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IS ONE PROOF ENOUGH? 

TRAVELS WITH A MATHEMATICIAN OF THE BAROQUE PERIOD 1 

ABSTRACT. It is reasonable to assume that a subject of presumably universal appeal must rely on just 
one style. In spite of  its universality, mathematics employs many styles. In particular, there are many 
styles of proof. In this paper we present and analyse a number of proofs of a property of the area under 
an hyperbola due to Gregory of Saint-Vincent, a mathematician of the first half of the seventeenth 
century. There is a baroque and prolific quality to the architecture of his proofs, and this quality 
points to a connection between a culture and the discovery of a mathematical theory. An historical 
perspective shows that, in addition to many styles, the universality of mathematics implies a variety 
of  procedures. 

THE ONE-PROOF-ONLY TRADITION 

Among intellectuals, mathematicians are often regarded- as they have been since 
Antiquity - as victims of a curious affliction: they repeatedly try to prove the 
obvious. While everybody agrees that a formula like A = 7rR 2 requires proof, 
far fewer insist on a formal proof of the theorem that the ratio of the areas of two 
circles is equal to the square of the ratio of their radii (A/A'  = (R/R')2).  This, 
however, is what is proved in Proposition 2 of Book XII of Euclid's Elements. 
Euclid's proof is very useful because it introduces one of the most powerful tools 
of ancient geometry - the method of exhaustion - so named far later by the 
Bruges-born mathematician Gregory of Saint-Vincent. One reason for the general 
indifference toward some kinds of proof is certainly the existence of easy proofs 
of particular cases. In our instance, a simple proof is known for two similar 
triangles: the ratio of the two areas is equal to the square of the scale factor. 
Therefore, the same is assumed to hold without further discussion for any two 
similar figures, say, for two circles, where the scale ratio is the ratio of the two 
radii. It is interesting that even meticulous geometers who copy the rather long 
euclidean proof in Book XII are quite casual when dealing with other similar 
figures - they just consider the result obvious. Surprisingly, in some textbooks 
dealing with the Lebesgue integral and with Lebesgue measure in the plane, the 
formal (and very easy) proof of the dependence of areas of similar figures on the 
scale factor is often left out. 

This general attitude was summarized in La logique ou l'Art de penser, a book 
first written by Arnauld and Nicole in 1662, in which the cartesian influence is 
very strong: the authors deplore the common weakness of mathematicians for 
proving the obvious. 2 Therefore, the famous Jansenist Arnauld is quite casual 
when discussing the area of a circle in his Geometry of 1667 (sometimes called 
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la Gdomdtrie de Port-Royal). He is satisfied with a brief explanation that uses the 
method of indivisibles. 

According to the one-proof-only approach, proving the same result in two 
different ways is a mortal sin. As attested by the long book of Arnauld, what is 
involved here is not only a question of brevity or the desire to avoid prolixity. 
Providing two (or more) proofs seems, even if indirectly, to imply the existence 
of different paths to mathematical knowledge. This contradicts the strong implicit 
assumption that there exists only one natural way, only one authorized sequence 
of logical steps leading to a correct conclusion. The epistemological background 
of this one-proof-only tradition is certainly to be found in rational intuitionism. 
It is therefore instructive to classify mathematicians according to their habit of 
providing just one proof or more than one. In this respect, Euclid, Descartes and 
Bourbaki are opposed to the prolific Euler, to Gauss and to Lebesgue. We are 
aware that when a book becomes a textbook, different proofs of the same result 
are often presented (commentators on Euclid have assiduously played their part 
in this natural process). But this does not really change the general picture of 
a textbook, as the various versions of the same result are generally provided for 
lemmas only; what is involved is just local simplifications that reduce the number 
of assumptions. These, then, are variations on a theme that do not generate 
different theories. 

Paradoxically, even the modern (perhaps already outdated) practice of an ax- 
iomatic presentation of mathematics has not changed the one-proof-only practice. 
We know that a given set of axioms leads to a body of theorems which may 
be quite different from, sometimes even in contradiction to, those deduced from 
another one. But it is far more unusual for a group of"important" properties to be 
proved along radically different lines. Even if equivalences are sought, one tends 
to think that there exists a preferable - natural, logical and economical - way. In 
school, as well as at the university, we are quite far from accepting the logic of 
equivalences, which, in away, offers two different pictures of the same reality - 
as if we were anxious not to transform mathematics into a sort of game. We all 
know, for example, that there were until recently two species of teaching mathe- 
maticians: those favoring the presentation of integration theory from a functional 
point of view (i.e., a measure is an element of the topological dual of a certain 
space of functions) and those preferring the measure (probabilistic) point of view. 
And, by definition of species, the two viewpoints cannot be fruitfully reconciled! 
How many times have we heard from students that what was explained in prob- 
ability theory had nothing to do with what was practiced in functional analysis? 
Incidentally, the one-way approach is quite opposite to the situation experienced 
by the research mathematician. 

Such examples remind us that mathematics has its schools and its fashions. 
Thus in many respects mathematics evolves like a culture. In other words, the 
one-proof-only tradition is just one among many traditions, and certainly not the 
only way to deal with mathematics. 

The historical perspective can help us understand better the development and 
disappearance of certain "cultural" habits within mathematics. If we admit this 
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cultural approach to mathematics, then, as far as a proof is concerned, it might be 
interesting to study the practitioners who systematically present different proofs 
of the same result. Among many possible leading mathematical personalities, 
the choice of a relatively obscure man, Gregory of Saint-Vincent, working at the 
dawn of the scientific revolution, may prove more fit for our purpose, in the sense 
that his mathematical idiosyncrasies were developed over a rather long period 
of time, became more and more systematic, a sort of mania, and therefore more 
visible. They are not hidden by the eagerness to adapt one's style to what one 
wishes to discover, as is often the case among greater mathematicians. I hope that 
a sort of spectral analysis of some of his proofs may give rise to fruitful questions 
concerning the practice of mathematics in general. Gregory of Saint-Vincent is 
to be understood within the baroque period to which he belongs; he differs from, 
say a man like Arnauld, who belongs to the classical period. Mathematics is not 
outside the flow of time. 

I certainly should pause here to give some historical facts, though I will restrict 
myself to the bare minimum, and will provide more information while tackling 
the mathematical proofs provided by our hero. 

GREGORY OF SAINT-VINCENT: A TEACHING MATHEMATICIAN 

He is essentially a man of one book: Opus geometricum. But what a book! 
It contains more than 1200 pages (in folio), and thousands of figures. It was 
printed in Antwerp in 1647, but was never republished. One thing about the 
book immediately stirred some uneasiness: the addition to the title, namely: 
quadruturee circuIi. The engraved frontispiece shows sunrays inscribed in a 
square frame being arranged by graceful angels to produce a circle on the ground: 
mutat quadrata rotundis. There was uneasiness in the learned world because no 
one in that world still believed that under the specific Greek rules the quadrature 
of a circle could possibly be effected, and few relished the thought of trying 
to locate an error, or errors, in 1200 pages of text. Four years later, in 1651, 
Christiaan Huygens found a serious defect in the last book of Opus geometricum, 
namely in Proposition 39 of Book X, on p. 1121. This gave the book a bad 
reputation. In spite of Huygens' 1672 recommendation of the book to the young 
and eager Leibniz (who while in Paris was seriously reading mathematics), and 
in spite of Leibniz' clear statement in his description of his own apprenticeship 
('More substantial help came from the famous triumvirs: from Fermat by his 
invention of a method pro maximis et minimis, from Descartes by his showing how 
to describe curves of usual Geometry by means of equations, and from Father 
Gregory of Saint Vincent by his numerous bright inventions"), 3 our hero was not 
later appreciated. He survived because of some historians of mathematics, such 
as M. Cantor, 4 H. Bosmans 5 and J. E. Hoffmann. 6 

Born in 1584, Gregorius a Sancto Vincentio (his Latin name) entered the Jesuit 
order to be sent to the Roman College, where he showed great mathematical gifts. 
He was noticed by his professors, men like Clavius to whom we owe the so-called 
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Gregorian calendar. He returned to Belgium in 1615, and for approximately 
10 years worked in Antwerp and Louvain. He was an outstanding teacher (for 
a small audience). He published very little, for he preserved almost everything 
he created for the book about the quadrature of the circle which he wanted to 
be an impressive and lasting monument. It is almost certain that he wrote what 
we will study in the sequel before 1625. This is indicated by his manuscripts 
left in Brussels. 7 This is important because at that time Cavalieri's Geometry of 
indivisibles (1635), and Descartes' Geometry (1637) were not yet available. We 
must think of Gregory as a direct heir to Clavius, apparently not interested in the 
works of the Italian school of algebraists of the 16th century, nor even in the work 
of Vieta. He should be regarded as a contemporary of Kepler. Unlike Kepler, who 
had so many difficulties grasping the Conics of Apollonios, Gregory had mastered 
completely the works of the mathematician of Perga. 

ONE PROPOSITION AND TWO PROOFS/A STRATEGIC REDUNDANCY 

But let us turn to his mathematical text. We have selected - how could it be 
otherwise in such an ocean of words - a famous and original result. In modern 
terms, Gregory of Saint-Vincent proves that the variable area bounded by an hy- 
perbola, one of its two asymptotes, and two lines parallel to the other asymptote, 
can be expressed by a logarithmic function. He is the first to establish a link be- 
tween a curve as simple as the hyperbola and the functional property of logarithms 
(transformation of a product into a sum). Two propositions are offered, namely 
Proposition 107 and Proposition 108, yielding apparently the same result as that 
stated in Proposition 109; they appear in Book VI (De hyperbola), around pp. 
585-586 of the Opus geometricum. We give an English translation of the Latin 
text and reproduce the original figures. 8 Our translation is close to the original 
rather than a modern transcription. We will not attempt to reduce the technical 
difficulties of the original by using modern formulations and terminology. Our 
purpose is not to admire a result of Gregory and merely give a taste of it. We 
want to illustrate a certain style of mathematical proof, a style using repetitions. 9 
A modern intrusion would corrupt the whole process. We even require from the 
reader a certain complicity with the author of the early seventeenth century, a 
certain artistic connivance. 

Before stating Proposition 109, a few explanations are needed as we immerse 
ourselves in the very middle of a book of rather complex structure. An hyperbola 
is classically defined as the section of a circular cone by a plane which does not 
intersect the cone's axis and is not parallel to one of its generating straight lines. 
Like Apollonios before him, Gregory shows that the plane curve has a center. 
He then works only with one branch, using the two asymptotes for the drawing 
(without assuming a right angle between the asymptotes). The reduction to plane 
geometry is achieved by what he considers a characteristic property of an hyper- 
bola (Figure 1): an area like that of the triangle AmM is constant when M traverses 
a branch of the hyperbola a° (notice that the role of asymptotes is symmetric). 
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PROPOSITION 109. Let AB and AC be the asymptotes of a hyperbola DEF. 
Divide AC so that AG, AH, AI, AK, AC are in a continuous proportion. Set 
GD, EH, LI, MK, FC equidistant from AB. I say that HD, IF,, KL, CM are equal 
segments. 

The following remarks clarify Proposition 109: segment HD means the con- 
cave area DGEH under the hyperbola (Figure 2), for "equidistant from" read 
"parallel to", and continuous proportion stands for the chain of equalities 

AG AH AI AK 
AH AI AK AC 

In other words, the proposition states that a geometric progression of points G, 
H, I, K, C, on the axis of abscissae yields an arithmetical progression of areas, 
DGEH, DGLI, DGMK, DGFC, etc. 
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If  it is important to state the result in such an indefinite way (with no final 
step in the progression), then it seems clear that a proof is required for just three 
successive terms. This is just what is involved in each of Propositions 107 and 
108. Surprisingly, at least for a modern reader, our author does not bother to say 
that he has two ways of obtaining the same result. He does not apologize for his 
abuse of our patience. This is not due to bad preparation. Rather, it is part of a 
general strategy. 

Gregory of Saint-Vincent does not consider his two proofs as independent 
facets of the same problem - they are but two successive steps on the same route. 
In other words, the Jesuit mathematician prefers to describe precisely the road, the 
method of discovery, rather than to show the shortest way to the summit. This is 
an important matter of style, and, like our mentor, we will even have to question 
the existence of a summit. Is mathematics only a road? 

At least there is a road in the case we are examining, and "milestones" along 
the road can be seen in the form of propositions. To begin with, we state Propo- 
sition 106, and need one definition. For an hyperbola, a central conic, a diameter 
relative to a chord DG is a straight line passing through the centre A and dividing 
the chord DG into two equal parts DZ=ZG (Figure 3). Then the ordinate F of the 
intersection E of the diameter with the hyperbola is the geometric mean of the 
ordinates of B and H, that is the square root of their product. This result will be 
of use in the sequel. 

PROPOSITION 106. Let AB and AC be the asymptotic lines of the hyperbola 
DEG. Set DG in an ordinate way along diameter AE.11 Let DE and EG be drawn. 
I say that the convex segments DIE and GLE are equal. 

Before producing the proof of Proposition 106, we proceed to Proposition 107 
for which we do not need another figure, as stated by Gregory himself. 

PROPOSITION 107. Under the same conditions, 12 let DB, EF and GH be 
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equidistant from one of  the asymptotic lines. I say that the two concave segments 
BDFE and GHFE are equal to one another. 

The next proposition states the following. 

PROPOSITION 108. Let AB and A C be the asymptotic lines of  the hyperbola DEE 
Let DH, EG and FC be equidistant from the asymptote AB along a continuous 
proportion. I say that segment DHGE is equal to segment EGCE 

From Proposition 106 to Proposition 108, the landscape has changed: we 
started from an equality concerning convex segments bounded by an hyperbola 
(Proposition 106) and we ended with concave ones, both in Proposition 107 and 
108. Carefully written, the proof provided for the intermediate Proposition 107 
explains the transition from convex to concave areas relying on a property of 
trapezoids inscribed in an hyperbola. This transition is simple, and the fact that 
the proof is short is an external, but clear hint. Gregory has his own style, 
which implies not only one repetition, but more than one. He intentionally states 
Proposition 108, which more or less says the same thing as Proposition 107. 
However, the proof of Proposition 108 is a long one, which means that this 
proposition is not a simple consequence of Proposition 107. Moreover, a new 
figure is drawn, with different letters and with a different aspect. In particular, it is 
not the same asymptote which plays the main role. Such hints show that something 
important must be deduced from the comparison between the two propositions. 

Before entering into the details of the proofs, we note that, although his main 
objective was achieved with Proposition 108, Gregory returns to the transition 
from convex to concave areas in Proposition 110. This is another repetition. It 
is as if he wanted to answer a persistent query regarding the change from convex 
to concave segments without adding any rhetorical comment. A simple diagram 
(Figure 6) summarizes Proposition 110 and shows that this is trivial. 

Area (OCD)=Area (OBA), due to the property of an hyperbola. Subtract from 
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both areas the triangular area OEA and add to both the curvilinear area EBC. The 
concave curvilineax trapezoid ABCD has the same area as the curvilinear triangle 
OBC. Similarly, the equality of areas holds for the rectilinear trapezoid ABCD 
and the rectilinear triangle OBC. This equality, obtained by means of the usual 
technique of adding and subtracting areas - that is the so-called application of 
areas used in Euclid's E l e m e n t s  - provides an easy link between concave and 
convex segments. 

Proposition 107 is also obvious if we know from a study of the hyperbola 
that the rectilinear trapezoids BDEF and FEGH have the same area. Then the 
equality of the convex segments DIE and ELG is equivalent to the equality of the 
curvilinear trapezoids BDEF and FEGH. 

Clearly, the aim of the second repetition, from Proposition 107 to Proposi- 
tion 110, is just to show the transition from convex to concave areas is trivial, and 
that we gain nothing by achieving it in Proposition 107 - at least if we do not think 
of a road to follow. Proposition 110 states a "frivolous" property after "hard" 
ones. It is introduced at this stage to urge us to look back at the road followed. 
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We see that there exists a strategy guiding redundancy. And Gregory of 
Saint-Vincent was keen enough to advertise it, somewhere in his book, while 
explaining the passage from the particular to the general and vice versa. Both 
ways are permissible and in this respect repetitions are not only unavoidable 
but also necessary as parts of the exposition of the mathematics: "In fact, I felt 
comfortable, from time to time, to do quite often this here, or that there. This 
because the truth of  the same theorem can more than once be more clearly and 
obviously revealed in many particular cases; that, because from the knowledge of  
particular cases, one more easily intuits proof of  universal theorems". 13 But we 
should certainly not restrict such a redundancy strategy to didactical objectives. 
More is sought. 

A BAROQUE ARCHITECTURE: SYMMETRIES AND CONTRASTS 

The geometric modification we have noticed in the passage from Proposition 106 
to Proposition 108 is just a small part of a deeper change, and we should not 
focus our attention on this aspect only, as we have been warned by the repetitive 
procedure in Propositions 107 and 110. We know too that Propositions 106 
and 108 yield the same result, which is summarized once in Proposition 109. 
At least, we are waiting for two different proofs, for example one quite short 
and one quite long, each according to a distinct pattern. There should be some 
pronounced differences to justify a repetition! Surprisingly, the two proofs are of 
approximately the same length and follow a strictly parallel pattern, somewhat like 
those parallel sentences inscribed in many a Chinese house, where each character 
in one scroll has its counterpart in another scroll, with the same tone used and 
the same syntactic role, but with a completely different design and meaning. 
Under the parallelism, we have to guess the opposition! To emphasize this, and 
to understand what is meant by Gregory, we have presented the proofs in two 
columns. 

At the beginning of each column, the two very different figures (Figures 7 
and 8) are thus in complete contrast with the parallel construction of the proofs 
of Propositions 106 and 108, whose lines we stated earlier. Symbolically, if the 
two figures present themselves in a symmetric way for the hyperbola (which is 
a faithful reproduction of the original illustrations), the segment lines, the true 
scaffolding for the curve, are completely different. 14 In one case (the right figure) 
the hyperbola is literally attached to its asymptotes which act as axes of reference. 
In the other case (the left fi~ure), the asymptotes could almost be ignored, as 
diameters and chords are far more important. The left figure gives intrinsic points 
and lines of the hyperbola, while the other one requires external references. Two 
opposite ways of doing geometry! 

In both proofs, it is the equality of two areas which has to be established. 
Therefore the convex hyperbolic segments DIE and GLE in Figure 7 have their 
exact counterpart in the concave hyperbolic segments DHGE and EGCF of Fig- 
ure 8. And Gregory warned us about the equivalence between concave and convex 
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Let us divide ED and GE into two equal parts by 
N and O. Let AIN and ALO be diameters. Join 
DIE and GLE. We will get maximal triangles 
DIE and GLE (Prop. 102), equal to one another 
(Prop. 103), larger than half of the segments in 
which they are inscribed. 

In the same way, if maximal triangles are in- 
scribed in the segments which are left on both 
sides, one clearly sees that the maximal trian- 
gles in the segments ID and IE are equal to the 
maximumal triangles in the segments EL and 
LG 

This operation can be continued indefinitely in 
each of the segments, in such a way that tri- 
angles subtracted from segment DIE are larger 
than half of  the segment from which they are 
subtracted and equal to those subtracted from 
segment GLE, each larger than half of  the seg- 
ment from which they are subtracted. It fol- 
lowsthat segment DIE is equal to segment GLE 
(Prop. 116 of de Progressionibus). 
Which was to be proved. 

Let LI and MK be proportional means between 
HD, EG, FC. Let DB, LN, EO, MP, FQ be 
equidistant from the asymptote AC. As DH, LI, 
EG, MH, FC are continuiting the same ratio, 
AH, AI, AG, AK, AC are proportional by dif- 
ference (Prop. 1 of de progress.); HI is to IG as 
AI is to AG, i.e. as EG is to LI. Therefore the 
parallelograms LH and EI are equal (Prop. 14). 

In the same way, because GI is to GK as MK 
is to EG, parallelograms EI and MG are equal. 
Similarly, parallelogram FK is equal to MG. 
Therefore the four parallelograms LH, EI, MG, 
FK are equal. Thus the two parallelograms LH 
and El, subtracted from the segment EGHD are 
equal to the parallelograms MG and FK sub- 
tracted from the segment FCEG. Thus, let DH, 
LI and EG be proportional means, as well as 
EG, MK, FC. As above, and in the same way, 
parallelograms in the segment EGHD are equal 
to parallelograms in the segment FCEG. 

As this can be continued indefinitely, in such 
a way that parallelograms subtracted from seg- 
ment DHEG are larger than half of the segment 
DHEG and equal to those subtracted from seg- 
ment EGFC, which are also larger than half of 
the same segment, it is constant that segment 
FCEG is equal to segment EGDH (Prop. 116 of 
de Progressionibus). 

Which had to be proved. 
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segments. Two parallel ways of doing geometry! 
Note that point E (left column) is defined differently from the line EG (right 

column). Point E is defined geometrically as the intersection of the hyperbola 
and the diameter AZ (DZ=ZG) relative to the chord DG. Line EG  is defined 
analytically by a proportion: it is a line parallel to one asymptote, whose length 
is the mean between DH and FC, i.e. 

DH EG 

EG FC 

This antagonism between a geometric position and an analytical one is what 
underlies the symmetry of the two parallel proofs. This antagonism is precisely re- 
flected in Figures 7 and 8 respectively. To each halving of areas there corresponds 
a point like E in the left column (intrinsic significance) and a computation of means 
in the right column (extrinsic significance). The geometric situation presented in 
the left column is then reduced to definitions given earlier by Gregory. This is 
done with a certain elegance; it is the usual synthetic presentation of geometry. By 
contrast, the right-hand column is self-contained, as any computation should be, 
and is therefore contrived. This explains why the right column appears somewhat 
longer; it is the analytical presentation. The opposition between the two presen- 
tations is reinforced by parallel tools: for example, Gregory systematically uses 
triangles in the left column, and parallelograms in the right. 

In the left column, a maximal triangle, like DEG, is used. This simply means 
a triangle of maximum area when E traverses the hyperbolic arc DG. The point 
E, a point of intersection, is also the (unique) point of tile hyperbola where the 
tangent is parallel to the chord DG. We keep a geometric property and therefore 
the use of maximal triangles simplifies the vocabulary of the dichotomy though 
not the proof. Gregory has to use previous results, for example the equality of the 
areas of the two rectilinear triangles DIE and ELG. This is not an obvious result, 
and the geometric proof of Proposition 104, is rather painfulJ 5 It is then easy to 
show (second paragraph of the left column) that the maximal triangles in ID, IE, 
EL, and LG have equal areas, and so on. 

For the right-hand column, and for the same purpose, a computation is con- 
ducted. The calculation is done using proportion theory only, without recourse 
to algebraic relations. This makes the task rather clumsy for a modern reader. 
Without too many changes, we can visualize the path followed. Starting from 

LI EG MK EG 

DH LI EG MK ' 

we also get 

DB LN EO MP 

LN EO MP FQ ' 

due to the characteristic property of the hyperbola, which can be stated as 
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AH LI 

AI DH 

Thus we also have, only on the axis of abscissas, 

AH AI AG AK 

AI AG AK AC 

A classical rule of computation in proportion theory gives 

AH AI - AH HI 

AI AG - AI IG " 

But 

AI EG 

AG LI 

Therefore HI/IG=-EG/LI, for which an interpretation in terms of areas is obvious 
(HI.LI=EG.IG). The rectangle with opposite vertices L and H has the same area 
as the rectangle with opposite vertices E and I. 

Now, in complete analogy with the left-hand column where we obtained the 
equal areas of maximal triangles ID, IE, EL and LG, we have exhibited four equal 
areas, namely the areas of the parallelograms LH, EI, MG and FK. 

From now on, the two proofs will follow exactly the same pattern. From 
two given areas equal areas are successively subtracted. At each step, what is 
subtracted is larger than half of what should be subtracted. For the left column 
this simply means that the area of a maximal triangle like DIE is larger than half 
the area of the hyperbolic convex segment DIE. 16 For the right column Gregory 
claims that the same is true, i.e. the area of the sum of two rectangles EI and 
LH is larger than half the area of the concave hyperbolic segment EGHD. But he 
does not even attempt to prove this. And he certainly does not wish to, because 
he relies on an argument by symmetry with what has been done according to the 
proof in the left column. This seems sufficient. This is an instance of reasoning 
by analogy. The trouble is that the result is in general false! 

To check this point we revert briefly to modern terminology. For O < a < b, 
Gregory's assertion reduces to 

- < 4  1 -  . 
a 

This cannot be true for too large a value b (and a fixed value a) or for too small 
an a (and a fixed b). The relation holds if a and b are close enough (for example 
if b < 2a, as is easily shown). In this sense, as the process of dichotomy is 
performed continuously and the interval diminishes in length, the validity of 
Gregory's method is secured after a certain stage. 

Now we have a better insight into Gregory's style. As we already said, the 
two parallel proofs are not independent. The first proof "helps" the second one. 
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But this does not come from a logical argument. The "deduction" stems from a 
similar reduction; it uses an analogous path. Thus for Gregory it was important, 
from a stylistic viewpoint, to exhibit a strict parallelism between the two proofs. 

But we should not stop at this view. An architecture provoking such Symmetries 
is also intended to underline deep contrasts. Gregory's world is not static, and 
moves are suggested by apparent symmetries hiding, or rather revealing, strong 
differences. Like the sculptures of the baroque age! To geometric modes in 
the first proof there correspond analytical ones in the second. To line segments 
attaching the hyperbola to its asymptotic lines in the right figure, the analytic 
apparatus, there correspond line segments 17 within the hyperbola itself in the 
left figure - the intrinsic geometry. The comparison between the first and second 
proofs helps us to go from classical geometry to analytic geometry. This transition 
is not realized - we have already mentioned the absence of polynomial equations. 
The algebra underlying this analytic geometry is simply the algebra deduced (or 
constructed) from the theory of proportions. But a modern reader can anticipate a 
new perspective, the perspective of Cartesian geometry. 

In a rather subtle way, by a similar appeal to Proposition 116, proved long 
before in Book II, Gregory of Saint-Vincent makes the two proofs parallel in 
their conclusive step. As can be deduced from the sole title of this book (De 
progressionibus: about progressions), this proposition has only an analytical 
sense. It is stated without geometric ideas, for arbitrary magnitudes, in the spirit 
of Book V of Euclid's Elements. For a modern reader it is easily interpretable as 
a limit result, and a modern transcription will be sufficient for our purpose) 8 

Proposition 116 of Book II of the Opus Geometricum provides us with a 
stability result. It states that if it is possible to successively subtract from two 
given magnitudes X and Y magnitudes Xl, x2, . . . ,  x~, and Yl, y2, . . . ,  y~, 
respectively, in such a way that 

XT~ 

yn 

for all integers n, and that 

X -- (X 1 -~ X 2 " ~ - ' ' "  "~ Xn)  > :T,n+ 1 > l ( x  -- (X l "~-X 2 ~ - ' - -  "~-Xn)) , 

Y - (yl + y2 + . . .  + y , )  > v , + l  > ½(Y - (Xl + x2 + . . -  + x , ) ) ,  

then X / Y  = ce. In particular, if ce = 1, then the magnitudes X and Y are 
equal. 19 This is precisely the case for the proofs already analysed, where X and 
Y are areas, whether of convex segments (Proposition 106) or of concave ones 
(Proposition 108). 

A modern reader is not at all impressed by the result in Proposition 116. If 
R~ = X - (xl + x2 + " "  + x,~), where the x~ and X are positive real numbers 
(magnitudes), then the inequalities R,~ > x~+l > Rn/2 imply the inequality 

Rn+l < 
2 
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Therefore limn~o~ Rn = O, and so 

X~-~xn. 
Similarly, Y = ~,~--1 Y,~, and ifyn = axe, then we deduce easily that 

o ~  

Y = a E x n ,  
r t ~  l 

or  

Y = a X .  

The techniques employed by Gregory of Saint-Vincent are precisely those which 
would lead to a theory of limits. Gregory stayed within the values of geometric 
progressions and their limits; recall that he uses no polynomial algebra. 2° 

Like any artist, Gregory does not exhibit the scaffolding of his achievements. 
We are the ones to do the deconstruction. Of course, we are guided by his logical 
hints and his stylistic signals. But Proposition 109 is not the end of Book VI of 
the Opus Geometricum: there are 140 more propositions to come! We may feel 
lost within this architecture which plays the game of new structures hidden by 
mirroring elements. 

A ROAD OR A MAZE? 

The same reproach can often be levelled at authors who do not attack a definite 
problem. The more proofs they provide, the more desperately we try to find 
the way through the maze they seem to have built. 21 This is probably because in 
mathematics we are accustomed to contemplating completed structures- generally 
self-sufficient - and are far less ready to acknowledge open buildings, structures 
under construction without blueprints delivered in advance. A new method has 
a far better chance of being accepted if it solves explicitly an old conjecture; we 
even know that the method may be more important than the conjecture it settles. 
But, at least, we feel freer to circumscribe the whole method by grasping the 
problem involved. 

Gregory of Saint-Vincent offers no completely solved problems. He meanders 
from geometric methods to analytical tools with no decisive questions to settle. 
If  we may intrude for a short while into psychology, we could even assert that 
his strange and obstinate search for squaring the circle plays the role of a limited, 
if spurious, horizon, which (at least theoretically) may put an end to his inves- 
tigations, and thus prevents his analysis from appearing endless, even if this is 
contradicted by the very length of the Opus Geometricum, perhaps the longest 
text ever published in mathematics. 
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But let us go back to Proposition 109, which states a remarkable functional 
property of  the hyperbola: areas transform geometric progressions into arithmeti- 
cal ones. A name ought to be given to such behaviour. Naturally we may think that 
logarithms should enter the picture here. But Gregory never mentions logarithms, 
a term coined in 1614 by Napier with this property in mind. 22 

Even if he ignored logarithms, we naturally think that he should have used a 
name for the stated property of  the hyperbola. The fact that he did not raises 
the question as to what he was aiming at. The answer cannot be a simple 
one. 

Clearly we have seen a route, the analytic path. In the proof of  Proposition 108, 
for example, the parallelism led from a maximal triangle to a geometric mean, 
considered as an operation on abscissae. But there was already a name for it - 
geometric m e a n -  which moreover has a geometric significance; there was no need 
of another name. Conversely, the absence of a known geometric interpretation of  
the property of  hyperbolic areas left what has been found without a name! 

We must realize how strange the result must have appeared to Gregory. He 
certainly knew that he had invented something of  the same value as Archimedes' 
squaring of  a parabolic segment. But he also knew that his result was of  a 
different kind. It was not a quadrature, even in an extended Greek sense, as no 
precise square figure was proved equivalent to the convex hyperbolic segment; 
there was simply an equality between two unknown areas (the convex or concave 
hyperbolic segments). It is with good reason that we interpret the result as a step 
into integral calculus. We immediately perceive that a new world was coming 
into being, a world which could not be reduced to the old geometric one, in the 
sense that it could not be reduced to polynomial functions, a world which was 
worth investigating for its own sake, a world where no boundaries were a priori 
visible or assignable. 

Was it possible to do something other than browse through the new landscape? 
Gregory did not build a maze. Confronted by so large a domain, he could only 
lay out some tracks. His behaviour is very much like that of  his Jesuit colleague, 
Father Athanasius Kircher when confronted with new domains, whether they were 
Chinese characters or monsters. In both cases, no framework or general structure 
being available, a sort of  classification was proposed which was neither rational 
nor experimental. Repetitions were constant. 

So they were used in Opus Geometricum, sometimes for good reasons (and we 
have tried to justify the purpose around Propositions 109 in Book VI), sometimes 
for lack of  other ways to acknowledge a common pattern. Had we space enough, 
we could investigate a curious vicious circle in Gregory's work on the hyperbola. 23 
Vicious circles, by the way, are not uncommon in the work of  authors dealing 
repetitively with the same properties, presented under various facets. The image 
of  a road might then give way to the nightmare of a maze ! 
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CONCLUSION IN A METAPHORIC FORM: A JOURNEY 

At a certain early stage of his endless book, Gregory confesses that he has 
been haunted for a long while by a common phrase appearing often in 
Euclid and Archimedes: "Et hoc semper f ia f '  (And this should be done over 
and over again). He adds: "Titillavit me haec particula et co~git cogitatione 
circa haec versari ''24 (This short expression titillated me to the point where I 
would obsessively return to it over and over again). The Greek mathematicians 
used iteration to measure areas and this is exactly what Gregorius a 
Sancto Vincentio did in the hyperbolic case, justifying the whole process and 
entering a new territory. The word "iteration" derives precisely from the 
Latin i ter,  a journey. Gregory in his whole Opus geometricum describes a 
journey, or more exactly, we travel with him. Let us keep this metaphor of a 
journey. Starting from a known territory - the Conics - which we investigate with 
him, we reach another land: comparisons of areas which cannot be computed, a 
land as yet unknown. We have no timetable and no maps. In this new world we 
pass more than once through the same places, though not in the same mood. How 
could we coin names for this largely unknown land using only words of known 
territories? 

Like every traveller, Gregory of Saint-Vincent dreamt of destinations, 
some quite magical ones. At the end of Columbus' voyage there could only 
be India! Squaring the circle could have been Gregory's India. Trisection 
of an angle or duplication of the cube could have been his other aims: classical 
fancies. However, they were not reached! The new-found world could prove 
richer, though perhaps not for the first traveller. Therefore the leisurely journey 
- how could it be called otherwise when it is so long, with no precise desti- 
nation? - does not turn out to be a happy one. Sad tones are perceptible: 
"Benevolent reader, from the last proposition you clearly see where the 
previous propositions aimed at". A clear statement that this was not clear 
before. "To be able to f ind a way, thanks to progressions and hyperbolae, 
to include two proportional means between two given quantities". This is 
precisely equivalent to the duplication of the cube! Unfortunately the dupli- 
cation was not reached". Had it been possible to solve the last proposition with 
the same success as we solved the previous ones, we could have succeeded." 
No luck! "In a certain way, waiting for  more, we have traced a path; if you 
wished, f rom just  one last effort, you could try to get access to where we still could 
not reach". 25 

Finally at the end of this trip with Gregory of Saint-Vincent, some will be 
more convinced that they are right in presenting mathematics with precise aims 
and therefore in a fixed way. Others will still be happy with idling among results 
and will refuse the one-proof-only style. History cannot bring a sanction to the 
present time: it serves as an eye-opener. It is always a journey, even at a leisurely 
pace. 
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NOTES 

1. This work was carded out during a period as guest professor at the Institut de physique th6orique, 
Universit6 de Louvain. 

2. Arnauld and Nicole (i683, 4~ pattie, chap. IX. De quelques d6fants qui se rencontrent d'ordinaire 
dans la m6thode des G6om~tres). 

3. Leibniz, 1686; Gerhardt, 1863, Vol. V, pp. 226--233. 
4. Cantor, 1913, pp. 892-896). In his famous book on the history of mathematics (Montucla, 1799- 

1802), the author does not seem to appreciate the Jesuit mathematician. He was not impressed 
with him when he wrote his earlier book on the quadrature of the circle (Montucla, 1754. 

5. Bosmans, 1901-1902, pp. 22-40. 
6. Hoffmann, 1942. 
7. 17 large volumes of manuscripts for which Hermann van Looy (1980, 1984) attempted a chronol- 

ogy. See also E. Sanvenier-Goffin, 1951. A careful study of the content of the manuscripts, in 
relation to the published book, would certainly reveal processes of thought in the mathematics of 
the early seventeenth century and may then complement an interesting study of Whiteside (1968). 
In particular this is true of the part devoted to the ductus. 

8. Apparently, the Opus geometricum was never translated. Short excerpts exist in French, English 
and German (for instance in K~tner, 1800, Vol. III, pp. 225-247). I have translated into French 
the whole book VI (with some other propositions) and this will appear with a commentary: Une 
algkbre de raison au XVllkme si~cle: la quadrature de l'hyperbole par Grdgoire de Saint-Vincent. 

9. To use history of mathematics for didactical purposes, at least for theoretical investigations in 
didactics, we have to pay the price and thoroughly analyse the data (Dhombres, 1978). 

10. We could say that this triangle's property plays the part of a Cartesian equation xy  = a. But 
Gregory does not make use of such algebraic notations. We should therefore resist the temptation 
to translate everything he says in terms of algebraic relations (more on this later). At least, the 
triangle property shows that any geometric progression of points on one asymptote gives rise to 
another geometric progression of points on the other asymptote (related to the first by an inverse 
ratio). It is to this kind of algebra that Gregory restricts himself. 

11. Positaqne ad diametrum AE ordinatim DG. 
12. Iisdem positis. Which also means that the figure of reference should be the same as in Proposi- 

tion 106. 
13. Scholion provided at p. 119 of the Opus geometricum. 
14. This is not the place to investigate more carefully the role played by images in the Opus geo- 

metricum, and their link with the general organization of knowledge during the sixteenth century. 
Images played many roles, a mnemotechnical one for example. This was remarkably well ex- 
plained by J. D. Spence (1980) when dealing with Matteo Ricci, another Jesuit mathematician 
educated at the Roman college and sent to China where he translated into Chinese the six first 
book of Euclid's Elements (in the Latin version of Clavius, 1574). Images had symbolic roles and 
they were used extensively by the Catholic Counter-Reform led by the Jesuit Fathers. Images, in 
the sciences, might be seen as the interface between a hermeneutic conception, so strong in a man 
like Giordano Bruno and the rationalist tradition, embodied in a Francis Bacon. When browsing 
in Brussels through the manuscripts of Gregory of Saint-Vincent, one is immediately struck by 
the frequency with which figures like 7 and 8 appear in the notes and in the more mature texts. 
They even turn up with various commentaries ! They are found even in the oldest folios and they 
must have been a recurrent image in Gregory's mind (for example ms 5785, p. 201 (red ink); 
ms 5784, p. 205; ms 5773-5775 at Proposition 124, or at Proposition 124, or at Proposition 150, 
Proposition 389 and Proposition 424). 
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m 

Fig. 9. 

15. This result could easily be obtained via an analytical proof. Since the abscissae (or ordinates) of 
the three triples D, I, E-E, L, G-D, E, G each form a continuous proportion, this is also true of D, 
I, E, L, G. However, Gregory of Saint-Vincent does not wish to adopt an analytical style so early. 
He clearly waits for a more important issue. This underlines his strategy and the clear opposition 
between Propositions 106 and 108. 

16. Since the tangent in I is parallel to the chord DE, this resuk is almost obvious if we complete the 
rectilinear triangle. Thus, two times the triangle area DIE provides the area of a rectangle, which 
is larger (due to inclusion) than the curvilinear area of the convex hyperbolic segment DIE. 

17. To be faithful to the original figure, segments BD, FE and HG must be drawn. But they do not 
appear in the proof, contrary to the Euclidean habit of naming all lines. Quite symptomatically, 
the original figure confuses B and D. 

18. We add this remark as a sort of dialectical complement to a previous note, in order to reassure 
those who may fear dealing with history of mathematics because they should then have to restrict 
themselves to the knowledge of one remote period. When studying old texts, we may certainly 
use today's achievements, for example to cut through some parts. It all depends on what we are 
looking for. An historian has no pretension to bring back the past in all its purity. In the present 
paper, we do not try to deconstmct all of  Gregory's methods. We have selected one topic: his 
repetitious style. Thus we feel free to summarize in a modem way his thinking about limits (or 
"terms" to use his own vocabulary). 

19. An analysis of the proof, and a translation, is to be found in the book already mentioned (J. Dhom- 
bres, Une algdbre des raisons...). 

20. Our aim is not to present the complete work of Gregory. We focus on a few points concerning 
proofs, and have even given up a large part of the usual scholarly apparatus. 

21. As they have a clear aim, we are not considering here authors who systematically provide as many 
proofs as they can of a given result. We know for instance books devoted to all known proofs of 
Pythagoras theorem, or of a fixed point theorem, etc. These books belong to the traditional genre 
of encyclopedias. 

22. A logarithm transforms geometrical means, defined by a ratio or logos into arithmetical mans, 
defined by a number of arithmos.However, a Jesuit student of Gregory, Antonio da Sarasa, was 
soon (1649) to observe the coincidence between the property of the hyperbola and logarithms. 
This paper, written in a very rhetoric Latin, is translated in J. Dhombres, Une algdbre de raison, 
op. tit. For the functional property of logarithms, see Acz61-Dhombres (1989). 

23. He wishes to present a converse of Proposition 109. If straight lines cut equal areas under the 
hyperbola, then abscissae must follow a geometrical progression. Under a continuity law, this 
result is, by the way, quite obvious. Gregorius aims at further results and investigates properties 
of the exponential function: this is a true inverse of logarithmic properties, at least if we think in 
functional terms. But in one proof, he makes use of a particular case of what he appears to be 
proving some propositions further! 

24. Opus geometricum, Book 2, De progressionibus, p. 51. 
25. Opus geometricum, Book 6, De hyperbola, p. 601. 
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