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IMAGES OF RATE AND OPERATIONAL UNDERSTANDING OF THE 

FUNDAMENTAL THEOREM OF CALCULUS t 

ABSTRACT. Conceptual analyses of Newton's use of the Fundamental Theorem of Calculus and of 
one 7th-grader's understanding of distance traveled while accelerating suggest that concepts of rate 
of change and infinitesimal change are central to understanding the Fundamental Theorem. Analyses 
of a teaching experiment with 19 senior and graduate mathematics students suggest that students' 
difficulties with the Theorem stem from impoverished concepts of rate of change and from poorly- 
developed and poorly coordinated images of functional covariation and multiplicafively-constructed 
quantities. 

John Dewey once said that theory is the most practical of  all things (Dewey, 1929). 
Theory is the stuff by which we act with anticipation of  our actions outcomes and 
it is the stuff by which we formulate problems and plan solutions to them. It 
is in this sense that I consider this theoretical investigation of students' calculus 
concepts to be a highly practical endeavor. Mine is a theoretical paper driven by 
practical problems. The theoretical side has to do with imagery and operations 
in the constitution of  students' understanding of  the Fundamental Theorem of 
Calculus; the practical side is motivated by our general lack of  insight into the 
poor quality of  calculus learning and teaching in the United States. 

A primary theme I will develop is that students' difficulties with the Funda- 
mental Theorem of  Calculus can be traced to impoverished images of  rate. To 
develop this theme I will need to make several digressions - one to explicate my 
use of" image",  one to explain what I mean by images of  rate, and a third to clarify 
issues surrounding the Fundamental Theorem itself. 

IMAGERY AND OPERATIONS 

By "image" I mean much more than a mental picture. Rather, I mean "image" 
as the kind of  knowledge that enables one to walk into a room full of  old friends 
and expect to know how events will unfold. An image is constituted by coor- 
dinated fragments of  experience from kinesthesia, proprioception, smell, touch, 
taste, vision, or hearing. It seems essential also to include the possibility that 
images entail fragments of  past affective experiences, such as fearing, enjoying, 
or puzzling, and fragments of  past cognitive experiences, such as judging, decid- 
ing, inferring, or imagining. 1 Images are less well delineated than are schemes of  
actions or operations (Cobb and von Glasersfeld, 1983). They are more akin to 
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figural knowledge (Johnson, 1987; Thompson, 1985) and metaphor (Goldenberg, 
1988). A person's images can be drawn from many sources, and hence they tend 
to be highly idiosyncratic. 

The roots of this overly-broad characterization of image go back to Piaget's 
ideas of praxis (goal-directed action), operation, and scheme. I discuss these 
connections more fully in other papers (Thompson, 1985, 1991, in press a). For 
the present purpose I will focus on Piaget's idea of an image and its relationship 
to mental operations. 

Piaget distinguished among three general types of images. The distinctions he 
drew were based on how dependent upon the image were the actions of reasoning 
associated with it. The earliest images formed by children are an "internalized act 
of imitation.., the motor response required to bring action to bear on an object... 
a schema of action" (Piaget, 1967, p. 294). By this I take Piaget to have meant 
images associated with the creation of objects, whereby we internalize objects by 
acting upon them. We internalize them by internalizing our actions. Piaget's char- 
acterization was originally formulated to account for object permanence. It can 
also provide insight into a person's creation of mathematical objects (Dubinsky, 
1991; Sfard, 1991; Thompson, 1985), and when the development of a person's 
imagery is halted at this early level it can lead to mathematical understandings 
that are nothing more than internalized patterns of action (Boyd, 1992). 

A later kind of image people create is one having to do with primitive forms 
of thought experiments. "In place of merely representing the object itself, inde- 
pendently of its transformations, this image expresses a phase or an outcome of 
the action performed on the object . . . .  [but] the image cannot keep pace with the 
actions because, unlike operations, such actions are not coordinated one with the 
other" (Piaget, 1967, p. 295). It is advantageous to interpret Piaget's description 
broadly. If by actions we include ascription of meaning or significance, then we 
can speak of images as contributing to the building of understanding and com- 
prehension, and we can speak of understandings-in-the-making as contributing to 
ever more stable images. 

A third kind of image people come to form is one that supports thought 
experiments, and supports reasoning by way of quantitative relationships. An 
image conjured at a moment is shaped by the mental operations one performs, and 
operations applied within the image are tested for consistency with the scheme 
of which the operation is part. At the same time that the image is shaped by the 
operations, the operations are constrained by the image, for the image contains 
vestiges of having operated, and hence results of operating must be consistent 
with the transformations of the image if one is to avoid becoming confused, z 

[This is an image] that is dynamic and mobile in character ... entirely concerned with the trans- 
formations of the object . . . .  [The image] is no longer a necessary aid to thought, for the actions 
which it represents are henceforth independent of their physical realization and consist only of 
transformations grouped in free, transitive and reversible combination... In short, the image is now 
no more than a symbol of an operation, an imitative symbol like its precursors, but one which is 
constantly outpaced by the dynamics of the transformations. Its sole function is now to express 
certain momentary states occurring in the course of such transformations by way of references or 
symbolic allusions." (Piaget, 1967, p. 296.) 
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Piaget's ideas of image are similar to those of Kosslyn (1980), and Johnson 
(1987), but in different degrees. Kosslyn dismisses the idea of images as mental 
pictures (Kosslyn, 1980, p. 19), characterizing images as highly processed per- 
ceptual data that only resembles what is produced during actual perception. On 
the other hand, Kosslyn's is a correspondence theory, whereby images represent 
features of an objective reality. Piaget's theory assumes no correspondence; it 
takes objects as things constructed, not as things to be represented (von Glasers- 
feld, 1978). Also, Kosslyn's notion of image seems to be much more oriented to 
visualization than is Piaget's. Piaget was much more concerned with ensembles 
of action by which people assimilate objects than with visualizing an object in its 
absence. Finally, Kosslyn focuses on images as the PRODUCTS of acting. Piaget 
focuses on images as the products of ACTING. So, to Kosslyn, images are data 
produced by perceptual processing. To Piaget, images are residues of coordinated 
actions, performed within a context with an intention, and only early images are 
concerned with physical objects. 

Piaget's idea of image is remarkably consistent with Johnson's (1987) detailed 
argument that rationality arises from and is conditioned by the patterns of our 
bodily experience. Johnson takes to task realist philosophy and cognitive science 
(which together he calls "Objectivism") in his criticism of their attempts to capture 
meaning and understanding within a referential framework. 3 

Piaget maintained throughout his career that all knowledge originates in action, 
both bodily and imaginative (Piaget, 1950, 1968, 1971, 1976, 1980). While 
Johnson's primary purpose was to give substance to this idea in the realms of 
everyday life, Piaget was primarily concerned with the origins of scientific and 
mathematical reasoning - reasoning that is oriented to our understandings of 
quantity and structure. For example, while Johnson focused on the idea of balance 
as an image schema emerging from senses of stability and their projection to 
images of symmetric forces (Johnson, 1987, pp. 72-98), it requires a nontrivial 
reconstruction to create an image of balance as involving countervailing twisting 
actions - where we imagine the twisting actions themselves in such a way that it 
occurs to us that we might somehow measure them. It seems to involve more than 
a metaphorical projection of balance as countervailing pushes to have an image of 
balance that entails the understanding that any of a class of weight-distance pairs 
on one side of a fulcrum can be balanced by any of a well-determined class of 
weight-distance pairs on the other side of a fulcrum. 

I should note that the meaning of "image" developed here is only tangentially 
related to the idea of concept image as developed by Vinner (Tall and Vinner, 
1981, Vinner, 1987, 1989, 1991, 1992, Vinner and Dreyfus, 1989). Vinner's idea 
of concept image focuses on the coalescence of mental pictures into categories 
corresponding to conventional mathematical vocabulary, while the notion of image 
I 've attempted to develop focuses on the dynamics of mental operations. The two 
notions of image are not inconsistent, they merely have a different focus. 

The construct of image portrayed here - as dynamic, originating in bodily 
actions and movements of attention, and as the source and carrier of mental 
operations - will be fundamental to analyses of students understanding of integral 

127 



232 PATRICK W. THOMPSON 

Unit 
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Distance and time accrue simultaneously 
and in proportional correspondence. One 
speed-distance or part thereof is made while 
moving for 1 time-unit or corresponding part 
thereof. Moving for one time-unit or part 
thereof implies moving one speed-distance 
or corresponding part thereof. 

Accrual 
140 ft 
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4 sec 
Distance and time accrued simultaneously and continuously. Each 
speed-distance is a fractional part of the total accrued distance. 
Each time-unit is a fractional part of the total accrued time. 

Fig. 1. Speed as a rate. Distance and time accrue simultaneously and continuously, and accruals of 
quantities stand in the same proportional relationship with their respective total accumulations. This 
image supports proportional correspondence, that ]ths of one accumulation corresponds to ~ths of 
the other accumulation. 

and derivative. It will provide the orientation needed to speculate about what the 
"something" is that students have in mind when they speak of something changing 
or of something accumulating. 

IMAGES OF RATE 

The development of images of rate starts with children's image of change in 
some quantity (e.g., displacement of position, increase in volume), progresses to 
a loosely coordinated image of two quantities (e.g., displacement of position and 
duration of displacement), which progresses to an image of the covariation of two 
quantities so that their measures remain in constant ratio (Thompson, in press a; 
Thompson and Thompson, 1992). 

The development of mature images of rate involves a schematic coordination 
of relationships among accumulations of two quantities and accruals by which the 
accumulations are constructed. For example, in the case of constant speed, the 
total distance traveled in relation to the duration of the trip can be imagined as 
each having accumulated through accruals of distance and accruals of time so that 
at any moment during the trip the total distance traveled at that moment in relation 
to the total time of the trip is the same as the accrual of distance in relation to the 
accrual of time (Figure 1). 

Rates which involve time seem to be the most intuitive, but time as a quantity 
which can be imagined to vary proportionally with another quantity is a non- 
trivial construction for students (Thompson and Thompson, in press; Thompson, 
in press a). A further abstraction is required to develop an image of rate that 
entails the covariation of two non-temporal quantities (e.g., volume and surface 
area) and the notion of average rate of change of some quantity over some range 
of an independent quantity (e.g., average rate of change of luminance with respect 
to the displacement of a light source from 9.2 meters to 9.5 meters away from a 
target, which might be measured in (candela/cm2)/meter). 
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Total Quantity 1 

........... _...,,,,,! ......................... ,,,...1 iii I, ....................... : ]  

. . . . .  itl,,,  
ToN Quantity 2 

Fig. 2. An image of rate that entails proportionality between total accumulations in relation to 
accumulations of accruals. The two quantities vary in relation to each other so that the fractional part 
of Total Quantity 1 made by any accumulation of accruals or parts thereof within Total Quantity 1 is 
the same as the fractional part of Total Quantity 2 made by a corresponding accumulation of accruals 
or parts thereof within Total Quantity 2. 

A general scheme for rate entails coordinated images of  respective accumula- 
tions of  accruals in relation to total accumulations. The coordination is such that 
the student comes to possess a preunderstanding that the fractional part of  any 
accumulation o f  accruals of  one quantity in relation to its total accumulation is the 
same as the fractional part of  its covariant's accumulation of  accruals in relation 
to its total accumulation. More formally, this can be expressed as 

accumulated accruals 1 accumulated accruals 2 

total accumulat ion 1 total accumulation 2 

although expressing it this way does not capture the dynamics of  an image of  
covariation that I am trying to convey. I have tried to capture this image of  
covariation in constant ratio in Figure 2. Another way to interpret the diagram 
in Figure 2 is that it is the product of  one's  coordination of  iterable units (Steffe, 
1991 and in press). 

A significant aspect of  mature images of  rate is that accruals and accumulations 
are two sides of  a coin. Two quantities which change in measure (accumulate) 
so that they remain in constant ratio do so through simultaneous accruals which 
adhere to the ratio; two quantities which change through accruals in constant 
ratio have total accumulations which themselves adhere to the ratio. A hallmark 
of  a mature image of  rate is that accrual necessarily implies accumulation and 
accumulation necessarily implies accrual. 4 

THE FUNDAMENTAL THEOREM OF CALCULUS 

The Fundamental Theorem of Calculus, developed independently by Newton 
and Leibniz in the late 1600's, provides what Courant called "the root idea of  
the whole of  differential and integral calculus" (Courant, 1937, p. 111). Its 
creation made possible the algorithmic development of  what we know now as 
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the calculus. It also created a cultural necessity for deeper examinations of, 
and ultimately the resolution of, relationships between conceptions of discrete 
and continuous magnitudes, whence the formalization of the real number system 
(Baron, 1969; Boyer, 1959; Wilder, 1981). While the history of the Fundamental 
Theorem and the developments it fostered are rich and fascinating as topics in 
their own right, I will focus on ways of thinking that might make it intelligible 
to individuals reflecting on relationships between derivative and integral. The 
relationship between derivative and integral is often stated today as follows: 

FUNDAMENTAL THEOREM OF CALCULUS 

Suppose f is continuous on a closed interval [a, b]. 
Part L If the function G is defined by 

G(x) = / f(t)dt 
a 

for every x in [a, b], then G is an antiderivative of f on [a, b]. 
Part II. If F is any antiderivative of f on [a, hi, then 

b 

f f(z)dx = F(b) - F(a) 
a 

(Swokowski, 1991, p. 283) 

I shall focus on what Swokowski calls Part I of the Fundamental Theorem. 
This says that if some quantity A has a measure t that ranges from a to b, and if 
some quantity B has a measure f(t) that is conceived as being a function of the 
measure of A, and if AB is a quantity made multiplicatively from quantities A 
and B, then as quantity AB accumulates with variations of A (and hence B), the 
accumulation of quantity AB changes at a rate that is identical with the measure 
of quantity B at the upper end of AB's accumulation. 5 

The Fundamental Theorem of Calculus - the realization that the accumulation 
of a quantity and the rate of change of its accumulation are tightly related - 
is one of the intellectual hallmarks in the development of the calculus. Prior to 
Newton's and Leibniz' realization of the Fundamental Theorem, what we now call 
integration was conceived primarily as the determination of a cumulative amount 
of some quantity, such as arc length, area, volume, or mass; what we now call 
differentiation was conceived primarily as the determination of angular velocity, 
tangency, and curvature (Baron, 1969). But these two classes of problems were 
conceived separately, and each was developed with techniques limited to the type 
of problem being addressed. 

Although both classes of problems are readily seen to be separately capable of inversion, thus, 
given the area under the curve or the tangent to the curve in terms of abscissa or ordinate, to 
find the curve, the relation between tangent method and quadrature [area] is not so immediately 
obvious. The relation between tangent and arc ultimately became one of the most significant 
links between differential and integral processes and, for this and other reasons, the problem of 
rectification became crucial in the seventeenth century. The inverse nature of the two classes of 
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problems was approached in terms of a geometric model by Torricelli, Gregory and Barrow but 
only with Newton did the relation emerge as central and general. (Baron, 1969, p. 4) 

The focus on the two classes of  problems mentioned by Baron developed as 
a natural outgrowth of  the realization by Apollonius,  Oresme, Vi~te, Descartes, 
and Fermat  that covariat ion of  two magnitudes can be depicted graphically, so 
that any problem having to do with accumulation could be represented as the 

determination of  an area and that any problem having to do with rate of change 
could be represented as the determination of  tangency (Boyer, 1959). That is, 
initial development  of  ideas of  the calculus was being done by mathematicians 
who had a strong preunderstanding that even though they were focusing explicit ly 
on tangents to curves or areas bounded by curves, they were in fact looking 
for general  solutions to any problem of  accumulation or change that could be 

expressed analytically.  
Accounts  by Baron (1969) and by Boyer  (1959) suggest that Newton became 

aware of  the Fundamental  Theorem by way of  a very definite image of  cumulative 
variation: that accumulations happen by a process of  accrual. 6 

Here [in Newton's development of relationships between derivative and integral] we have an 
expression for area which was arrived at, not through the determination of the sum of infinitesimal 
areas, nor through equivalent methods which had been employed by Newton's predecessors from 
Antiphon to Pascal. Instead, it was obtained by a consideration of the momentar3, increase in the 
area at the point in question. In other words, whereas previous quadratures had been found by 
means of the equivalent of the definite integral defined as a limit of a sum, Newton here determined 
first the rate of change of the area, and then from this found the area itself by what we should 
now call the indefinite integral [antiderivative] of the function representing the ordinate. It is 
to be noted, furthermore, that the process which is made fundamental in this proposition is the 
determination of rates of change. In other words, what we should now call the derivative is taken 
as the basic idea and the integral is defined in terms of this. (Boyer, 1959, p. 191) 

It is worthwhile to mention that Newton envisioned fluxions (rates of  change 
in quantities) and fluents (flowing quantities made by fluxions) as what we would 

today call functions. This is one reason why his insight was so important. His 
method was to start with an analytic expression for a function f that gives the rate 
of  change of  some quantity and derive an analytic expression for a function F that 
gives the cumulat ive amount  of  that quantity. 

What  images might  have supported Newton 's  insight? First, Newton was 
commit ted to an image of  dynamic quantities, in continual flux, instead of  to 
the more common notion of  quantities in fixed, indeterminate states (Kaput, in 
press). Second, as noted by Baron (1969, pp. 263-266),  Newton understood 
motion as being the unifying concept  for his methods to determine tangency (rate 
of  change), curvature, arc length, and quadrature (accumulation). Third, he felt 
quite comfortable  thinking of  a continuum as being composed of infinitesimals 
- quantities as small as one pleases which may be discounted when held in 
comparison to a quantity which is an order of  magnitude larger (Boyer, 1959, 
pp. 198-200).  7 

Here is one way to take these notions in combination so that the Fundamental  
Theorem is intuitively clear: In a changing, multiplicative quantity, the total 
accumulation changes at the rate of the accruals of  the constitutive quantities. 
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Fig. 3. A mold made of tiers with square bases. Each comer of a tier is offset 0.25 ft perpendicularly 
from the nearest edge of the tier below it. 

For example, suppose you have driven a car for x miles, and that in the next 
0.0001 seconds you average 93 km/hr. During that 0.0001 seconds, your total 
driving distance is changing at the rate of 93 km/hr - regardless of how far you 
have driven. If  we imagine that during each infinitesimal period of time you drove 
at some average speed, and if we could know each of those average speeds, we 
could reconstruct your total driving distance at each infinitesimal moment of time. 
Thus, if we were to have an analytic expression which gave us your speed during 
each infinitesimal period of time, we could, in principle, recover your "distance 
function." The problem is now one of technique - construct an analytic function 
whose rate of change differs at most infinitesimally from the rates of change we 
know you had. This method is not unique to speed and distance, but will apply to 
any quantity constructed multiplicatively from a rate and another quantity. 

A second example will highlight the interrelationships among accumulation of 
a quantity, accruals in its constituents, and rate of change: Suppose that liquified 
plastic is being poured into a hollow mold, shown in Figure 3, through a hole in 
its top. Each corner of a tier is offset 0.25 feet perpendicularly from the nearest 
edges of the tier below it. Let v(h) represent the volume of plastic in the mold 
as a function of the plastic's height h from the bottom of the mold. At what rate 
is v(h) changing with respect to h when the plastic is filling the third tier? The 
total volume is changing at the average rate that the third tier is filling, which is 
simply the volume of the tier divided by the height of the tier, which in turn is 
(A(base) . height)/height. 

These examples bring out two important images: (1) thinking of quantities as 
being composed multiplicatively of two other quantities, and (2) thinking in terms 
of infinitesimals. 8 In the first example, increments of distance are conceived of 
being made by traveling for some small amount of time at some speed. In the 
second example, increments of volume are conceived as being made by taking 
some base area to a varying height. In either case, the accumulating quantity is 
imagined to be made of infinitesimal accruals in the quantities which, composed 
multiplicatively, make up the accruals in the accumulating quantity. When one 

132 



R A T E A N D C A L C U L U S  237 

Speed-distance 
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Fig. 4. Acceleration - the rate at which the speed-distance per time-unit grows. Image is of 
acceleration happening in jumps. 

of  those quantities is the rate at which the quantity changes over an infinitesimal 
interval, then the total accumulation changes over any infinitesimal interval at the 
quantity's rate of  change over that infinitesimal interval. 

EARLY IMAGES OF THE FUNDAMENTAL THEOREM OF CALCULUS 

While we cannot expect students to recreate the discoveries of  Newton, we can 
look for kinds of  reasoning which would provide us with starting points to de- 
velop instructional and curricular approaches oriented at students' development 
of  imagery and forms of  expression to support their later insight into important 
ideas in the calculus. In this section I will report one teaching experiment which 
attempted to do this. The teaching experiment was with Sue, a seventh-grader, and 
the content of  the teaching experiment were the ideas of speed and acceleration. 

An image of  acceleration is that "speed grows with time." I have depicted 
this image in Figure 4. The quantification of  acceleration is the determination 
of  by how much the speed-distance grows with each passing unit of  time. The 
complication that acceleration introduces in students' comprehension of  situations 
is not so much in the accrual as in imagining the accumulation. 

I depicted the accumulation in Figure 4 as happening only in whole-increments 
of  time. This depiction seems justified not as an accurate portrayal of  the most 
sophisticated understanding of  acceleration, but as an intermediate image that 
becomes refined through the study of  limiting processes typically developed in 
calculus. 

Sue's work on a problem having to do with acceleration is presented below. I 
had already established that Sue possessed the scheme of  operations entailed in 
Figure 2 in the context of  a unit on reasoning about speed as a rate (Thompson, in 
press a). 

EXCERPT 1 
1.1 Pat: 

1.2 Sue: 
1.3 Pat: 

Imagine this. I'm driving my car at 50 mi/l~. I speed up smoothly to 60 mi/hr, 
and it takes me one hour to do it. About how far did I go in that hour? 
(Long pause. Begins drawing a number line.) 

What are you doing? 
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Fig. 5. Sue's scratch work for "How far did I go while I took one hour to speed up from 50 mi/hr to 
60 mi/hr?". 

1.4 Sue: 

1.5 Pat: 

1.6 Sue: 

1.7 Pat: 

1.8 Sue: 

I figure that if you speed up 10 miles per hour in one hour, that you speeded 
up 1 mile per hour every 6 minutes. So I'U figure how far you went in each of 
those six minutes and then add them up. (See Figure 5.) 

(After Sue is finished.) Is this the exact distance I traveled? 

No ._ you actually traveled a little farther. 

How could you get a more accurate estimate? 

(Pause.) I could see how far you went every time you speed up a half mile 
per hour. 

F i g u r e  5 s h o w s  S u e ' s  work .  She  a s s u m e d  that  Pa t  acce le ra ted  at  the  ra te  o f  

10 (mi /h r ) /h r ,  w h i c h  w o u l d  be  e q u i v a l e n t  to 1 ( m i / h r ) / ~  hr. She  then  a s s u m e d  

Pa t  d r o v e  for  o n e - t e n t h  o f  an  h o u r  (6 m i n u t e s )  at  50  mi/hr ,  t hen  one - t en th  hou r  at  

51 mi /h r ,  and  so on.  S h e  t hen  d e t e r m i n e d  h o w  far  Pa t  wou ld  go  in each  o f  these  

o n e - t e n t h  h o u r  per iods .  

S u e ' s  so lu t ion  to e s t i m a t i n g  the  d i s t ance  I t r ave led  whi l e  acce le ra t ing  has  the  
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60 miles 
I l l " "  

50 miles .. 10 m i l e r  
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This part was added 

1 hour in 1 hour 

1 hour 

Fig. 6. Sue's image of increasing a car's speed from 50 miles per hour to 60 miles per hour as being 
the result of increasing the speed-distance by 10 miles at a uniform rate of 1 mile every one-tenth of 
an hour. 

structure of a Riemann sum. It would be expressed formally as 

A V = f i n a l  speed - i n i t i a l  speed (a number of miles per hour) 

A T  = f i n a l  t i m e  - i n i t i a l  t i m e  

A T  
A t  = 

A V  
Av = 1 mi/hr  

n--1 

d = Z ( i n i t i a l  speed + i A u ) A t  (a number of miles), 
i=0  

(a number of hours) 

(a number of hours) 9 

which says that you first imagine that the increase in speed is dislxibuted evenly 
across the number of hours you take to speed up, then pretend that you go at a 
constant speed within each increment of time and add up how far you go in each 
of them. 

What I wish to draw attention to is Sue's initial inference that Pat's speed 
increased by one mile per hour every one-tenth of an hour. This seems to be the 
crucial inference that got her going, and this inference seems to be based on an 
image of total acceleration like that shown in Figure 6. 

Sue's inference was that since 10 mi/hr was added to Pat's speed in one hour, 
this was the same as adding 1 mile per hour to Pat's speed every one-tenth of 
an hour) ° This suggests an image of acceleration that falls between a concept of 
speed and a concept of continuously accelerated speed. 

While we can be inspired by the sophistication of Sue's reasoning, we should 
take care not to read too much into it. Evidently, Sue had an operational rate 
scheme, as evidenced by her coordination of acceleration, velocity, and distance, 
but she had not yet formalized these coordinations so that she could express 
them analytically. In Excerpt 1, Sue's construction of distance traveled while 
accelerating for one hour was for a specific increase in speed over a specific 
amount of time. Shewas not able to express the general structure of her approach 
as I did in my summary after Figure 5. To accomplish such a summary, Sue would 
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have needed to encapsulate her method within a language so that her entire process 
is captured by an expression which describes local behavior of the process. 

Another aspect of Sue's reasoning which will be important in the sequel is that 
her image of the situation seemed not to entail the continuous growth of velocity, 
and hence of distance, during the periods of acceleration. She did not realize 
that the questions I asked her could have been asked about any moment of time 
during the two respective periods of acceleration, and that her calculational method 
would, in principle, yield an approximate distance traveled at each moment while 
accelerating. This is not to disparage Sue's reasoning. Rather, it is to point 
out a significant difference between Newton's and Sue's perspectives. Sue saw 
completed growth. Newton saw cumulative growth varying immediately as a 
function of time. 

The inspiration we can draw from Sue's example is that there are early forms 
of imagery which we might draw upon pedagogically in teaching ideas of the 
calculus. It remains an open question as to how we might provide occasions for 
students to transform those images into others which are propitious for insight 
into the calculus. 

A TEACHING EXPERIMENT ON THE FUNDAMENTAL THEOREM OF CALCULUS 

To study students' insights into the Fundamental Theorem of Calculus I devised a 
teaching experiment for a group of students enrolled in a course on computers in 
teaching mathematics. I had two reasons for choosing this group of students. The 
first was serendipity - this course is structured to have students first experience 
what it means to conceptualize important ideas in mathematics deeply and then 
devise instruction to foster the same experiences with their students. A focus on 
the Fundamental Theorem fits naturally within this structure. The second reason 
is that I hoped to gain insight into the kinds of understandings and orientations stu- 
dents take with them from introductory calculus and into secondary mathematics 
classrooms. 

The Students 

The group was composed of 7 senior mathematics majors, 1 senior elementary 
education major, 10 masters students in secondary mathematics education, and 
1 masters student in applied mathematics. Seventeen students had completed 3 
semesters of calculus with grades of B or better, while the other two had grades of 
C. Seven students had taken advanced calculus and four were currently enrolled 
in advanced calculus. 

In a preliminary assessment only one student, a teacher of Advanced Placement 
calculus, gave a satisfactory definition of the definite integral of a function; the 
expression xn+l/(n + 1) was the most common response. Only four students 
gave a satisfactory definition of the derivative of a function; statements about the 
slope of a tangent were the most common response. In response to the question 
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Fig. 7. Diagrams accompanying this problem: Use a graping program to find the dimensions of the 
rectangle in (a) and the triangle in (b) which produce the largest possible area. 

"What letter goes in the blank to define this function: F(_) = f2 f(t)dt, " 16 
students said that the letter t goes in place of the blank. Fifteen of 19 students 
solved a simple optimization problem, and 10 of 19 solved a complex optimization 
problem. Both optimization problems were taken from a calculus text. 

The concept of function was problematic for many students. Six of 19 students 
could express the area of the rectangle in Figure 7a or the area of the triangle in 
Figure 7b as a function of some quantity (e.g., area of the rectangle as a function 
of the length of AD in Figure 7a) so that it could be graphed over a suitable 
domain by a graphing program. A common complaint was that there was not 
enough information to "solve for the area." Four of 19 students gave satisfactory 
explanations for why the graph of f (z)  = cos(8 sin(3x)), z~[-Tr, 7r], behaves as 
it does. Most explanations made no reference to the behavior of 8 sin(3z) or to 
the fact that any function will be periodic if and only if its argument is periodic 
modulo some modulus. 

Classroom conversations and self-reports of students' high school and college 
mathematical experiences suggested that they and their instructors had engaged 
largely in "symbol speak" - talking about notations and notational actions without 
mentioning an interpretation of the notations themselves. As a result, students had 
learned to focus their attention on internalizing patterns of figural actions - the 
kinds of things to write, where to write them, and so on. Later excerpts will show 
the ways in which students expressed an orientation to notational action patterns 
sans interpretation during the teaching experiment. 

The Teaching Unit 

The class met twice weekly for 1.5 hours each meeting between February 2 and 
March 4, 1993, for a total of 10 meetings. Students had ready access to a computer 
lab or had a computer at home on which to work on assignments. The last two 
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meetings - those in which the Fundamental Theorem of Calculus was discussed 
- were videotaped and transcribed. A small-group session after the last meeting 
was also videotaped and transcribed. 

The teaching experiment was structured to focus on four phases of conceptual 
development. These were: 

Phase I: Analyze behavior of functions' graphs; explain their behavior; 
Model situations using functions and derive information about 
situations from graphs (3 meetings) 

Phase II: Average rates of change; functions which give average rates of 
change over all intervals of a fixed length (2 meetings) 

Phase III: Accumulations of change: Riemann sums (2 meetings) 

Phase IV: Relationships among variable quantity, accumulation of change, 
and rate of change of accumulation (2 meetings) 

The first phase focused on orienting students to reconstitute their images of 
function so that it would be based on images of covariation (Thompson, in press b). 
The second phase focused on having students enrich their notion of average rate 
so that they could express it as a difference quotient that reflected average rate of 
change over an increment of some quantity. The third phase focused on having 
students conceptualize Riemann sums as functions that describe an approximate 
accumulation of one quantity with respect to variations in another. The unit was 
intended to culminate in Phase IV by asking students to bring these separate 
developments together in the context of problems that highlighted the inverse 
relationship between accumulation and accrual so that they would have an occasion 
to construct, for themselves, the Fundamental Theorem of Calculus. It was my 
hope that students would construct the Fundamental Theorem of Calculus; the 
larger aim of the teaching experiment, however, was to highlight aspects of their 
conceptions and orientations that might facilitate or obstruct such a construction. 

It is important to note that all through the teaching experiment I gave explicit 
attention to students' images of mathematical activity, with special reference to 
uses of notation and the construction of explanations. It was essential that they 
come to interpret notation as someone's attempt to say something - and hence they 
should reflect on what was intended to be said, and that they should use notation 
as a medium for expressing their images, inferences, and methods. But to express 
images, inferences, and methods it was also essential that they come to take these 
as important activities upon which to reflect. This was an uncommon orientation 
for most students, and the details of our contract were continually renegotiated. 

I will briefly describe the teaching experiment's first three phases to illustrate 
the nature of instruction and orientation I took to the subject, and to give a sense 
of the students' orientations. I will describe the fourth phase in detail. 

Phase I: Functions, Graphs, and Models (3 meetings) 
Students were given two assignments aimed at their developing insight into 

the behavior of functions by examining the behaviors of their graphs. Examples 
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TABLE I 

Sample tasks from Phase 1 of the teaching experiment. Roman numerals indicate assignment number 
during the teaching experiment 

1.2. Investigate the behavior of these functions. Explain why they behave the way they do. 
[Note: A good explanation is one which, if understood ahead of time, would have allowed 
you to predict the behavior of the function.] 

f2(x) = x sin(l/x) 

f3 (x )  = cos(x)  + 0.01abs(cos(100x)) 

Y6(x) = x 2 mod2 

Answer each of the following questions by constructing appropriate functions and then using 

Analyzer to graph the functions and estimate the question's answer. For each problem, hand in: 
• a labelled diagram, 
• a statement of what the function represents, 
• an explanation of what the function's graph shows you about the situation, 

• a note about what you looked for in the graphs to answer the question. 

II.1. Jamie Johnson rides frequently with her father to Chicago. One one particular trip it took 
2 hours for them to travel the 110 miles from home to Chicago. They made the trip in 
two parts. Jamie kept an eye on the speedometer and estimated that in the first part they 
averaged 40 miles per hour. She estimated that in the second part they averaged 60 miles 
per hour. About how long did they drive in each part of the trip? 

Statistical data from trucking companies suggests that the operating cost of a certain truck 
(excluding driver's wages) is 12 + x/6 cents per mile when the truck travels at x miles 
per hour. If the driver earns $6.00 per hour, what is the most economical speed to operate 
the truck on a 400 mile turnpike where the minimum speed is 40 miles per hour and the 
maximum speed is 65 miles per hour? 

11.7. 

o f  tasks f rom these  ass ignments  are g iven  in Table I, C lass room discussions em-  

phasized that Car tes ian graphs are made  of  points,  and the points  in a graph are 

pos i t ioned  in a way  that ref lect  each va lue  o f  a funct ion in relation to the argu- 

men t  that p roduces  that value.  Funct ions  as models  o f  dynamic  situations were  

emphas i zed  through p rob lems  like II. 1 and II.7 (Table I). 

Phase II: Average Rates and Functions (2 meetings) 
The  der iva t ive  o f  a funct ion is typical ly  deve loped  pointwise.  That  is, it is 

def ined with the unders tanding  that x in the express ion 

i f ( x )  = lira f ( x  + h) - f ( x )  
h---*O h 

is f ixed re la t ive  to h. M y  instruction on rates o f  change  drew f rom an example  

deve loped  by Dav id  Tall (Tall, 1986; Tall et al., 1988) wherein  x in the defini t ion 

o f  f f ( x )  is f ree to vary  for  each va lue  of  h. This  al ternat ive approach to the 
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derivative has two very natural interpretations. The first is that for a fixed value 
of h, the function 

fa(x) = f ( x  + h ) -  f (x)  
h 

gives the average rate of change of f over every interval of length h contained in 
the domain of f .  The second is that 

fh(X) : f ( x  -q- h) - f (x)  
h 

gives the slopes of every secant which connects the points (x, f(x)) and (x + 
h, f ( x  + h)). The second interpretation supports an image of a "sliding secant" 
- slide an interval of length h through the domain of f ,  thereby sliding the secant 
defined over that interval, and keep track of the secant's slope. The relationship 
of either interpretation to the standard definition of the derivative is that as we 
let h approach 0 we produce a family of functions that converges to the function 
which gives the instantaneous rate of change of f at every value in the domain of 
f where the pointwise limit exists. 

The reason for my taking this approach to the derivative is that the notion of 
function is always uppermost in any discussion of a function's rate of change. 
It also encourages students to think of a function's rate of change in concrete 
settings in ways that are consistent with ideas of rate of change over some interval. 
Finally, I intended that their image of a function's average rate of change over a 
small interval would come into play when thinking of the relationship between 
accumulations and accruals in Phase IV. 

Table II presents sample tasks from Phase II of the teaching experiment. The 
tasks here were oriented toward conceptualizing the derivative as a function that 
is approximated by a "Newtonian ratio," a jargon phrase concocted during the 
teaching experiment to refer to fh (x). 

I was suprised by the nature of students' difficulty in interpreting the functions 
they defined for 111.4 (Table II). Excerpt 3 provides an interchange between myself 
and two students in the computer lab after they had developed and graphed the 
function 

r ( x )=  d ( x + O .  1) - d(x) 
0 . 1  

where d(x) was defined as d(x) = 16x 2. Bob is a high school mathematics 
teacher, Alice is a mathematics education masters student. 

EXCERPT 3 
3.1 Bob: 
3.2 Alice: 
3.3 Pat: 

We're having trouble making sense of what we're looking at. 
Or even what we did! 
Okay, what is this function you typed? What does it represent? 
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TABLE II 

Sample tasks from Phase 2 of the teaching experiment. Roman numerals indicate assignment number 
during the teaching experiment 

When an object falls from a resting start, the distance it has fallen t seconds after being released is 

given by the function d(t) = 16t 2 (assuming we ignore resistance). 

111.3. An engine fell offa DC 9. What was the engines average vertical speed between 3.1 seconds 
and 3.2 seconds after it started falling? Between 3.2 and 3.3 seconds? Between 3.15 and 
3.25 seconds? (Answer these questions using just paper-and-pencil.) 

1II.4. Use Analyzer to produce a graph of the engine's average vertical speed over every 1/10th 
second interval. (Don't faU into the trap of thinking that the only 1/lOth second intervals 
are (0, 0.1], (0.1, 0.2], (0.2, 0.3], and so on. In stead, think of a "sliding interval" that has 
every value in the domain as its left end point.) 

III.5. Generalize part (I11.4) so that your function uses a parameter. Play around with different 
values of the parameter to generate a family of functions which approximate the function 
that gives the engine's vertical speed at every instant of time after it began falling. 

I11.8. Jayne, the clas trouble maker, asked a question about (I11.5). She said, "If we think of an 
object at an instant of time, then it didn't move any distance over that ins "rant of time, and 
it didn't take any time to move nowhere. So, what can it possibly mean to talk about the 
object's speed at an instant of time when speed is about moving some distance in some 
amount of  time?" Comment on Jayne's dilemma. 

III.10. Use the technique developed in [earlier problems] to define a function whose values 
approximate the instantaneous rate of change of the function g(x) = cos(x)e sin(~) at all 

values o f x  in ( - 10 ,  10). 

3.4 

3.5 

3.6 

3.7 

3.8 

3.9 

3.10 

3.11 

3.12 

3.13 

3.14 

3.15 

3.16 

3.17 

Alice: That's what we can't figure out. 

Pat: How did you come up with it at all? 

Bob: We just put letters in for numbers [referring to their solutions to I11.3, Table II]. 

Pat: Okay, let's take it a piece at a time. What does d(x + 0.1 ) represent? 

Bob: How far it went in one tenth of a second. 

Alice: How fast it is going. 

Pat: Well ... I don't understand how you came up with your interpretations. 

Alice: I was guessing (laughs). 

Bob: It's like this.., d(x) gives how far the engine dropped in x seconds, so x + 0.1 
is another tenth of a second. So d(x + 0.1) gives how far it went in that extra 

tenth. 

Pat: How far it went in just that tenth of a second, or how far it fell altogether in 
x + 0.1 seconds? 

Alice: Oh ... it has to be how far it fell in the whole amount of time. 

Bob: I don't ... (pause) 

Pat: Let's change the subject for a little while. If I were to tell you how far this 
engine fell in 7 seconds, what would you need to know to tell me how far it 
fell in the last two seconds? 

Bob: (Pause.) How far it fell in the first 5 seconds. 
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3.18 

3.19 

3.20 

3.21 

3.22 

3.23 

3.24 

3.25 

3.26 

3.27 

3.28 

3.29 

3.30 

Alice: 

Pat: 

Alice: 

Pat: 

Bob: 

Pat: 

Both: 

Pat: 

Bob: 

Alice: 

Pat: 

Bob: 

Pat: 

3.31 Both: 

3.32 Pat: 

3.33 Alice: 

3.34 Pat: 

3.35 Alice: 

3.36 Bob: 

3.37 Alice: 

3.38 Bob: 

3.39 Pat: 

3.40 Bob: 

3.41 Alice: 

Then you'd subtract. 

You'd subtract what to get what? 

Subtract how far it went in 5 seconds from how far it went in 7 seconds to get 
how far it fell in the last 2 seconds. 

How would you calculate the engine's average speed during those last 
2 seconds? 

Divide by 2. 

Divide what by 2? 

The distance it went in the last 2 seconds. 

Now, tell me again what d(x + 0.1) and d(x) represent? 

How far.., how far ... 

How far it fell in x + 0.1 seconds and how far it fell in x seconds. 

Okay, what does the difference of those two represent? 

How far it fell in the last tenth of a second? 

Not necessarily the last tenth, just the tenth of a second after x seconds of 
falling. (Pause.) Now, what does r(x) represent? 

How fast it went during that tenth of a second. 

Was it always going one speed during that tenth of a second? (Long pause.) 
Oh ... its average speed during that tenth of a second! 

Okay! Now, what does the graph of r (x)  represent? 

How fast ... how fast ... 

It's average speed ... after ... (to himselJ3 when? 

It's average speed ... over ... over ... every one-tenth interval ... one-tenth 
second. Over every one-tenth second interval of time! 

Oh. 

Okay (enters "r(1.5)" at keyboard; program prints "49.60"), this says that 
r(1.5) is 49.6. What does that mean? 

It was going 49.6 feet per second after one and a half seconds. 

It went an average speed of 49.6 feet per second when it fell from 1.5 seconds 
to 1.6 seconds. 

B o b ' s  d i f f icul ty  w as  no t  u n c o m m o n .  T h o s e  s tudents  w h o  e x p e r i e n c e d  diffi- 

cu l ty  s e e m e d  to w a n t  to t h i n k  o f  the  d i f f e rence  quo t i en t  as " t he  de r i va t i ve"  and  

in t e rp re t  i t  as " h o w  fas t  it [ the  func t ion]  is c h a n g i n g , "  w i t h o u t  in t e rp re t ing  the  

de ta i l s  o f  the  e x p r e s s i o n  as an  a m o u n t  o f  c h a n g e  in one  quan t i ty  in re la t ion  to a 

c h a n g e  in  another .  Seve ra l  s tuden ts  c h o s e  to wr i te  the  d i f f e rence  quo t i en t  in  the i r  

h o m e w o r k  as 

f ( x  + h) - f ( x )  

( z  + h)  - 

I p r e s u m e  th is  w as  a m n e m o n i c  to he lp  t h e m  keep  in m i n d  tha t  the  d e n o m i n a t o r  

was  also a d i f f e r e n c e  and  tha t  the  q u o t i e n t  eva lua ted  a mul t ip l i ca t ive  c o m p a r i s o n  

o f  c h a n g e s .  

M y  i n t e n t i o n  for  I t e m  III ,8 (Table  II)  was  to o r ien t  s tuden ts  to t h i n k i n g  o f  

i n s t a n t a n e o u s  ve loc i ty  as a l imi t  o f  a v e r a g e  veloci t ies .  In  fact,  s tuden t s '  r e sponses  

su rp r i sed  me.  O f  the  12 r e s p o n s e s  t u r n e d  in, all sa id  essen t ia l ly  tha t  they  wou ld  
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explain to Sue that "instant" was not really an instant, but an amount of time so 
small that it was virtually indistinguishable from zero seconds. 

Phase 111: Riemann Sums (3 meetings) 
I introduced Phase III with a discussion of Sue's problem and solution, as 

presented earlier in this article (Figure 5). I was struck by the direction taken 
by students: A consensus emerged that, had they been Sue's teacher, they would 
have had Sue "discover" that she could just multiply the amount of time taken to 
speed up by the mean of the beginning and ending speeds. Sue's solution method 
was, to them, a rather clumsy way to approximate "the correct answer." I asked, 
"Does Sue's solution have anything to do with calculus? ... .  No." I then presented 
Sue's problem with a variable acceleration, asking "Which method will generalize 
to this new setting - yours or Sue's?" Eventually they demurred that there might 
have been more sophistication in Sue's reasoning than they originally recognized. 

Instruction during Phase III focused on conceptualizing a Riemann sum as a 
function and on conceptualizing dynamic situations as representable by Riemann 
sums (see Table III). A major difficulty for many students was to express functional 
relationships in situations analytically, and to coordinate their images of functional 
covariation of two quantities with an image of accumulation by way of accruing 
"chunks" of a quantity. The notion of a Riemann sum as presented in Phase III - 
an approximation to a variable accumulation - often conflicted with their images 
of definite integral and Riemann sum as applying only in situations involving 
fixed amounts of some quantity (the typical scenario in freshman calculus). This 
conflict revealed itself in a number of ways - a common one being that a student 
would write an expression for a Riemann sum, but with an image that what he or 
she was finding was a total amount of a quantity (e.g., total work, area, volume, 
etc.) instead of a varying amount of the quantity. 

I gave special attention to items like IV.5 and IV.6 in Table III. The reason for 
this was to give students an occasion to reflect on the details by which the process 
of Riemannian summation assigns values to its argument. The first case (IV.5) 
corresponds to assigning a fixed subinterval length in any partition of the interval 
[0, x]. For xe[iAx, (i + 1)Ax) the expression [x/Ax] is constant, so 

x/zxx 

E i(iA )a  
i = l  

is constant over that interval, n and hence 

~/Ax 

f ( i a x ) a x  
i----1 

produces a constant function over each of the subintervals through which x varies 
- a step function. The second case (IV.6) corresponds to assigning a fixed number 
of subintervals in any partition of [0, x]. As x varies, the number of subintervals 
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TABLE III 

Sample tasks from Phase 3 of the teaching experiment. Roman numerals indicate assignment number 
during the teaching experiment 

IV.1. a. Use Analyzer and Riemann sums to produce a graph of the approximate velocity 
of a car during its first I0 seconds of accelerating from a standing start when it 
accelerates at the rate of 11.5 mi/hr/sec. 

b. Use Analyzer and Riemann sums to produce a graph of the approximate distance 
covered by a car during its first 10 seconds of accelerating from a standing start 
when it accelerates at the rate of 11.5 mi/hr/sec. 

IV.2. Use Analyzer and Riemann sums to produce a graph of the volume of water in a 
conical storage tank that is 25 feet high and 30 feet wide at the top. Express the 
volume as a function of the height of the water above the tip of the cone. 

IV.5. a. How might you think of the expression 

~/,xx 

Z cos(iAz)Ax 
i = l  

to understand that it defines a Riemann sum evaluated at every value of x in your 
domain? 

b. Explain why the Riemann sum defined this way always produces a step function, 
regardless of the value of Ax (assuming it is not zero). 

IV.6. a. How might you think of the expression 

n 

cos i -- 
n 

i ~ l  

to understand that it defines a Riemann sum evaluated at every value of x in your 
domain? 

b. Explain why the Riemann sum defined this way never produce a step function, 
regardless of the value of n. 

in the  pa r t i t ion  r e m a i n s  the  same,  bu t  the  sub in te rva l s  " s t r e t ch"  p ropor t iona l ly  

as x gets  p r o p o r t i o n a l l y  larger.  In  b o t h  cases  I e m p h a s i z e d  tha t  they shou ld  try 

to i m a g i n e  the  p roces s  o f  R i e m a n n  s u m m a t i o n  as h a p p e n i n g  so rap id ly  tha t  they  

cou ld  t h i n k  o f  x v a r y i n g  f ree ly  and  the  p rocess  wou ld  keep  up  wi th  it. T h a t  is, as 

x var ies ,  the  p ro ce s s  o f  s u m m a t i o n  h a p p e n s  at  each  va lue  o f  x,  and  the  p rocess  

h a p p e n s  " so  r ap id ly  tha t  it d o e s n ' t  s low x d o w n -  you  can  s l ide x a long  its d o m a i n  

and  no t  fee l  any  r e s i s t ance  f r o m  the  p rocess  as it t r ies to keep  up."  

Phase IV." The Fundamental Theorem of Calculus (2 meetings) 
I d id  no t  i n t r o d u c e  the  F u n d a m e n t a l  T h e o r e m  of  Ca lcu lus  as such.  Ins tead ,  

I c o n t i n u e d  a d i s c u s s i o n  o f  o n e  R i e m a n n  s um  p r o b l e m  tha t  s tuden ts  had  f o u n d  

pa r t i cu la r ly  t r o u b l e s o m e .  T h e  p r o b l e m  was:  

Hexane is a gas used for industrial purposes. Clentice Smith of Cargill Corp., Bloomington, IL in 
November, 1989 requested a graph that will give the approximate volume of hexane (measured in 
cubic inches) held by the tank shown in Figure 8. Use Analyzer and Riemann sums to produce 
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Hexane Water 

h 

13' (156") 

Fig. 8. A tank with water in the bottom and hexane sitting atop the water. The hexane always reaches 
the hole in the tank's side regardless of the height of the water. 

such a graph. Express the volume of hexane as a function of the height of the water (measured in 
inches). 
Assumptions 

• The face of the tank is a disk (i.e., a region bounded by a circle) 
• the shape of the tank is cylindrical 
• the hexane sits atop the water 
• the dimensions of the tank are as shown 
• a hole in the tank resides 18 tr vertically from the top of the tank 
• the hexane always reaches the bottom edge of the hole. 

My intention with this problem was to recap students' solutions and use the 
discussion as a setting for asking about, what would turn out to be, the Fundamental  
Theorem of  Calculus. I intended to do this by graphing the width of  a horizontal 
slice of  the tank's  face as a function of  the slice's height from the floor, graphing 
the area of  the face 's  water-covered portion as a function of  the water 's  height, and 
then ask about how fast the water-covered port ion's  area changes with respect to 
the water ' s  height. I presumed that students would suggest a difference quotient 
to estimate the function which gives rate of  change of  area as a function of  
the water ' s  height, and I planned then to graph this difference quotient and ask 
students to compare its graph with the graph of  the horizontal-slice width as a 

function of  height (anticipating that the two graphs will appear to be identical). 
The culminating question would be, "If  this graph is of  the width of  a horizontal 
slice as a function of  its height from the tank's bottom, and the other graph is 
of  the rate of  change of  area as a function of  the region's  height from the tank's  
bottom, then why do they look the same? Is there some reason for it, or is it just  
coincidence?" 

The session began with one student's, Blake's,  presentation of  his solution to 
the problem. He established that the main aspect of  this problem was to express 
the area of  the water-covered region of  the tank's face as a function of  the water 's  
height from the bottom. Blake then defined a function to give the width of  an 
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48 y 

x 

Fig. 9. Face of cylindrical tank. Water level is at height h measured from tank's bottom, with ith 
rectangle in partition highlighted; x~ and y~ are coordinates of the ith rectangular piece's lower-fight 
comer. 

arbitrary chord as a function of  its height (Figure 9) and set up an appropriate 
Riemann sum as a function of  the water's height. 

After Blake had completed his presentation I displayed his equations on a 
projector screen. 12. They are presented below as Equation Set 1. The function 
x(h) gives the x-coordinate of  a chord's right endpoint expressed as a function of  
the chord's  height above the bottom of the circular face (Figure 9). The function 
w(h) gives the chord's  width. The function A(h) gives the approximate area of  
the water-covered portion of  the tank's face as a function of  water's height. The 
function V(h) gives the approximate volume of  the hexane as a function of  the 
water's height. 

n = 20 El.1 

x(h)  = X/48 z - ( - 4 8  + h)  2 E1.2 

w ( h ) = 2 x ( h )  El .3  

z = w(h) El .4  

A ( h ) = ~ - ~ w ( j h )  h 
n 

j = l  

E1.5 

y = A(h) El .6  

Total Area = A(78) El .7  

V ( h )  = 156(Total Area - A[h]) E1.8 
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Fig. 10. Graph of z = w(h), the width of a cross section as a function of the cross section's height 
above the cylinder's bottom. 
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Fig. 11. Graph ofy ---- A(h), the approximate area of the tank face's water-covered portion as height 
of water increases. 

v = V(h) El .9  

E q u a t i o n  Set  1: Blake 's  system of  equations and functions for the Hexane 
problem. 

We discussed Figure 9 and its relationship to the functions x(h) and w(h), 
shown above as E l . 2  and El .3 ,  and we discussed the graph of  w(h) [Figure 10]. 

The discussion of  A(h) first centered around interpreting its construction, 
which was not straightforward for some who still had questions. After  I was 
satisfied that everyone understood the construction of A(h) and V(h), I displayed 
a graph of  y = A(h) (Figure 11) and then redirected the focus of  the lesson by 
asking about the rate of  change of  area of  the face's water-covered portion as the 
water 's  height  increases. The ensuing discussion is given in Excerpt 4. 
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EXCERPT 4 
4.1 Pat: 

4.2 

4.3 Student: 

4.4 Bob: 

4.5 Pat: 

4.6 Bob: 

4.7 Jim: 

4.8 Pat: 

4.9 

4.10 Alf: 

4.11 Pat: 

4.12 Alf: 

4.13 Jim: 

4.14 Alf: 

4.15 Alice: 

4.16 Alf: 

4.17 Pat: 

4.18 Student: 

4.19 Pat: 

4.20 Alf: 

4.21 Pat: 

4.22 Jane: 

Let me back up a little [scrolls back to equation El.5]. I want to ask you a 
question. We had this area function [highlights E1.5]. Suppose that I ask yon 
the question, "How could we get a function that approximates how fast the 
area is changing as the height increases?" [moves hand upward to indicate an 
increasing water height.] 

Long pause. 

Tangent to the slope of the line. 

You basically take a tangent at any point on the curve.., on your area function. 

Okay. Do you know how to do that? 

Pause. Basically, by taking limits ... I 'm trying to remember this stuff. 

Isn't it just that limiting thing that we've been doing? 

That limiting thing? 

Laughter. 

It's just the difference quotient, isn't it? 

All?. 

The difference quotient, where 

The moving secant line. 

Yeah. 

Oh yeah! 

It would be f of x plus h minus f of x all over h. 

What would that give you? 

The speed. 

The speed of what? 

The speed for how fast the area is changing. 

How does this give you what you say? 

It's like average speed. 

M y  ques t ion  about  h o w  fast the area changes  with respect  to he ight  appeared to 

take them by surprise. The  first two responses  seemed  to emana te  f rom a concep t  

image  of  de r iva t ive  as s lope o f  a tangent.  Only  when  A l f  spoke o f  the d i f ference  

quot ien t  ( ¶  4.10) did the idea o f  average  rate o f  change  ove r  a small  interval  o f  

he ight  emerge .  

H o w  to express  the d i f fe rence  quot ient  o f  change  in area in relat ion to change  

in he ight  was p rob lemat ic  for  a number  o f  students, despi te  A l f ' s  suggest ion 

( ¶  4.16). Af t e r  a consensus  emerged  on how to express  the d i f ference  quotient ,  

I en tered  the equa t ions  shown in Equat ion  Set  2 and displayed a graph of  the 

approx ima te  rate o f  change  in area with respect  to he ight  (Figure 12). 

d A ( h )  = A ( h  + A h )  - A ( h )  

A h  
E2.1 

A h  ---- 0.01 E2.2 

q = d A ( h )  E2.3 
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Fig. 12. Graph of q = dA(h),  the approximate rate of change of the water-covered portion's area as 
a function of the water's height, 

E q u a t i o n  S e t  2 :  E q u a t i o n s  to  d e f i n e  a n d  g r a p h  t h e  d i f f e r e n c e  q u o t i e n t  w h i c h  

g i v e s  t h e  a p p r o x i m a t e  ra te  o f  c h a n g e  o f  t h e  w a t e r - c o v e r e d  p o r t i o n ' s  a r e a  w i t h  

r e s p e c t  to  t h e  w a t e r ' s  h e i g h t .  

Excerpt 5, below, presents the discussion immediately following my presen- 
tation of Figure 12. It began with "what does this graph show us," but quickly 
moved to why it appears to be the same as the graph shown in Figure 10. 

EXCERPT 5 

5.1 Pat: 

5.2 Several: 

5.3 Pat: 

5.4 Alice: 

5.5 Pat: 

5.6 Jane: 

5.7 Roy: 

5.8 Pat: 

5.9 Bob: 

5.10 Alf; 

5.11 Pat: 

5.12 Bob: 

5.13 Alice: 

5.14 Pat: 

5,15 Bob: 

What does this graph [Figure 12] show us? 

The rate at which the area is changing. 

What shows me the rate at which the area is changing when the height is 20 
inches. 

It's whatever q is when h is 20. 

Does this graph look familiar? 

It looks like the ... the uh ... the base of the rectangle that we had. 

Oh ,.. of course. 

Moves the graphs shown in Figure 12 and Figure 10 so that they are side by 
side on the projector screen. 

What was the one on the left again [Figure 10]? 

The derivative of... [several students speak at once] ... 

That's how fast the area is changing as a function of h. 

And it's changing in the same respect as that thing [pointing to diagram shown 
in Figure 9] is getting wider. 

[to herself] That makes sense. 

Pause. Why? 

Pause. Why? Because that's what you multiplied it by! 
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5.16 Pat: 

5.17 Bob: 

5.18 Pat: 

5.19 Bob: 

5.20 Pat: 

5.21 Alice: 

What do you mean, "That's what I multiplied it by?" 

You're taking the change in x [spreading his hand apart horizontally] and 
multiplying it by as it changes here [holding his thumb and forefinger slightly 
apart vertically] ... as the chord length changes ... the change in x gives you 
one of those little rectangular boxes we've been talking about. 

Yeah. 

Now, as that changes, as it gets larger, then the area is going to get larger. 
Now, I know ... I got it in my mind but it's not coming out my mouth. 

Can anyone reinterpret what Bob is saying? Pause. 

I 'm having the same problem ... how to say it. 

B o b ' s  remarks  (beginning  in 4 5.12) seem to have  emanated  f rom a loosely 

ar t iculated co l lec t ion  o f  images .  It appears  that he  had an image  of  a chord m o v i n g  

up ( 4 ' s  5.12, 5.17, 5.19), get t ing wider  as it m o v e s  up (4  5.19). Bob  referred to 

a " change  in x "  (4  5.17), but  it seems more  l ike he had in mind  what  might  

m o r e  appropr ia te ly  be  cal led "a  changed  x" ,  "a  changing  x , "  "another  x , "  or  even  

perhaps " a  b igger  x "  - where  "x~' referred to ei ther  a chord or  the length o f  a chord. 

In (4  5.17), B o b  referred to get t ing " o n e  o f  those little rectangular  boxes . "  In 

(4  5.19) B o b  referred to the area changing  as " that"  changes,  p resumably  mean ing  

that the area changes  by m o v i n g  the chord upward,  thereby accumula t ing  another  

"l i t t le  rec tangular  box . "  

B o b ' s  image ,  as descr ibed  in the previous  paragraph,  g ives  h im insight  into 

the accumula t ion  o f  area, but  it is not  an image  of  the rate o f  change  o f  area with 

respect  to height.  B o b  still needed to relate the change  in area to the change  in 

he ight  - in the same  way  that one  would  relate a change  in dis tance to a change  

in t ime  to deve lop  insight  into speed as rate o f  change  o f  dis tance with respect  to 

t ime. 

Bob  qui t  his a t tempt  to expla in  what  he had in mind.  A l f  and Al i ce  then 

entered  the discussion.  A l i c e  eventua l ly  hypothes ized  that the two were  s o m e h o w  

ident ical  because  they were  both changing  because  o f  being funct ions o f  the height.  

EXCERPT 6 
6.1 Alf: 

6.2 Alice: 

6.3 Alf: 

6.4 Bob: 

6.5 Alice: 

6.6 Pat: 

6.7 Alice: 

6.8 Pat: 

Isn't it that the area function is the change ... 

The area function changes the ... 

The area function is actually the change ... or the rate of change ... for the ... 
[spreads hands apart] 

What's staying the same in both? 

When you change the height, you change the area, and when you change the 
height the width changes also ... so therefore ... did you follow that? 

Go ahead. 

So therefore ... when you want to lind the rate of change of the area that's 
going to go along with the rate of change of the width ... since they're both a 
function of the height, they're going to change the same ... together. 

Paul, did you follow what Alice was saying? 
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Fig. 13. 

A(ho+.O 1)-A(ho) 

" "  . . . .  

A(ho+. 01 ) 

ho ho+.01 

Increase in area in relation to increase in h of 0.01 inches. 

6.9 Paul: I doooon't knoooow. 

Laughter 

A l i c e ' s  h y p o t h e s i s  r e g a r d i n g  t h e  s o u r c e  o f  s imi l a r i t y  b e t w e e n  t h e  t w o  g r a p h s  

( ¶  6.5,  6 .7 )  l e d  e v e n t u a l l y  to  r a m p a n t  c o n f u s i o n .  S t u d e n t s  b e g a n  to  m i s i n t e r p r e t  

g r a p h s  (e .g . ,  s a y i n g  tha t  t h e  g r a p h  o f  z = w ( h )  s h o w s  t h e  ra te  o f  c h a n g e  o f  t h e  

w i d t h ,  o r  t ha t  t h e  g r a p h  o f  q - -  d A ( h )  s h o w s  t h e  a r e a  as  a f u n c t i o n  o f  h e i g h t )  

a n d  to  c o n f u s e  v o l u m e  w i t h  area .  I d e c i d e d  to  r e d i r e c t  t h e  d i s c u s s i o n  to  t ry  to  

e m p h a s i z e  ra te  o f  c h a n g e .  

EXCERPT 7 

7.1 Pat: 

7.2 Bob: 

7.3 Pat: 

7.4 Several: 

7.5 Pat: 

7.6 

7.7 Student: 

Perhaps it would be helpful to come back to the area function [points at El.5] 
and its graph [draws a section of the graph of y = A( h ) on the blackboard]. 
In terms of the graph, what we're doing at each value of h is to find the slope of 
a secant over an interval of length 0.01 [see Figure 13]. Let's label this point 
h0 and this point h0 + 0.01. What is this value [indicates vertical segment at 
ho; note that Figure 13 shows all labels, but the vertical magnitudes were not 
yet labeled during this exchange]? 

V ofh .  

Actually, it's A of ho - this is the graph of area as a function of height. What 
is this value [indicates right vertical segment]? 

A of h naught plus point zero one. 

Okay. And this [indicates excess of A( ho + 0.01) over A( ho ) in Figure 13] is 
the difference between the two ... A(ho + 0.01 ) - A(ho). [Writes expression 
on blackboard. Diagram on blackboard now matches Figure 13]. 

We're looking at a little bit of area ... on the surface of that disk. So here 
is, if you like, A(ho + 0.01) [draws diagram with \ \ \ \  hash marks; see 
Figure 14] and here is A(ho) [drawn////hash marks: see Figure I4]. When 
you subtract A ( ho ) away[sweeps hand across////hashed region], you're left 
with A(ho + 0.01) - A(ho). What is this [sweeps hand across difference 
region]? [Pause.] This is approximately the width at h0 times the height of 
this little piece. The height is approximately what? 

Delta h. 
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~ ~A O÷.O1)-A(hO) 
ho+.o, ~) 

Fig. 14. "A little bit of area.". 

dA.(hO) = 

w(ho) Ah 

A(ho+ .O1)  - A ( h  O) ~. w(ho) ~f( 

Fig. 15. Expression for approximating the average rate of change of region's area over the interval 
[ho, ho + Ah]. 

7.8 Pat: 

7.9 Alf: 

7.10 Pat: 

7.11 Alf: 
Bob: 

7.12 Pat: 

7.13 Jane: 

Point zero one, but in principle your right, it's delta h. [Writes w(ho)Ah next 
to difference region.] So this [puts a bracket above A(ho -I- 0.01) - A(h0)] 
is approximately the width at h0 times delta h [writes w(ho) x Ah above 
bracket]. 

Divide that by delta h. 

Yeah ... [writes fraction bar under A(ho + 0.01) - A(ho), then Ah under 
fraction bar] divide that by delta h, and guess what? 

You get the width. 

You get approximately the width at ho. [See Figure 15.] 

Hmmm. 

My presentation in Excerpt 7 was too didactic to glean anything now about 
how students understood the role of rate in linking w(h)  and dA(h) .  Also, in 
retrospect, I can see that the idea of rate of change moved to the background, 
becoming implicit in my remarks. I will return to this point later, in my discussion 

of the teaching experiment. 
The next problem, IV.2 in Table III, asked for a Riemann sum that gives 

the approximate volume of water in a conical storage tank as a function of the 

water's height. Students had worked this problem earlier with little difficulty. The 
functions produced in that solution were A(h)  = 7r(~5h) 2, which gives the area 
of a cross-sectional disk as a function of the disk's height from the bottom of the 
cone, and V ( h )  = ~-~d~___a A ( j h / n )  (h /n ) ,  which gives the approximate volume 
of water when its height is h. I graphed y -- A(h)  and z = V(h) ,  and then 
asked, as before, how we could express the approximate rate of change of the 
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Fig. 17. 

Fig. 16. Initial diagram in discussion with Sally. 

ho+.~ 
Diagram of difference between volume at height ho + 0.01 and volume at height h0. 

wa te r ' s  v o l u m e  as a funct ion  o f  its height.  Severa l  students suggested graphing 

the funct ion.  

DV(h) = V(h + A h )  - V(h) 
Ah 

The  graph of  DV(h) appeared ident ical  to the graph of  A(h), and the discussion 

m o v e d  to t rying to unders tand why  we  should expec t  them to be the same. 

M a n y  o f  the confus ions  seen in discussions o f  the previous  p rob lem surfaced 

again. Students  confused  " chang ing"  with "rate  of  change ,"  and confused  amount  

and change  in amount .  One  student, Sally, eventua l ly  suggested that we "use  the 

same a rgument  as the last one . "  

EXCERPT 8 
8.1 Pat: 

8.2 Sally: 

8.3 Pat: 

8.4 Sally: 

8.5 Pat: 

Go ahead and say more. 

With ... except for now we would have V(ho + 0.01) - V(ho) 
0.01 

So ... what kind of diagram should we use? 

Visualize ... oh. 

Here's the cone [Figure 16]. How should I shade in V(h0)? 

Fig. 18. Difference of V(h0 + Ah) and V(ho) approximated by product of area of base times height 
of cylinder. 

~ A h  o 
A(ho) 
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8.6 

8.7 

8.8 

8.9 

8.10 

8.11 

8.12 

8.13 

8.14 

8.15 

8.16 

8.17 

Sally: 

Pat: 

Sally: 

Pat: 

Sally: 

Pat: 

Sally: 
Pat: 

Sally: 

Pat: 

Sally: 

Pat: 

8.18 Sally: 

8.19 Pat: 

8.20 Sally: 

8.21 Pat: 

8.22 Alf: 

8.23 Jim: 
8.24 Pat: 

8.25 Jim: 

8.26 Pat: 

8.27 Severai: 

So it would be the disk there with Ah  as its height? 

Just V ( ho ). 
The disk... 

Draws a disk centered at ho. You said a disk. Now, what is V(ho)? 

Pause. 

That's the volume of the cone from the bottom up to ho. [Sweeps hand upward 
over diagram.] 

Oh ... okay. 

So that's everything ... everything up to ho. [Shades diagram. Writes 
"V(ho)  = \ \ \ \ " ]  

So ... V of ho plus point zero one or something would be just a little bit above 
it and would be everything underneath that? 

All right. [Writes "V ( h0 +0.01 ) = / / / / " ]  So I would go up [marks h o +0.01 ] 
... this is h o + 0.01 [draws disk at that height; shades in region below disk; 
see Figure 17] and take everything under that. And what would we get? 

And so when you subtract them you would get ... just a little chunk ... of 
volume. 

That's right. We would get just a little bit of volume [draws inset of difference; 
see Figure 18]. How high is this chunk? 

0.01. 

0.01. Or ... let's use Ah.  

Yeah, Ah.  

So, it's A h  high. Pause. And this is ... [indicates base of inset]? 

The area. 

A(ho), isn't it? So, V(ho + Ah)  - V(ho) is ... the volume of this little 
chunk. So, how could we express that given what we know over here [points 
to diagram shown in Figure 18]? Jim? 

A(h) times Ah.  

[Completes previously started sentence. Writes V ( h o + A h ) -- V ( ho ) 
A(ho)Ah.] So, what happens when we divide by Ah? 

You just get the area. 

As in the discussion of the previous problem, I allowed the idea of rate of 
change to move to the background, becoming implicit in my remarks. It is not 
clear from Excerpt 8 whether students understood that the expression 

V(ho + Ah) - V(ho) 
Ah 

e v a l u a t e d  an  average  r a t e  o f  c h a n g e  o f  v o l u m e  w i t h  r e s p e c t  to  h e i g h t  o f  a c y l i n d e r  

o v e r  t h e  i n t e r v a l  [ho, ho + A h ] ,  w h i c h  in  t u rn  g a v e  t h e  a v e r a g e  ra te  o f  c h a n g e  

w i t h  r e s p e c t  to  h e i g h t  o f  t h e  to ta l  v o l u m e  o v e r  tha t  in te rva l .  W e  wi l l  s e e  t ha t  it  is  

u n l i k e l y  t h a t  t h e y  u n d e r s t o o d  t h e  d i s c u s s i o n  to b e  a b o u t  ra tes .  

I m e t  a s m a l l  g r o u p  o f  s t u d e n t s  a f t e r  c l a ss  - t h e  n u m b e r  v a r i e d  d u r i n g  the  

m e e t i n g ,  s t a r t i n g  w i t h  f o u r  a n d  e n d i n g  w i t h  s e v e n .  T h e  p u r p o s e  o f  t h e  m e e t i n g  
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a conical storage tank. 
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Students' diagram for identifying amount of change in volume as water rises in height within 

V(h+Ah) -V(h)  A x A h  
Ah - Ah ' " -  Ah 

Fig. 20. Students' reproduction of diagram drawn during class discussion. 

w a s  f o r  s t u d e n t s  to a s k  q u e s t i o n s  a n d  d i s c u s s  t h e i r  c o n f u s i o n s .  B l a k e ,  R o y ,  

A d a m ,  a n d  F r e d  h a d  a l r e a d y  b e g u n  d i s c u s s i n g  t h e  " c o n e "  p r o b l e m ,  a n d  h a d  d r a w n  

F i g u r e  19 a n d  F i g u r e  2 0  o n  t h e  b l a c k b o a r d  b e f o r e  I j o i n e d  t h e m .  

T h e  f o u r  o f  t h e m  h a d  b e e n  d i s c u s s i n g  " h o w  t h e  s u r f a c e  a r e a  a n d  v o l u m e  a r e  

r e l a t e d . "  B l a k e  s p o k e  to  m e  as  I j o i n e d  t h e  g r o u p .  

EXCERPT 9 

9.1 Blake: 

9.2 Blake: 

9.3 Pat: 

9.4 Blake: 

9.5 

9.6 

I 'm not getting the connection I mean, in my mind I understand how they're 
the same. It's kind of like, to put it in words, how the surface area is related to 
the volume. How ... see, we're talking about the surface area ... the graph of 
that is the same as the rate of change of the volume ... they're both changing 
because they're both functions of ... delta h, the change in h. 

To me, it's almost the same thing as when Alf was talking about when you 
take the derivative of something and then you want to go backwards to it. 
But they're both ... it's ... it's like I know what I 'm thinking, but I can't say 
it. [Long pause.] Uh ... like how are they related? They're related because 
they're both functions of the height ... 

Yeah, they're both functions of the height. 

[Places thumb and.fbrefinger over cylinder on blackboard; see Figure 20.] ... 
of how this disk is changing, 1 guess [spreads thumb and forefinger apart]. As 
the disk changes, because ... this height ... this delta h always stays the same 
[indicates thickness of  cylinder with thumb andJbrefinger] but the surface area 
is changing [sweeps finger in a circular motion over the top of  the cylinder]. 

Long pause. Paul joins the group. 

I guess it's stupid to say that it's just common sense. As that surface area gets 
bigger [moves hands and fingers to show a "'growing circle"] so that in one 
graph you're looking at the surface area ... the surface area ... that's ... there's 
no other way that the volume can change. [Pause.] 
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9.7 Pat: 

9.8 Blake: 

9.9 Pat: 

9.10 Blake: 

Is except by ...? 

As a function of the area. [Pause.] 

As a function of the surface area? 

Yeah, the surface area. 

B lake ' s  remarks  sugges t  he was s t ruggl ing with two sources o f  mean ing  for 

the ident i ty  be tween  a c ross-sec t ion ' s  area and the rate o f  change  of  v o l u m e  with 

respect  to height.  In (¶  9.2) Blake  referred to a remark  m a d e  by Alf,  dur ing 

class,  regard ing  a connec t ion  be tween  the der iva t ive  o f  a dis tance funct ion and the 

an t ider iva t ive  o f  a speed  funct ion.  This  suggests  Blake  r e m e m b e r e d  someth ing  

about  an integral  o f  a de r iva t ive  s o m e h o w  returning you  to an or iginal  function.  

On  the o ther  hand, in ( ¶ ' s  9.1, 9 .4-9 .10) ,  Blake  appeared to be  thinking of  a 

c i rcular  d isk m o v i n g  upward ,  so that the surface area o f  the disk becomes  larger 

whi le  at the same  t ime  water  fills the space  genera ted  by m o v i n g  the disk upward.  

This  image  r e sembled  B o b ' s  remarks  (Excerp t  5, ¶ ' s  5 .17-5 .19)  and Al i ce ' s  re- 

marks  (Excerp t  6, ¶ ' s  6 .5 -6 .7 )  dur ing class about  the water -covered  area o f  a 

tank 's  face  chang ing  as a chord  gets wider. A d a m ' s  and Fred ' s  c o m m e n t s  in the 

ensu ing  conversa t ion  (Excerp t  10, be low)  fo l low Blake ' s  p redominan t  direct ion o f  

t h o u g h t -  that the two  graphs are ident ical  because  the two quanti t ies are changing  

s imul taneously .  

EXCERPT 10 

10.1 Pat: 

10.2 Adam: 

10.3 Pat: 

10.4 Adam: 

10.5 Pat: 

10.6 Fred: 

10.7 Pat: 

10.8 Fred: 

10.9 Blake: 

10.10 Pat: 

Discussion continues from Excerpt 9. 

Okay. [Pause. Speaks to Blake.] So the volume changes ... here's where 
I'm not clear on what you're saying. It sounds like you're saying that volume 
changes as the surface area changes. 

Alf  joins the group. 

[Walks up to the board and points at the top cross section in Figure 19. Turns 
to Pat.] Are you just thinking about this as a slab floating on top of the water 
... as this [the slab] goes up [moves hand upward] ... as the surface area 
gets bigger [moves hands apart to indicate a growing circle] ... the volume 
underneath [sweeps hand across region below the slab] is going to change ... 
the same ... type of rate [moves hand up and down in front of  diagram in 
Figure 19]. What I ... I just don't know how to explain it. 

Same type of rate? 

Well, it's ... this [slab] is changing ... is getting bigger [shows growing circle 
with hands and fingers] as you're going up, and this [volume under slab] is 
getting bigger as you're going up [moves hands as i f  pushing the slab upward]. 

Okay ... so they're both getting bigger. 

But ... why is it that they're both the same? 

Yes, that's the key question. Why is it that area turns out to be exactly the same 
as the rate of change of the volume? [Pause.] There's a qualitative similarity 
in that, yes, they are both getting bigger. But Fred asked the key question, 
"Why is it that they're identical?" 

I don't know [laughter]. [Very long pause.] 

Is it so simple that we're just overlooking it, or is it really that hard? 

Well, it's partly in front of you. 
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10.11 Fred: I can see it algebraically when you put it in this kind of form [Figure 20], but 
I guess I have trouble visualizing it. 

Adam's  remarks in (¶ ' s  10.2-10.4) are telling in two ways. First, he appears 

to have, like Blake and others, an image of a circular disk moving upward, thereby 
increasing its area, while the generated space increases in volume. Second, he 

seems to have identified "rate" with "change," so that he ended up saying things 
like "as the surface area gets bigger.. ,  the volume underneath is going to change 

... the same ... type of rate" (¶ 10.2). If Adam was indeed thinking of a rate, 
then it was the rate of change of volume with respect to area of the circular cross 
section. It appears, however, that by "same type of rate" he meant that the two 

quantities change simultaneously and in the same direction (increase) instead of 

as an amount of change in one quantity in relation to an amount of change in the 

other. 

Fred's comments (¶ 's  10.6-10.11) are also telling in several ways. First, he 
appears not to have an articulated image of"they" in "But ... why is it that they're 

the same?" (¶  10.6). If, as were Adam and Blake, Fred thought of "they" as 
"changing area" and "changing volume," then his confusion is understandable. 
He was thinking of two things that are not the same. Second, if he was thinking 
of changing area in relation to changing volume, then it is evident why he could 

not visualize what is expressed in the formulation 

V ( h  + A h )  - V ( h )  A × A h  
- ( ¶  lO .11 ) .  

A h  A h  

He was not thinking of the slab (Figure 20) as an accrual of volume - composed 

multiplicatively of disk area and height - in comparison to a change in height. 

Instead, Fred seemed to imagine the slab as that which defined the upper bound 
of the water. 

I sensed the confusion between "both changing" and one quantity having the 

same value as the rate of change of the other, and attempted to refocus their atten- 
tion on the ideas of rate of change of volume on the one hand and area of the disk 

on the other hand. This exchange is given in Excerpt 11. 

EXCERPT 11 
11.1 Pat: 

11.2 Blake: 

11.3 Fred: 

11.4 Pat: 

11.5 Fred: 

Well, here, let's try this. What 1 hear is a little mixing of the ideas of area, 
change in the area, and change in the volume. You're right that the volume 
only gets bigger when the area gets bigger. But thinking of it that way ... I 
don't see much hope in that giving us insight into why the rate of change of 
the volume is actually the same as the area function. [Pause.] The idea that 
as one gets bigger the other gets bigger doesn't seem to help much. 
It doesn't mean that they necessarily have to be the same. 

Is it something to do with this rate [indicates vertical change in water level] 
being exactly the same as that rate [indicates change in radius of circular cross 
section; see Figure 19]? 

[Pause.] Uh ... I don't think they're the same. 
The same ... proportion. 
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dV 
versus A(h) 

dh 

Fig. 21. Figure 19, revised during discussion. 

11.6 Blake: Yeah ... those segments are proportional, but the rates of change are different. 
[Pause. Erases Figure 20.] Here's what we're comparing. We're comparing 
[writes "dV /dh" l  the rate of volume with respect to h, versus area as a 
function of h [writes "vs. A(h)"]. See, over here [points to A(h)"] we're 
not talking about any kind of rate of change; we're just talking about area of 
a cross section as a function of its height from the bottom of the cone. Over 
here [points to "dV/dh"]  we're talking about a rate of change. [Long pause. 
Figure 20 is now erased from the board. Figure 19 is changed, appearing 
now as in Figure 21.] 

In  E x c e r p t  11 I a t t e m p t e d  to  p o i n t  ou t  tha t  w h a t  w a s  the  s a m e  ( the  g r a p h s  o f  

c r o s s - s e c t i o n a l  a r e a  as  a f u n c t i o n  o f  h e i g h t  a n d  ra te  o f  c h a n g e  o f  v o l u m e  w i t h  re -  

s p e c t  to  h e i g h t )  w e r e  e x p r e s s i o n s  o f  t w o  d i f f e r e n t  c o n c e p t s  - c r o s s - s e c t i o n a l  a r ea  

a n d  r a t e  o f  c h a n g e  o f  v o l u m e .  T h e  e n s u i n g  d i s c u s s i o n  m a k e s  it e v i d e n t  t ha t  m y  

f o r m a l  e x p r e s s i o n  o f  r a t e  o f  c h a n g e  o f  o n e  t h i n g  v e r s u s  an  a m o u n t  o f  s o m e t h i n g  

e l s e  w a s  n o t  a s s i m i l a t e d  in t h e  w a y  I h a d  i n t e n d e d .  

EXCERPT 12 

12.1 Alf: 

12.2 Pat: 

123 Alf: 

12.4 Pat: 

12.5 Alf: 

12.6 Pat: 

Am I thinking of this right. This [points to "A(h)"] is the area of the disk 
at some particular point [moves hand up and down as if  along vertical axis 
through middle of  the cone] ... 

Yes, this is the area of a circular cross section. 

At h [points to "A(h)"]. 

At ... [moves hand vertically upward and then stops as if to show movement 
to a spot] at h. 

At h ... so ... then ... if you were thinking about this [holds thumb and 
.forefinger apart and next to top circular cross section in Figure 21, as if  to 
measure its thickness] ... the change in volume [moves thumb and.forefinger 
together, as i f  squeezing cylindrical slab, diminishing its height] ... as delta h 
gets small, the change in volume ... delta h ... let me think. 

Go ahead and express the change in the volume, and then the rate of change 
in the volume with respect to height. 
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Fig. 22. Alf's addition to Figure 18. The hand depicted here represents Alf's hand; it was not part of 
Alf's drawing. 

12.7 Alf: 

1 2 . 8  Pat:  

12.9 Alf: 

12.10 Fred: 

12.11 Alf: 

12.12 Blake: 

12.13 Alf: 

Okay, the change in volume [holds thumb and forefinger apart; long pause 
before he approaches diagram in Figure 21l ... [places thumb and forefinger 
slightly apart next to top circular cross section in Figure 21] ... the change in 
the volume would be some minute [minuscule] ... distance in height ... 

Go ahead and draw it in. 

[Draws new circular cross section; diagram now appears as in Figure 22.] 
See ... I can almost picture in my mind that as delta h goes to zero [moves 
thumb and forefinger together next to top circular cross section in Figure 22] 
that that becomes the exact area disk that we're talking about. I mean that's ... 
that's ... In other words, as I shrink that height, this [top of  cylinder] and this 
[bottom of cylinder] becomes [pushes hands together one atop the other, as if 
squeezing something between them] ... exactly that [holds out one hand flat, 
parallel to floor, moving it side to side as if stroking the top of  a table] ... like 
a disk with no thickness. And when you write it out as a volume ... let's see, I 
don't remember the notation we used ... how did we write it ... it would be 

V ( h  + A h ) - -  V ( h )  

A h  

Equals. 

And this would be the change in volume. 

And you're saying that as delta h approaches zero, then we have, basically .... 

I see that as being the area 

Desp i t e  m y  a t t em p t  in E x c e r p t  11 and  in E xce rp t  12, ¶ 12.6, to o r ien t  s tudents  to 

t h i n k  a b o u t  ra te  o f  c h a n g e  o f  vo l um e ,  A l f  pers i s ted  in t h ink ing  abou t  an  i n c r e m e n t  

in v o l u m e  u n r e l a t e d  to any  i n c r e m e n t  in he ight .  Moreove r ,  he  b e g a n  to t h ink  o f  a 

l imi t ing  p roces s  whereby ,  f igurally,  w h e n  you  d i m i n i s h  the  acc rua l ' s  i n c r e m e n t a l  

th i ckness ,  you  g e t a n  area.  A l f  s e e m e d  to be  t h ink ing  o f  m a k i n g  the  cy l inde r  shor te r  

and  shor ter ,  unt i l  top  m e e t s  bo t tom.  His  i m a g e  cou ld  be  desc r ibed  fo rma l ly  as 

l im  V ( h  + A h )  - V(h) = A(h), 
Ah---,o 

w h i c h  w o u l d  h a v e  m e a n t  tha t  
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Fig. 23. Graph to accompany follow-up assessment item 2. 

= A(h) lim V(h  + Ah) - V(h) lim 
Ah--,o Ah  Ah~O Ah ' 

an equality I cannot interpret. The "Ah"  in the denominator of Alf 's difference 
quotient seemed insignificant to him. Perhaps this was because his focus was 
on the accrued "chunk" instead of on a meaning for the difference quotient that 
defined the function whose graph raised the issue in the first place. 

There is a very natural interpretation of [V(h + Ah) - V(h)] /Ah in regard to 
rate of change of accumulation. It is that it represents the average rate of change 
of volume over the interval [h, h + Ah], where volume is defined by the value of 
the Riemann sum. Over the interval [h, h + Ah], volume accrues by "stretching 
vertically" the cylinder having base area A(h) - the area of the cross-sectional 
disk at height h.13 Since the base area of the cylinder is constant over [h, h + A/z], 
the volume grows at the rate A(h). This is analogous to the case of speed. If  we 
are considering a total accumulation of distance as a function of time, and if we 
assume that over some increment of time the distance is accruing at a constant 
rate, then regardless of how distance has accumulated prior to this increment of 
time, the total accumulated distance is changing at that constant rate over this 
increment of time. 

Follow-up Assessment 

Students took an exam two meetings after the end of the teaching experiment. I 
included four items to clarify possible sources of difficulty - two items on inter- 
preting a difference quotient and two items on Riemann sums as functions. The 
difference quotient items were: 
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TABLE IV 
Students' responses to Test Item 3. Note: Responses regarding information and responses 
regarding unit do not necessarily correspond within rows, The columns are presented inde- 
pendently of one another ! 

Information given by x(t) i Unit 
Response Fro 'aency 

Ave. rate of change of volume 4 
Derivative 6 
Rate of change of cooling 5 
Average volume 1 
Average change in volume 1 
Surface area 1 
No answer I 

Response Frequency 

Cubic meters per hour 7 
Hours 2 
Degrees/hour 3 
0.1 1 

Square meters 1 
Volume/time/time 1 
Other 4 

a. The graph in Figure 23 is of f (x)  = Ix[, - 5  < x < 5. Sketch a graph of h(x) = 
[f(x + Ax) - f ( x ) ] /Ax  ove~ the same domain with Ax = 0.5. Use the coordinate 
system provided in the graph. Hint: Imagine a sliding interval. 

i 

b. Suppose you let Ax become PrOgressively smaller. Explain what happens to the graph 
of h(x). 

a. The volume in cubic meters of ~ cooling object t hours after removing a heat source is 
given by the function v(t). Suppose a function x(t) is defined as 

x ( t )  = ~,(t + o.1)  - ~ i t )  
0.1 

State precisely what informatio h x(t) gives about this object. (That is, don't tell me 
what x(t) approximates. Tell we what information it actually gives.) 

b. What is the unit of x(t)? 

On Test I tem 2 (difference quot ient  of  absolute value funct ion)  17 of 19 students 
drew a graph of  the der ivat ive of  [xt. Only  two students at tended to the behavior  

of  the func t ion  be tween  - 0 . 5  and 01 In fol low-up interviews of  each student,  the 

17 who drew a graph of  the derivat iye of  txl admit ted th inking "derivative".  The 
two who at tended to h (x ) ' s  behavio~ around 0 did not  th ink of  a rate of  change  or 

slope of  a secant,  bu t  instead evaluated the funct ion at different values of  x and 
jus t  happened  to try values  b e t w e e n ! - 0 . 5  and 0. 

i 

The results of  I tem 3 are g iven  in iTable IV. Four  students referred to an average 
rate of  change  of  volume.  Two others referred to an average, but  not  an average 

i 

rate. Six s tudents  said that x ( t )  is a derivative;  five said that it is a rate of  change,  
bu t  o f  cool ing.  On ly  seven students  igave an appropriate uni t  for x( t ) .  

The R i e m a n n  s u m i tems were: 
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I ' I 

5.0 

,5.0 

Fig. 24. Graph to accompany follow-up assessment item 4. 

4. a. The graph in Figure 24 is of a function q(x) defined over the interval [0, 5]. Sketch a 
graph of 

/z 

z ( x ) = E q ( i ~ )  x-n forn=1000andxin[0,5] .  
i = 1  

Use the coordinate system provided in the graph. 
b. For what values of x (approximately) will z(x) achieve a local maximum or a local 

minimum? Explain. 
6. Let q(t) be defined by 

t /A t  

q(t) = E f(iAt)At. 
i = 1  

Explain the process by which the expression 

t/At 
E f(iAt)At 
i = 1  

assigns a value to q(t) for each value of t in the domain of f. 

Responses to Item 4 were difficult to interpret. Eight students sketched appro- 
priate graphs. They claimed to have identified the Riemann sum as "area" and to 
have proceeded from that basis. Interviews with each student revealed a variety 

of reasons for inappropriate graphs. One student said "derivative" just popped 
into his head; several said that they didn ' t  know how to proceed when they didn ' t  

know what the actual function was (i.e., they did not have an analytic definition 
of the function). Another student thought he should try to sketch a graph of the 
areas of each of the 1000 rectangles you would get for z(5). 

Responses to Item 6 showed that the coordination of images involved in 
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understanding Riemann sums as functions was a complex act. One student wrote: 

First the value of a ce~ain chunk is measured by iAt. This is then multiplied by the change which 
is At. This is repeated for every value of t and then added up. Each value of t is cut up into t/At 
intervals, and added, t/At is the number of intervals the piece is to be divided up into. 

This student evidently had a number of problems, one being that he was 
imagining a "chunk" of a quantity independently of the analytic expression that 

established its measure - iAt does not "measure" the chunk, it just puts you at the 

right place to make it. The expression f ( iAt)At  gives the chunk's measure. A 

more serious problem, though, is that this student appeared to be imagining t and 
i varying simultaneously instead of as first i varying from 1 to t /At  for a fixed 

value of t and then varying t. 

Another student wrote: 

- Here At represents the size of each interval that f is being broken up into. 
- So t/At equals the number of intervals the graph of f is broken up into. 
- So our i starts out at 1 and then goes to t/At. 
- The expression first finds f and then it finds the ith interval of f that we are dealing with. Then 
it finds the value of the function f at that interval and then multiplies by At. This finds the area of 
that particular rectangle. Then we add it to the previous areas found and plot that point. You then 
connect all the points to get your curve. 

The first sentence in this student's explanation, "...the size of each interval 

that f is being broken up into," suggests that she was imagining a Riemann sum 

over a fixed interval, which would normally correspond to an approximation of 

a definite integral f :  f(t)dt instead of the indefinite integral f~ f(t)dt. Her 
last three sentences suggest that she, too, sometimes imagined i and t varying 
simultaneously. 

Seven of 19 students expressed an appropriate order of variation for the index 
variable of the Riemann sum and the argument of the function. Five students 

appeared to have mixed images of definite and indefinite integrals. The remain- 
ing seven students had confounded the two variations so that everything was 
happening at once. 

DISCUSSION 

I structured the teaching experiment so that students were presented with a phe- 
nomenon requiring explanation: That when they graphed a function f(x), defined 
the Riemann sum g(x) as 

n 

i = l  

then graphed the function 

Dg(x) = g(x + Ax)  - g ( x )  
Ax 
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the graphs of g(x) and Dg(x) appeared identical for suitably large n and suitably 
small Ax. The functions were grounded in concrete settings, and explanations 
attempted by students' drew from their images and conceptions of the settings. My 
discussion will have three parts: Students' images as expressed during the teaching 
experiment and their contribution to students' difficulties, issues of notation, and 
implications of the present teaching experiment for standard approaches to the 
Fundamental Theorem and introductory calculus in general. 

Students' Images 

There seemed to be a confluence of images behind students' difficulties in con- 
struction and explanation for the problem of explaining an apparent relationship 
between f(x), g(x), and Dg(x) as defined in the previous paragraph. These have 
to do with their images of function, their fixation on accrual as a solitary object, 
and a weak scheme for average rate of change. I conclude this section by relating 
the teaching experiment to Piaget's levels of imagery. 

Images of Function 
Students repeatedly made remarks that suggested a figural image of function - an 
image of a short expression on the left and a long expression on the right, separated 
by an equal sign (Thompson, in press b). This was not the only image students 
could conjure, but it seemed to be many students' "working image" - what came 
to mind without conscious effort whenever "function" was mentioned. This of- 
ten oriented them away from grappling with conceptual connections entailed in 
situations dealing with covarying quantifies. 

In reviewing my notes and students work on assignments in Phase I, I noticed 
that students' explanations of the behavior of functions often spoke of the func- 
tion's behavior as if it could be analyzed independently of its argument. Remarks 
were oriented to "the function" (often meaning the visual object called its graph) 
and not to a covariation of two variables. The analyses often referred to just one 
thing varying, this thing called "the function." Difficulties caused by an orienta- 
tion to function as an idea with no interior showed up especially clearly when the 
function to be analyzed was a composition of functions. In analyzing the behavior 
of f(g(x)) it is critical to take into account the behavior of g(x) in relation to x, 
for the variation of g(x) is the variation of f ' s  argument. 

Finally, it seems that students' images of Riemann sums were insufficient to 
support their reasoning about a sum's rate of change. I suspect they were thinking 
of a Riemann sum as being static - that even though its argument could change, 
and the Riemann sum could be evaluated with a new argument, it was still a sum 
of unvarying "chunks" and a change in its argument was more like substituting a 
new value for the argument than a continuous change in its value. Their images of 
a Riemann sum seem not to have entailed a sense of motion, either in its argument 
or in its value. 
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Accruals as Solitary Objects 
Students' remarks regarding a relationship between the rate of change ofa Rie- 
mann sum and a constituent quantity in an accrual to the sum 14 always focused on 
the accrual as a solitary object (see especially Excerpt 12). To see a relationship 
between the two they needed either to conceptualize the accrual as itself accruing 
at a constant rate with respect to the independent quantity (e.g., height) or to con- 
ceptualize it as the average rate of  increase in the accumulation over an increment 
in the independent quantity. In either case, it is necessary to have clearly in mind 
that accruals to the sum are constructed multiplicatively. In the first case, the ac- 
crual itself accruing at a constant rate, the accumulative quantity must be imagined 
to be constructed incrementally, where each increment is made by an increase in 
the quantity at a constant rate of  change. In the second case, the accruals coming 
in "chunks", each accrual must be imagined to be a multiplicative combination 
of  quantities (e.g., area and length) that will have increased at an average rate of  
change. 

Students' fixation on accrual as a solitary object - simply as a thing with no 
constituent quantities - resembles young children's difficulties in constructing 
speed as a rate of  change of  distance with respect to time. Young children tend 
to think of  speed as a distance - a measuring stick by which to measure other 
distances (Thompson and Thompson, in press; Thompson, in press a; Thompson 
and Thompson, 1992), and not something that grows in relation to a growing 
duration. This is not to say that the students in this teaching experiment understood 
speed in the same way as young children. Rather, it suggests that their schemes for 
rate and average rate were not operational to the extent that they could assimilate 
any covariate change to them. 

Scheme for Average Rate of Change 
A final source of  difficulty, to which I already alluded in the previous section, 
was that students apparently did not have operational schemes for average rate of  
change. What do we mean by average rate of  change of  a quantity? We typically 
mean that if a quantity were to grow in measure at a constant rate of change with 
respect to a uniformly changing quantity, then we would end up with the same 
amount of  change in the dependent quantity as actually occurred. An average 
speed of  55 km/hr on a trip means that if we were to repeat the trip traveling at 
a constant rate of  55 km/hr, then we would travel precisely the same amount of  
distance in precisely the same amount of  time as had been the case originally. This 
notion is highly related to the Mean Value Theorem for derivatives, which says, in 
effect, that all differentiable functions do have an average rate of change over an 
interval and it is equal to some instantaneous rate of  change within that interval. In 
the case of  a Riemann sum, the rate of  change of the sum for x within an interval 
[q, q + Aq] is equal to the average rate of change of the quantity f ( t )At  for some 
t in [q, q + Aq] and for A t  varying from q to q + Aq - which is just f( t) .  
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Coordination of Actions 

As noted in the introduction, Piaget characterized his second level of imagery 
as, "In place of merely representing the object itself, independently of its trans- 
formations, this image expresses a phase or an outcome of the action performed 
on the object . . . .  [but] the image cannot keep pace with the actions because, 
unlike operations, such actions are not coordinates one with the other" (Piaget, 
1967, p. 295). This seems to capture the nature of some students' understanding 
of Riemann sum, and other students' understanding of Riemann sum in relation 
to rate of change. Some students had not come to coordinate the variations of 
upper limit of summation and the variations in the index of the summation; some 
students had not coordinated the actions of forming a sum and multiplicatively 
constructing an accrual to a sum. Other students had mastered both of these 
coordinations but could not coordinate that ensemble of actions with the action 
of comparing multiplicatively the growth in an accrual with growth in one of its 
constituent quantities. As Piaget said, their actions outpaced their images because 
their actions were not coordinated. Operational understanding of the Fundamental 
Theorem entails the coordination of these actions so that the scheme remains in 
balance. Operational understanding of the Fundamental Theorem allows one to 
hold simultaneously in relation to one another the mental actions of forming ac- 
cruals, accumulating accruals, and comparing an accrual to one of its constituent 
quantities multiplicatively. 

Notation 

I should point out that the above discussion is colored by one serious matter. This 
is that students often acted from an orientation which led them to use notation 
opaquely. We discussed this tendency during class on several occasions. A 
common remark was that this seemed, from their point of view, the most efficient 
way to cope with what they thought had been expected of them, both in high 
school and in college. When students did interpret notation, it often came as an 
afterthought, and they often tended to read into the notation what they wanted it 
to say, without questioning how what they actually wrote might be interpreted by 
another person. More often, though, students would not interpret the notation with 
which they worked, but would instead associate patterns of action with various 
notational configurations and then respond according to internalized patterns of 
action. Their orientation toward notational opacity, while having nothing to do 
with conceptual difficulties with the Fundamental Theorem of Calculus as such, 
certainly contributed to their not having grappled with key connections. 

Implications for Contemporary Treatments of the Fundamental Theorem 

The approach taken within this teaching experiment resembles Anton's (1992, 
pp. 320-323) intuitive development of the Fundamental Theorem, with the ex- 
ception that Anton does not employ Riemann sums and focuses exclusively on 
the case of area bounded by a function's graph. Anton's intuitive development is 
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not oriented at students' conceptualizing the Fundamental Theorem so much as 
to motivate his upcoming focus on techniques of  antidifferentiation. 15 A focus on 
techniques of  antidifferentiation is historically accurate - Newton's and Leibniz' 
motivation for constructing the Fundamental Theorem was so that they could 
make algorithmic the process of  constructing analytic expressions for areas under 
curves. However, Anton switches, unannounced, to another conceptualization in 
justifying the Fundamental Theorem - he bases it on the mean value theorem for 
integrals. The mean value theorem for integrals says that continuous functions 
have an average value over an interval, where the average value f ~  over [a, b] of  

a continuous function f is defined as f ~  = (b - a) -1 f:  f(x)dx (Swokowski, 
1991, p. 281). On the other hand, the mean value theorem for derivatives says that 
if f is continuous on a closed interval [a, b] and differentiable on the open interval 
(a, b), then there exists a number c in (a, b) such that f ' ( c )  = If(b) - f ( a ) ] / ( b -  a) 
(Swokowski, 1991, p. 179). The mean value theorem for integrals allows a formal 
proof of  the Fundamental Theorem to go smoo th ly -  we can substitute the average 
value of  the integrated function for the integral of the function over the incre- 
ment in its argument. On the other hand, the mean value theorem for derivatives 
supports a conceptualization of  what is going on - the accumulation (integral) of  
the multiplicatively-constructed quantity f(t)dt is changing at an average rate of  
change that is equal to f(t) for some t in [x, x + Ax]. 

A typical proof of  the Fundamental Theorem goes something like this: Let f (x) 
be a continuous function defined on [a, b]. Define F(x) as F(x) = f~ f(t)dt. 
Then 

x+h 

f f ( t ) d t - f f ( t ) d t  
U(x) = lim ~ 

a--,0 h 

x+h 

f f(t)dt 
= lira 

h---~0 h 

= lira f(z)h for some z E[x, x + h]. 
h~0 h 

The last line is where the mean value theorem for integrals is used. The integral 

f~+h f(t)dt is equal to f(z)h for some z in the interval [x, x + hi. That is, the 
integral is equal to the average value of  the function over the interval times the 
width of  the interval. Then, as h --* 0, z ---+ x, and so F'(x) = f(x). 

The problem with the typical proof is not so much in the proof as that it 
is presented as modeling a static situation. It is presented in such a way that 
nothing is changing. If  students are to understand F'(x) is a rate of  change, then 
something must be changing. But as soon as we bring in the idea of  motion, then 
the mean value theorem of  integrals becomes a conceptual misfit - it doesn' t  fit 
the image of  f~ f(t)dt as a dynamic accumulation of  a quantity. We must rely on 
the mean value theorem for derivatives to support the idea of  rate of  accumulation. 
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H o w e v e r ,  t h i s  t e a c h i n g  e x p e r i m e n t  s u g g e s t s  t h a t  a g r e a t  d e a l  o f  i m a g e - b u i l d i n g  

r e g a r d i n g  a c c u m u l a t i o n ,  r a t e  o f  c h a n g e ,  a n d  ra t e  o f  a c c u m u l a t i o n  m u s t  p r e c e d e  

t h e i r  c o o r d i n a t i o n  a n d  s y n t h e s i s  in to  t h e  F u n d a m e n t a l  T h e o r e m .  

NOTES 

t Research reported in this paper was supported by National Science Foundation Grants No. MDR 
89-50311 and 90-96275, and by a grant of  equipment from Apple Computer, Inc., Office of External 
Research. Any conclusions or recommendations stated here are those of the author and do not 
necessarily reflect official positions of NSF or Apple Computer. Also, I wish to thank Paul Cobb and 
Guershon Harel for their helpful reactions to an earlier draft of this article. 
1 Tom Kieren and Susan Pirie (Kieren and Pirie, 1990, 1991; Kieren, 1989; Pirie and Kieren, 1991) 
make it evident that the act of  imagining can itself inform our images. 
2 The Latin root of  "confused" is confundere, to mix together. Thus, one way to think o f  being in a 
state of confusion is that we create inconsistent images while operating. 
3 Winograd and Flores (1986) give similar criticisms of referential meaning in cognitive science. 
4 1 should point out that when students speak of "rate" as in "distance equals rate times time," they 
need not be speaking of anything having to do with rate as I use the term. They may be engaging in 
mere "symbol speak," having no imagistic content except for the imagery of notational actions (Hayes, 
1973). 
5 This is a nonstandard interpretation. I am actually anticipating discussions regarding Newton's 
development of the Fundamental Theorem. 
6 Here I must stress that I am talking about images and not about logical demonstration. The notion of 
accrual, when made rigorous, poses many problems regarding continuity of  change and relationships 
between discrete and continuous quantities (this is the well-known problem of infinitesimals). But 
that is beside the present point - what sorts of images make the Fundamental Theorem intelligible. 
7 We must keep in mind that during Newton's time all functions were thought to be continuous 
and differentiable almost everywhere. It was only later that pathological functions and Fourier series 
showed that these ideas could be pushed beyond a point where they became insufficient as a foundation 
for the calculus (Kuhn, 1970; Wilder, 1967, 1968). 
s I must stress once more that this is not a rigorous development. Rather, it is about images that 
might support the "obviousness" of  the Fundamental Theorem. Also, it seems that Newton sensed 
the inadequacies of  infinitesimals as a logical foundation for his calculus and eventually disavowed 
them (Boyer, 1959, p. 213). Nevertheless, it seems clear that his initial insights were facilitated by his 
acceptance of infinitesimals. 
9 It is important to note that, formally, the unit of AT/AV should be hr/(mi/hr), but Sue evidently 
reasoned that 1/AVths of the total change in velocity should correspond to 1/AVths of the time 
in which the change in velocity occurred. Therefore each increment of the total time would be 
AT/AVths of one hour This is the kind of reasoning about rates depicted in Figures 1 and 2. 
10 In a later problem, "about how far does a rock fall on the moon in its fourth second of falling if 
on the moon falling things speed up at the rate of 6 ft/sec every second," Sue concluded that at the 
beginning of the fourth second the rock would be falling 18 ft/sec, and that each one-tenth of a second 
thereafter the rock would speed up by 0.6 ft/sec. 
11 A more accurate representation of the Riemann sum would be to have [x /Ax] ,  the greatest integer 
less than or equal to x / A x ,  in the upper limit of  the summation. However, our graphing program used 
the convention that the upper limit of a summation is truncated to an integer, so it was only necessary 
to put z /Ax  as the upper limit of the summation. 
12 My class presentations were with a Macintosh Powerbook connected to an LCD projection panel. 
I used Theorist, which allows expressions and functions to be displayed in standard mathematical 
notation and which allows graphs, diagrams, etc. to be placed anywhere on the computer screen. The 
function definitions and graphs presented here are taken directly from my class presentation. 
13 See the discussion of Figure 3. 
14 By an "accrual" to a Riemann sum I mean the thing whose measure is f(tl )At.  So by "constituent 
quantity" I mean the thing measured by f ( t l  ) in f(tl)At. 
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15 An antiderivative of f ( x )  is a function g(x)  such that g ' (x)  = f (x ) .  Antidifferentiation is the 
process of finding an antiderivative. 
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