowledge of the formal definitions, 
which in turn depended on their informal concept images. The students 
often needed to develop their concept images through examples, diagrams, 
graphs, and other means before they could understand the formal verbal 
or symbolic definitions. It seems that this reliance on concept images for 
understanding definitions and notation may diminish as the students move 
beyond this transition point in their learning of mathematics and become 
more comfortable with standard notation, mathematical grammar and syn- 
tax, and the logical structure of proofs. 

The sequence "Images --~ Usage" illustrates that the students' ability to 
use the definitions sometimes depended on their informal understanding 
of the concepts even when they knew the definitions. They were unable 
to do the proofs by formally manipulating the symbols and language. On 
the other hand, even well-developed concept images were inadequate for 
writing a proof. Also, the students seemed less dependent o n their concept 
images when the proofs were rather algorithmic, as were most of the 
induction proofs. 

An observation not illustrated in Figure 1 is that the students' cognitive 
structures differed from the professor's. Whereas their understanding of 
a concept appeared to be organized into separate schemata corresponding 
to their mental images, the different definitions for the concept, and the 
procedures for using the definitions, the professor appeared to have all of 
this knowledge organized into one schema. He was able to move easily 
among the parts of the schema to facilitate a particular task. Also, the supe- 
rior organization of his knowledge structures reduced the cognitive load, 
whereas the students often suffered from cognitive overload. Furthermore, 
in comparison to the students he had more domain-specific knowledge, 
from which he could select examples and other information, and more 
general knowledge, which enabled him to apply general mathematical 
processes to particular proof tasks. 
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4.2. Interactions Between the Scheme and the Other Aspects of the Model 

The many arrows emanating from the Concept Understanding box sug- 
gest how other aspects of doing proofs depended on the three ways of 
understanding mathematical concepts. 

The arrows pointing from the Mathematical Language and Notation box 
to the Concept Understanding box show that the students' lack of under- 
standing of the language and notation inhibited their ability to understand, 
remember, and use the definitions. The professor's flexibility with multi- 
ple definitions and notations contrasted with the students' rigid adherence 
to a single definition or notation. These observations agree with Labor- 
de's (1990) comment that "the teaching of mathematics is faced with 
the apparent contradiction that language is needed to introduce students 
to new notions and that language may turn out to be an obstacle to stu- 
dents' understanding" (p. 69). On the other hand, the arrows pointing to the 
Mathematical Language and Notation box illustrate that the definitions and 
images played an important role in the students' learning of the language 
and notation. The definitions provided practice in reading and writing for- 
mal mathematics, which helped them learn the words, the grammar, and 
the symbol system. 

Many times throughout the course I observed that the students were 
stuck at the very beginning of a proof, but frequently they were able to do 
the proof after I helped them get started. Figure 1 dramatically shows how 
their inability to get started on a proof was symptomatic of many other 
difficulties. The sources of those difficulties included deficiencies in all 
three aspects of concept understanding, a lack of knowledge of logic and 
methods of proof, and linguistic and notational barriers. 

4.3. Perceptions of Mathematics and Proof 

The data suggested that the students' perceptions of mathematics and proof 
influenced not so much their ability to do individual proofs as the kind of 
proof they produced, that is, the level of rigor they considered adequate. 
Thus, in Figure 1, the Perceptions of Mathematics and Proof box appears 
at a level above that of individual proofs. 

As with other mathematical concepts, the concept-understanding scheme 
is useful in thinking about proof itself. Early in the course the professor 
defined proof as a logical sequence of statements leading from a hypothesis 
to a conclusion using only axioms, definitions, previously proved results, 
and rules of inference. But his goals were not that the students be able to 
define proof; rather, he wanted them to learn to recognize a valid proof 
(concept image) and learn to do proofs (concept usage). 
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Although the students probably could not give a definition of proof, 
they had concept images of proof. The concept image of some students 
was that of proof as explanation, whereas for others proof was a procedure, 
a sequence of steps that one performs. It was not clear to what extent the 
students viewed proof as a piece of mathematical knowledge, an object. 
Dreyfus (1990) noted that no studies have investigated this issue of the 
transition between proof as a process and proof as an object. 

As for the usage aspect of proof, the students learned to do proofs in 
the course, and they had some limited notions of the purpose of proof, 
but they probably were not ready to use proof and deductive reasoning 
as tools for solving mathematical problems and developing mathematical 
knowledge. This latter claim agrees with Schoenfeld's (1985) observations 
of the empirical nature of students' beliefs about mathematics and their 
failure to use deductive reasoning as a mathematical tool. 

5. CONCLUSION 

Although the short deductive proofs required in the course represent only 
a narrow aspect of mathematical proof and the process of proving, the 
findings are significant because they address an important transition point 
for undergraduate students. Even apparently trivial proofs are often major 
challenges for them at this point. Until proof is integrated throughout the 
school and university mathematics curricula in the United States, I believe 
the abrupt transition to proof will continue to be a source of frustration for 
undergraduate students and teachers. 

The qualitative methodology used in the study and the restricted nature 
of proof addressed by the course limit the application of the model to other 
mathematics courses. For the following reasons, however, the concept- 
understanding scheme may be valid and useful in other mathematical 
situations. First, the scheme emerged not only from the data collected from 
the students, but to a large extent also from the professor and the textbook. 
Dr. Pierce expressed his agreement with the findings and later told me he 
found the scheme useful in teaching linear algebra. 

Second, several students in the transition course had previously taken 
upper-level courses requiring proofs. All of them said they had relied on 
memorizing proofs because they had not understood what a proof is nor 
how to write one. The model presented here reveals at least a portion of 
what they were lacking and suggests how we might help students recover 
from similar states of confusion. 

Third, although proving requires more complex cognitive processes 
than those evident in this study, certainly the reliance on careful reasoning, 
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precise definitions and language, and standard methods of  proof  are nec- 

essary in more advanced courses. A retrospective look at the data from the 
group theory course of  the first preliminary study found the scheme there, 
but the students appeared to be overwhelmed by the necessity of  grap- 
pling with difficult group theory concepts,  problem solving, abstraction, 
and generalization while learning what a proof  is and how to write one. A 
transition course on mathematical  language and proof  would have reduced 
their cognitive load in subsequent upper-level courses while also preparing 
them for the formal  mathematical  approach used in those courses. 
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