
A L A N  B E L L  

PRINCIPLES FOR THE D E S I G N  OF TEACHING 

ABSTRACT. In this introductory article, after some initial discussion of an appropriate approach to 
mathexnatics as a curriculura subject, we sketch a theory for designing teaching, based on mathe- 
matical activity, situations, tasks, and interventions, exposing and resolving cognitive conflicts, 
changes of structure and context, feedback, reflection and review. We next review the main psycho- 
logical principles underlying this theory, then consider some examples of teaching designs in the 
light of the theory. Thus we open the discussion of the theme of this issue, which continues with the 
fuller discussion of other examples in the remaining articles. 

INTRODUCTION 

Aims of Mathematical Education 

Mathematics arises from the attempt to organize and explain the phenomena of 
our environment and experience. It has been expressed thus: 

Mathematics is ... an activity of organising fields of experience. 

H. Freudenthal (1973, p. 123) 

Mathematics concerns the properties of the operations by which 
the individual orders, organises and controls his environment. 

E. A. PeeI (1971, p. 157) 

These descriptions are somewhat non-specific, though Peel is clearly referring 
to basic mental operations such as classifying, comparing, combining, repre- 
senting. A more specific characterization of mathematics is given by Gattegno: 

To do mathematics is to adopt a particular attitude of mind in which what we term relationships per 
se are of interest. One can be considered a mathematician when one can isolate relationships from 
real and complex situations and later on when relationships can be used to create new situations in 
order to discover fmther relationships. 

Teaching mathematics means helping one's pupils to become aware of  their relational thought, 
of the freedom of the mind in its creation of relationships; it means encouraging them to develop a 
liking for such an attitude and to consider it as a human richness increasing the power of the intel- 
lect in its dialogue with the universe. (1963, p. 55) 

Other authors have offered more controversial descriptions, which emphasize 
the logical aspects. One may recall Russell's "the subject in which we never 
know what we are talking about, nor whether what we say is true". For the pur- 
poses of guiding curriculum construction, we find the positive descriptions 
more helpful. 

Education is normally seen as a forward-looking, purposeful activity, the aim 
of which is to develop pupils' capacities and knowledge so as to equip them 
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more fully for adult life. This crude view is modified by the recognition that the 
aim of life-enhancement is available to some extent immediately, and indeed 
the concept of continuing education assumes that adults too can continue to 
derive benefit from educational experiences. 

In terms of the mathematical curriculum, one is attempting to give pupils 
experiences of organizing and interpreting significant areas of their experience 
by the use of mathematical ideas and activities in a way which equips them to 
continue to do this in adult life. It follows that classroom activity should reflect 
the way in which mathematical experiences arise in adult life as well as provid- 
ing genuine mathematical experiences for pupils in their own immediate situa- 
tion. This does not, of course, rule out important ancillary activities, such as the 
memorizing of important data or the practising of frequently needed skills, but it 
does set them in place as subsidiary to the main mathematical activity of 
inquiry. 

In designing lessons and building a curriculum, one needs to consider three 
aspects: the nature of the mathematical activity, the conceptual content, and the 
nature of learning. 

Mathematical Activity 

Most uses of mathematics involve a cycle of mathematization, manipulation, 
and interpretation - -  that is, recognizing in the given situation the relevance of 
some mathematical relationship, expressing this relation symbolically, manipu- 
lating the symbolic expression to reveal some new aspect, and interpreting this 
new aspect or giving some fresh insight into it in the given situation. A relative- 
ly complex case is the use differential equations for measuring the vibrations of 
a sWing leading to the prediction of a set of normal modes of vibration - -  a fun- 
damental and a sequence of harmonics. A more elementary case is the use of the 
concept of multiplication and the corresponding algorithm to determine the cost 
of a certain weight of goods at a given unit price. 

It may happen that the transformation of the mathematical representation, 
which is the middle part of this cycle, gives rise to some new relationships or pro- 
cedures which can then take their place in the body of mathematical knowledge. 
In the examples quoted, this may consist of new methods of solving the differ- 
ential equations or a recognition of the inverse nature of multiplication and divi- 
sion. We might think of the former type of activity - -  the making and using of a 
mathematical representation of reality - -  as the typical applied mathematical 
activity, and the latter as pure mathematics. (The Dutch workers use the terms 
"horizontal" and "vertical" mathematization for these processes.) 

Traditional mathematics instruction has assumed that the part of this process 
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which most needs teaching is the middle part - -  that is, the algorithms for cal- 
culation and the methods of solving the equations. Even from early times, these 
methods were the precious treasures handed on from one generation of priests 
or clerks to the next. Historically, there was progress in the way the computa- 
tions were schematized, from the abacus or calculation table with lines and 
stones, to the abacus on paper and lastly the column algorithms. But traditional 
mathematics lessons have consisted of the demonstration (sometimes with 
explanation) of a single method followed by practice with a variety of different 
numbers. Converting fractions to decimals or percentages, performing opera- 
tions on directed numbers, and solving proportion problems have all been dealt 
with in this way. When the problem structure varies from the standard type (for 
example, when givens and requireds are rearranged), it has been assumed that 
there is a need for further specific teaching, rather than the extension or adapta- 
tion of the basic idea by the pupils themselves to apply to the changed situation. 
In geometry, the traditional model has been to demonstrate the proof of a theo- 
rem and then to set exercises requiring identification, in a more complex dia- 
gram, of a figure, to which the conditions of the theorem apply, and to use the 
result of the theorem to deduce some new property of the diagram. What is clear 
now, however, is that the initial recognition of the mathematical relations in the 
situation and their representation also present difficulties as serious as those met 
in the manipulation phase, and that these have not usually been adequately treat- 
ed. To use an analogy, the emphasis has been on learning to use tools and not 
on making furniture; and when the latter is attempted, it demands strategic capa- 
bilities - -  concerning planning, designing, costing, choosing materials, and 
selecting tools - -  which have not been developed. 

Thus, the pupils' main lesson experience should be of genuine and substantial 
mathematical activities, which bring into play general mathematical strategies 
such as abstracting, representing, symbolizing, generalizing, proving, and for- 
mulating new questions. These are the activities which embody the raison 
d'etre of the subject. Alternating with these should be the learning of the partic- 
ular concepts and skills needed for the exploratory activity. 

Learning and Its Outcomes 

Given that the pupils are to be offered activities which embody the characteris- 
tic mathematical strategies, and which embrace the major concepts of the sub- 
ject, what needs to be done to turn these into learning experiences? That is, 
what can we do to make it more likely that the pupils will actually perform bet- 
ter when they meet these or similar tasks again? Learning is not just success in 
the present task but improvement in capability. This factor has been neglected 
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in some recent pedagogies, which assume that a sequence of gently graded 
problem-solving tasks results in learning. Our research (see Bell, 1993, pp. 
115-137) has shown that such improvements are short-lived unless positive steps 
are taken to make the gains more permanent. 

Skills, Concepts, and Strategies: Exploratory and Focused Activities 

The learning of mathematics involves the development of a number of some- 
what different types of acquisition; in our discussion of mathematical ability, 
we have drawn attention to the need for learning general mathematical strate- 
gies, as well as particular concepts and skills (Bell, Costello, and Ktichemann, 
1983). To some extent these all figure in every mathematical activity, but if one 
is concerned, as we are, to promote substantial learning, it is helpful to focus at 
any one time on some particular aspect, to raise it to the level of consciousness, 
and to offer appropriately intensive experience. Thus, to develop the strategy of 
generalizing one would offer a set of experiences, of different types, in different 
contexts and in different conceptual fields, but each requiring the forming and 
expressing of some generalization, and one would draw attention to the charac- 
teristic features of the process. Particular skills or concepts would be dealt with 
in a similar way. It is thus appropriate to alternate general exploratory activities 
with work focused on related specific concepts, strategies, or skills. 

In some respects, the requirements conflict. For example, in an activity aimed 
at developing the ability to carry through an investigation, in which one follows 
up each discovery by choosing an appropriate question to tackle next, one can- 
not control which concepts and skills will be involved in the work as it pro- 
gresses. Conversely, when the aim is to work on some particular concepts and 
skills, it is necessary for the discussion to be guided so as to explore the various 
aspects of those concepts; one cannot at the same time allow the inquiry to take 
its direction from what appears the most relevant question to ask next. 

The lesson sequences described in the following sections are mainly concept 
focused rather than strategy focused. However, the starting tasks could alterna- 
tively be developed into strategy- or skill-learning sequences by altering the 
focus of attention, thus choosing different aspects for repetition as the task is 
developed into a learning sequence. 

PRINCIPLES FOR DESIGNING TEACHING 

Our design principles are the following. First one chooses a situation which 
embodies, in some contexts, the concepts and relations of the conceptualfield in 
which it is desired to work. Within this situation, tasks are proposed to the 
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learners which bring into play the concepts and relations. It is necessary that the 
learner shall know when the task is correctly performed; hence some form of 
feedback is required. When errors occur, arising from some misconception, it is 
appropriate to expose the cognitive conflict and to help the learner to achieve a 
resolution. This is one type of intervention which a teacher may make to assist 
the learning process. 

Another general mode of intervention is in adjusting the degree of challenge 
offered to the learner by the task; the extent to which the task itself provides this 
flexibility is a significant task feature. The next requirement is for ways of 
developing a single starting task into a multiple task, bringing the learner to 
experience a rich variety of relations within the field. Typically, this can be 
done by making changes of element (e.g., type of number), structure, and con- 
text. The degree of intensity of this complex of learning experiences is an 
important factor. Reflection and review are other key principles; they imply the 
perception and study not only of the basic concepts and relations within the 
tasks but also of the properties of the different types of problem within the field 
and of the methods of solution found - -  meta-knowledge of the tasks and of the 
activity. 

In the following sections, we shall first review the evidence for the psycho- 
logical principles on which this design theory is based, then discuss some exam- 
pies of curriculum designs to establish how they relate to these principles. 
Evidence of the success of these developed teaching sequences will be consid- 
ered, where it exists. 

U N D E R L Y I N G  P S Y C H O L O G I C A L  PRINCIPLES  

We shall consider connectedness, structural transfer across contexts, feedback, 
reflection and review, and intensity. 

Connectedness 

A fundamental fact about learned material is that richly connected bodies of 
knowledge are well retained; isolated elements are quickly lost. This weU-estab- 
lished principle was demonstrated by Bartlett (1932); he gave people a number 
of story passages to read and then asked them at various intervals of time to 
recall the story. He found that, as time went on, the recalled stories become 
smoothed; details incongruous with the general picture were lost, and additional 
details fitting into the general pattern were unconsciously invented. Similar 
trends were observed when they attempted to recall and remake drawings. It is 
this principle which explains the importance of discussion which explores the 
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relations surrounding a concept from all possible points of view. Two pictorial 
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Figure 1. Two series of drawings from memory (Bartlett, 1932, pp. 178-181). 

The connectedness principle is also amply attested by the difficulty of reorga- 
nizing a well-established cognitive structure to accommodate new material. For 
example, the principles that addition and multiplication make numbers bigger 
and subtraction and division make them smaller - -  formed from experience 
with natural numbers - -  persist when pupils are otherwise working correctly in 
the extended field of directed numbers or rational numbers. The importance of 
cognitive conflict is shown in both the Gelman experiment described below and 
in our own diagnostic teaching research reported later in this issue. 

Connectedness also facilitates the retrieval of items from memory. It is gener- 
ally accepted that long-term memory is of virtually unlimited capacity; the limi- 
tation on its effectiveness concerns the retrieval of desired material, and this 
clearly works best when the stored material has many interlinks and these are 
organized in a helpful way - -  for example, in hierarchies which the person can 
use when searching. 

There is also considerable evidence that children use and invent methods of 
their own to perform tasks for which they have actually been taught standard 
methods in school. Their methods appear to be constructed from elements of 
well-connected and well-assimilated knowledge, and it is clear that in these 
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cases the taught methods have not been similarly well assimilated. 
Plunkett (1979) quotes several examples of calculations performed with 

understanding in a non-standard way. The calculation "What's 213 take away 
188?" is solved: "Well, it's 12 up to 200 and 13's 25". Jones (1975) made a more 
substantial analysis of the methods by which the subtraction 83 - 26 was correct- 
ly evaluated. Three of these methods had been taught as standard. Twenty-five 
children successfully used one or other of these; but fifty children obtained the 
correct answer by one of fourteen other methods that had been developed with- 
out being taught. 

Somewhat similar results are quoted by Mclntosh (1978), who describes a 
variety of self-devised methods that depend on conceptual understanding and 
are reasonably efficient, at least for the individual concerned. A particularly 
large range of different procedures was adopted for the subtraction 431-145. An 
example is: "Took 1 from 431. Took 45 away from 430 made 385. Then added 
1 to make 386. Finally I took 100 away answer 286". 

The variety of thought-processes is surprising, and sometimes amusing, and 
contrasts strongly with the narrow path which the learning of standard tech- 
niques might be expected to provide. 

A study of how effectively children were helped, in typical classroom set- 
tings, to build connections between concrete mathematical experiences and for- 
malizations of the relevant principle was made by the project Children's 
Mathematical Frameworks based at Kings (formerly Chelsea) College, London 
(Johnson, 1989). The transition from concrete experiences to formalization of 
the mathematical principle was followed through in seven topics, with children 
aged between 8 and 13. Two examples were (1) area - -  moving from covering 
with squares to the formula length times breadth - -  and (2) fractions - -  forming 
and using the principle of equivalence numerically, after experience with divid- 
ed regions. Typically, pupils were able to adopt the formalized principles but 
not able to relate them to the concrete experience. The degree of mismatch 
between the teaching and the pupils' state of knowledge was summarized as fol- 
lows: typically, of six pupils taught, two understood already, two failed to 
understand both before and after, and the remaining two learnt some use of the 
principle, but not necessarily successfully and generally not with insight. This 
strongly points to the need for beginning lessons with tasks that allow the pupils 
to use and to show their existing knowledge. The teacher would build on this 
knowledge and help the pupils to develop their own methods, rather than expect 
the children to leave this knowledge aside and attempt, possibly unsuccessfully, 
to pick up a new method. At the same time, any errors and misconceptions 
which the pupils show must be dealt with. 

A particularly important kind of connectedness is logical implication. It is 
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often assumed (especially by those who have acquired facility in mathematics) 

that if a certain relation is known then so are all its logical consequences - -  at 

least if the chain of  connection is not too long. If  this were true the learning of  

mathematics would not present the difficulties it does. That this is not so for 

mos t  people  implies both that pupils should be persistently encouraged to 

stretch small amounts o f  knowledge as far as possible by exploring implications 

and that they should be made aware of  as many such relations as possible. 

Structure and Context 

It is also a common assumption that once mathematical ideas are understood, 

the recognition o f  them in fresh contexts does not present any great difficulty. 

In fact, structural knowledge tends to be tied to the context in which it is learned 

and is not easily transferred. 

The effect of familiarity of context and the difficulty of transfer of structural knowledge 
across contexts have been shown vividly in a sequence of experiments begun by Wason 
(1966). In its original form, the task used was as follows: subjects are presented with 
four cards, showing respectively A, D, 4, 7. It is known that every card has a letter on 
one side and a number on the other. Subjects are then given the rule "If a card has a 
vowel on one side, then it has an even number on the other side" and are told "Your task 
is to say which of the cards you need to turn over in order to find out whether the rule is 
true or false." 

To solve this task, it is necessary to turn over A and 7 in order to check that the com- 
bination of vowel with odd number does not occur. The other two cards do not matter: 
from the rule, D can have an even or an odd number on the other side; the 4 can have a 
vowel or a non-vowel. Thus the key to the task is to consider only those cases which 
might falsify the rule. In fact, what most subjects do is attempt to confirm the hypothesis; 
this is equivalent to turning over the A and the 4 cards. Out of 128 university students, 
only five chose the two correct cards (Johnson-Laird and Wason, 1970). 

In Wason's original rule, the elements are fairly abstract and the relationship between 
them is arbitrary. Later studies examined the effect of adopting a more realistic guise. 
Their findings suggest that the difficulty of the task is not so much due to its logical 
structure per se but to its content or mode of presentation. The first of these studies was 
by Wason and Shapiro (1971) who used the rule "Every time I go to Manchester, I travel 
by train" and presented subjects with four cards showing Manchester, Leeds, Train, and 
Car. They found that 10 out of 16 subjects correctly chose to turn over the cards Manch- 
ester and Car, compared to a control group of 16 subjects given the original task, of 
whom only two chose the correct cards. 

An even greater increase in facility was found by  Johnson-Laird, Legrenzi, and 
Legrenzi (1972) who used the rule "If a letter is sealed, then it has a 50 llre stamp on it". 
Subjects were asked to imagine they were post-office workers sorting letters; they were 
presented with the five envelopes shown below (see Figure 2) and instructed to "select 
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those envelopes that you definitely need to turn over to find out whether or not they vio- 
late the rule". 

ITd 

Figure 2. Letter task used by lohnson-Laird et al. (1972). 

Subjects were given two such realistic tasks and two symbolic tasks (in which the 
rules were similar to Wason's original rule, but envelopes were used rather than cards). 
Again, the realistic tasks proved substantially easier than the symbolic - -  22 out of 24 
subjects getting at least one correct, as against 7 out of 24. It was also noted that there 
was a striking lack of any direct form of transfer between types of task and that on subse- 
quent questioning only two subjects acknowledged that the underlying logical structures 
were the same. Other researchers make similar observations, adding strong support to the 
view that it is the context rather than the logical structure which is crucial to solving the 
tasks. 

This work casts doubt on the traditional practice of teaching a mathematical 

concept or method, offering a mixed collection of applications, and assuming 
that the recognition of the relevance of the mathematics to the application does 
not present serious difficulty. It suggests, rather, that there should be extensive 
exploration of the structural relations within one familiar context, then repeti- 
tions of the study in another familiar context, as learners look for signs that the 
structural aspects are the same. Further contexts may be explored, moving 

learners towards unfamiliar ones and ensuring that those in which subsequent 
application is desired receive specific attention. Tasks which deliberately ask 
for the transfer of a given structure to a new context have also been found valu- 
able m for example, "Here are some questions on number lines; what would 
they be in the context of money transactions?". 

More direct evidence of failure to connect in-school and out-of-school expe- 

riences is provided by some recent ethnographic studies. Carraher, Carraher, 
and Schliemann (1985) studied the calculations used on the street by young 
Brazilian vendors and compared them with what was being done in school. One 
typical boy calculated the price of 10 coconuts at 35 cruzeiros each as follows: 
3 is 105, then 3 more, 210, and another 3, 315, and 1 more, 350. In school, these 
boys were quite unable to perform similar calculations by the methods taught. 
Lave (1988) also found great differences between adults' competence in work- 
ing out the best buys in the supermarket and their corresponding work in school. 
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Lave used the term situated cognition to describe the way these competences 
were linked with contexts. However, such evidence is perhaps unnecessary to 
convince teachers, who will be quite sufficiently familiar with, for example, 
pupils' apparent inability to recognize in a science lesson a piece of mathe- 
matics which they have undoubtedly studied in mathematics class, and the fre- 
quent confession by adults of their inability to see the relevance of much of 
their school mathematics to anything outside the classroom. 

Feedback 

The next learning principle is that the pupil should know immediately when she 
has correctly solved the given problem. 

The importance of this is clear if one considers for a moment the learning of a 
pupil who works an exercise, getting some answers wrong but not knowing this 
until her book is returned, some days later, marked "7/10" - -  which she may 
regard as pretty good. The effect of this work has been to reinforce the three 
wrong responses as effectively as the seven correct ones. Even end-of-lesson 
provision of answers has the same effect unless time is provided to correct the 
errors, identify their cause, and take steps to avoid their future occurrence. 

An experiment which shows vividly the positive effectiveness of immediate 
feedback in a conflict situation is that of Gelman (1969). The aim was to train 
five-year-old children to achieve the Piagetian conservations of length and num- 
ber - -  that is, to recognize when two lines were of the same length, even though 
displaced relative to each other, and to know when two rows of objects had the 
same number, even though they might not cover the same space. The children 
were given 32 sequences, each consisting of six trials. Two of the sequences are 
shown schematically in Figure 3; they are actually presented using objects. The 
other problems were variations of this with respect to colour, size, shape, start- 
ing arrangement, and combinations of quantity. 

For the length training, in each trial children were asked to point to two con- 
figurations which had the same length and to two which had different lengths. 
They were told immediately, "Yes, that's right" or "No, that's not right", but 
nothing more; the correct choice was not indicated. Sixteen six-trial problems 
were presented to the children on each of two successive days, alternating 
length and number problems. On the third day, the post-test was given, consist- 
ing of conservation tests on the concepts of number (trained), length (trained), 
liquid quantity (untrained), and substance (untrained). The post-test was repeat- 
ed two to three weeks later. Two control groups were used, one of which had 
the same problems but without feedback of correctness, the other using prob- 
lems in which the differences between the the configurations were obvious and 
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Figure 3. Number and length discrimination problems (Gelman, 1969). 

qualitative, not quantitative - -  for example, two toy lions and one toy cup. The 
results showed that the trained children produced 90 to 96 percent correct 
responses in the post-tests on number and length and about 55 percent correct in 
the transfer to liquid quantity and substance. The non-feedback group scored 20 
to 30 percent correct on number and length, and virtually nothing on the transfer 
tasks. The second conlrol group scored almost zero throughout. In the delayed 
post-tests, the 90 to 96 percent responses were maintained, while the scores on 
the transfer tests increased from 55 to about 70 percent. It was also observed 
that the quality of explanations improved between the two post-tests. Gelman 
attributes the success to the large numbers of trials and the alternation of num- 
ber and length sequences, as well as to the immediate feedback. 

Inconflict-discussionlessons (seeBell, 1993,pp. 115-137)feedbackis aninte- 
gral part of the process of discussion in pairs, in groups, and in the class as a 
whole. In other tasks, including games, the mode is predict and check (for 
example, with calculator or number line). In certain practice tasks (e.g., scale 
reading), the sum of each group of five answers is given as a check. In the Logo 
microworld tasks (e.g., Sutherland, 1993, pp. 95-113), feedback is in terms 
of succesful achievement of the desired picture on the computer screen. 
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Reflection and Review 

Exploring relationships and resolving conflicts through discussion are in them- 
selves reflective activities. Here we imply something more - -  a more global 
reflection on the process of performing the task and identifying the crucial 
steps, and on the new knowledge gained and how it fits into one's existing body 
of knowledge. This development of awareness is important in labelling the 
newly gained knowledge in memory in such a way as to make it accessible on 
relevant future occasions. 

Direct experimental evidence of learning with and without specific acts of 
reflection is hard to find, even though it makes the difference between 
behaviourist conditioning and constructivist theories of learning. For Piaget, the 
key learning act was "reflective abstraction" and Schoenfeld (1985) has shown 
that successful problem solvers monitor their solving activity. There is, howev- 
er, a body of evidence showing how the kind and amount of learning depend on 
the mental orientation brought to the learning activity. 

Craik and Lockhart (1972) review a number of studies in which subjects were 
oriented to process material in different ways, and they argue that it is "depth" 
and "elaborateness" of the processing that determine how well material is sub- 
sequently recalled. In one such study (Tresselt and Mayzner, 1960), subjects 
were presented with a series of words and asked to (a) cross out vowels, (b) 
copy the words, or (c) judge whether the word was related to the concept "eco- 
nomics." On a subsequent free-recall test, four times as many words were 
remembered under condition (c) and twice as many under condition (b) as under 
condition (a). In another study (Shulman, 1971), subjects had to scan a list of 
words for features that were either structural (e.g., words containing the letter 
A) or semantic (e.g., words denoting living things). On a subsequent, unexpect- 
ed recognition test, performance in the meaningful (semantic) condition was 
significantly better than in the structural condition, even though scanning time 
was about the same for both. A similar result was found by Hartley (1980) in a 
study involving student's recall of statistical material. In this experiment, poly- 
technic students were presented with a text on probability and asked questions 
at either a syntactical level ("underline any words with more than six letters") or 
a semantic level ("either paraphrase parts of the material or provide examples of 
the propositions"). Three post-tests were used: free-recall, cued-recall, and a 
comprehension test. The two "semantic" groups were much the superior on all 
post-tests: in the free-recall test they recalled sentences whilst the syntax group 
recalled words and short phrases. The two semantic groups recalled about the 
same amount of material, but the "paraphrase" group was superior on free-recaU 
and the "example" group on comprehension. The experiment suggests that dif- 
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ferent tasks engage and develop different cognitive structures which result in 
different learning outcomes. The implications are that teaching should empha- 
size meaning, not particular verbal forms or formulae, and that asking for exam- 
pies induces deeper-level processing than does asking for paraphrasing. 

Intensity 

It is well known that repetition is an essential element in learning. Questions 
remain concerning the effects of the degree of variety in the set of tasks; some 
of these are implicit in the foregoing discussion. There is clearly no general 
answer to this question, but there is evidence in some experiments that what 
might be regarded as excessive repetition has resulted in striking gains. It is also 
clear that while repeated memorization tasks may produce short-lived results, 
intensive insight-demanding tasks produce longer-term gains. 

Brownell and Chazal (1935) showed that two months of daily drill on addi- 
tion facts increased speed of direct recall, but the effect soon faded. Also, the 
work made no improvement to the pupils' methods for working out other facts 
from known ones (e.g., 9 + 8 is two 8's [16] and 1, so is 17). 

Gelman's strikingly successful conservation training, discussed above, 
employed a large number of similar problem sequences, with controlled struc- 
tural and contextual variation. The purpose in this case was to establish two new 
concepts by discrimination. In another experiment in which the finding of gradi- 
ents of graphs was taught by a Gagnr-type learning program, involving the step- 
by-step building of subskills, some students were required to answer three 
consecutive problems correctly in each unit before moving to the next, while 
others had only one problem to answer correctly. The first group took 25 
percent more time, but achieved 50 percent more learning (Trembath and 
White, 1979). 

Our own diagnostic teaching experiments (Bell, 1993, pp. 115-137) have 
shown that intensity is related to successful learning. Games provide such 
experience in that many trials with limited variation are involved and a 
discussion focused on one or a few points is itself an intensive experience. 
Our results suggested additinally that the most vigorous and intensive 
dicussions resulted in the greatest amount of learning. However, it is clearly 
not extensive repetition alone which has the effect: this property was 
possessed also by the contrasting teaching materials which we used. The 
presence of feedback and a high level of personal engagement are important. 
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TEACHING DESIGNS 

We shall now elaborate somewhat the design theory sketched briefly above 
before considering some actual examples. 

Situation, Task, and Intervention 

The situation needs to have high face-validity - -  to be as close as possible to 
actual situations. This reduces the problem of transfer. For example, if we wish 
pupils to be able to operate mathematically in real-life situations, then such situ- 
ations must be dealt with in class. Next, within the situation, a task containing 
key concepts is proposed, either by the teacher or, preferably, in discussion with 
the class. The task is attempted by the pupils and only when their initial 
responses have been made does the teacher intervene to offer hints or help 
towards a solution. This helps to ensure that the new knowledge will be well 
embedded in the pupils' existing cognitive structure. By contrast, a demonstra- 
tion-plus-exercises method risks failing to make any contact with the pupils' 
actual knowledge, as was a real danger in the Children's Mathematical Frame- 
works project, referred to above (Johnson, 1989). It also ensures that those 
aspects of the problem which do present difficulty will be dealt with m for 
example, the problem-formulating stage or the construction of an equation to 
represent the problem. 

Thus the first principle of lesson design is to begin by offering the target 
tasks - -  that is, appropriately challenging tasks that typify situations we want 
pupils to be able to deal with in the future. The second principle is flexibility 
of task and of intervention. Flexibility of task is necessary to ensure that all 
pupils in the class, with their varied knowledge and abilities, can find a suitable 
challenge within it; flexibility of intervention means that the teacher should 
negotiate with the pupil in the course of the task, adjusting the challenge to keep 
it at an appropriate level. 

Careful minimal interventions also encourage learners to stretch their existing 
knowledge as far as possible and thus to extend and enrich their conceptual net- 
work of facts, relationships, and their implications, rather than to assume that 
each new twist of the situation requires an additional element of instruction. 

Reflection and discussion, with the learners expressing their perceptions of 
the situation in as many different ways as possible, help to connect the new 
knowledge firmly with the old; they also provide for the expression and sharing 
of different understandings on the part of different learners. 
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Feedback 

In some cases feedback is intrinsic to the task; in other cases, a predict-and 
check-mode may be possible - -  for example, a mental calculation may be com- 
pared with a calculator result. In some games, the opponent may challenge a 
doubtful answer. In sets of written exercises, the sum of  five successive 
answers, or something similar, may be given as a check. Sometimes definite 
feedback of correctness is difficult or impossible, but provision can be made for 
discussion of the task in pairs, or in a group, so that at least some errors and 
misconceptions can be detected. 

Changes of Structure and Context 

The development of a single task or question into a set which covers the field of 
relevant relationships in the situation can be achieved in several ways. The ini- 
tial task can be varied by interchanging the roles of the given and the required 
information; the type of element (e.g., small/large whole numbers, decimals) 
can be changed. Reversals, such as asking pupils to make up their own ques- 
tions, and to cover the set of possible structures, are possible, so are role-rever- 
sals such as "marking homework", where pupils are asked to detect and explain 
errors. 

The principles above imply that this should be done within a single situation 
and context and then repeated in a second one, and so on, carefully controlling 
the perceptual distance between one context and the next so as to achieve even- 
tual availability of the structure in any context, but without provoking break- 
downs by demanding too great a jump. It may be an appropriate task, as part of 
this process, to ask specifically for the translation of a given question into a new 
context, such as "If this number line question were put in a money context, what 
would it be?". 

Review activities need to be built in at the end of a cycle of exploration. They 
may take various forms, such as a class discussion pooling the various results 
and/or methods which different pupils or groups have found; a self-check test, 
possibly including a selSassessment against a list of objectives within the topic; 
a story or written report of work done or results found; the making of a "concept 
map" of the various concepts, relations, facts within the topic - -  identifying 
their place in the broader field of mathematics. Looking back is not of itself an 
attractive activity for most pupils, but some of these possibilities may be attrac- 
tive and effective. 

Some degree of intensity of experience is necessary for effective learning, 
whether of facts to be memorized, concepts to be understood, or strategies to be 
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acquired. Creative activities - -  such as requests to design similar tasks of their 
own, to make up some similar questions, or to write a story around a given situ- 
ation or a report of the outcomes of an exploratory activity - -  demand reflection 
on the material and the mental reorganization of it. They create new connections 
and so establish the material more firmly in memory as well as provide more 
accessibility to it. They can also provide personal creative satisfaction. 

Differentiation by Individualization or Flexible Tasks 

Traditional teaching does not take much account of differences between the 
pupils in a particular class with respect to their speed of learning or to their pre- 
vious knowledge. Considerable differences typically exist, even in classes 
which have been formed to be as homogeneous as possible. One solution to this 
problem which has been identified on quite a wide scale is to provide a system 
of individual learning material, booklets, or worksheets through which pupils 
may progress at their own rate. Such schemes are in some places quite popular, 
but research shows that they tend to produce short-lived and superficial learn- 
ing, probably due to the drastic reduction in the teacher's role as mediator and 
interpreter and the reliance on the printed word and diagram as almost the sole 
means of communication with the learner ( Bassford, 1988; Bell and Bassford, 
1989; Bell and Birks, 1990; Bell, 1993; Birks, 1987). In contrast, those methods 
which we have found to be effective involve the crucial management of the 
learning situation by the teacher. These methods all employ flexible tasks in 
which the particular questions addressed are determined initially in discussion 
between the teacher and the pupils. Typically, also, the pupils generate further 
questions and challenges for themselves and each other, thus posing questions 
at an appropriate level for themselves and ensuring that they are all working at 
their personal frontier of knowledge. 

F I R S T  E X A M P L E  - -  B U S  N U M B E R S  

Using the Social Situation 

Exploiting interaction in the classroom is an implicit feature of the lesson 
aspects we have discussed. It is a more explicit feature of some of the work done 
by French researchers, which will be discussed later. The situation depicted in 
Figure 4 is one of several used by van den Brink (1974) to introduce addition 
and subtraction to first graders with the use of an arrow notation. The sequence 
begins with active games in the playground and in the classroom, with rides on 
the school bus, discussion of the number of children on the bus, and the number 
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getting on and off at stops. Later problems are presented pictorially and, later 
still, diagrammatically. Thus the "task" begins as a (dramatic) situation, within 
which certain aspects are identified for particular study. 

Figure 4. Bus-number problems (van den Brink, 1974). 

Structural Variation 

Note that both addition and subtraction are involved together from the begin- 
ning, as is natural in this situation. Also, the natural concept is not that of a 
binary operation but of an initial state, a change, and a final state, and indeed of 
the repetition of this cycle as the bus moves on from one stop to the next. Other 
situations (e.g., double-decker buses) are used to exemplify other types of addi- 
tion such as the binary union of two sets. 

The children usually solve the problem by counting. For all types of addi- 
tion, this is straightforward. For the first type of subtraction, the change- 
unknown problems, it is almost as easy, as one has only to keep tally of the 
number of number-words counted: from eight to nine, then ten, is one, two 
more. The initial-state-unknown problem is considerably harder, to conceptual- 
ize as well as to calculate, and for many children it would be impossible except 
for its attachment to the real context - -  how many passengers were there on the 
bus before it reached the stop. The solution requires a reversal of the sense of 
the "plus two"; two must be taken away from ten. Once this is appreciated, the 
calculation requires counting back two numbers from ten; most children man- 
age this quite well. An alternative approach is by trial: "Where would I be if in 
two more places I would reach ten? I think, about eight. I'll try it. Eight - -  
nine, ten. Yes." 

Thus, within this situation, problems are posed covering the three different 
additive structures which may be symbolized as ST(S), S(T)S, (S)TS - -  that is, 
as an initial state transformed into a final state, the brackets indicating which 
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element is unknown. The structures [SS](S) and [S(S)]S, where two states com- 
bine to give a third, as in the binary union of sets, do not occur in this bus-stop 
situation, but they may if attention is focused on double-decker or articulated 
buses. It is helpful if the children can recognize quite consciously the different 
types of problems; we have found that this is in general easier for them than we 
expected, at least for older pupils. 

Errors and Misconceptions 

The most common numerical error at this point is to count both starting and fin- 
ishing numbers - -  in this case, to count eight, nine, ten and take three as the 
solution. Apart from numerical errors, van den Brink lists four major conceptual 
errors which occur in these problems. These all concern the roles played by the 
numbers and the relations among them. The first two both appear to stem from 
the difficulty of co-ordinating two items of data. Shown pictures of a partly full 
bus and an empty one, and asked how many passengers got off, some children 
simply count all the empty spaces, thus failing to take account of the number 
actually on the bus before the stop. Similarly, when asked, in another problem, 
of how many got on, some count the total number shown as being on the bus. 
The second difficulty arises from confusion about the different roles of the dif- 
ferent items of information. This occurred most frequently when the problems 
were represented diagrammatically rather than in full pictorial form as shown in 
Figure 5. 

Figure 5. Children's scripts, bus problems (van den Brink, 1974). 

Both of the illustrations in Figure 5 are problems made up by children. For 
the first, Raymond explained, "then the cat ate six. Then he got two more 
chunks" (pointing to the dots under the arrow). "He took one away. Then he had 
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seven". Here Raymond has made a sum which is somewhat more complex than 
the usual ones, since the increase and decrease occur together, without any 
recording of the intermediate state. The second problem shows a more complete 
loss of the meaning of the representation: Kim's explanation was that all the 
numbers in the bus-boxes are, in fact, changes and some of the arrow numbers 
actually represent numbers on the bus. This is a typical example of loss of 
meaning; the connection of the diagram to the real situation has been lost and 
needs to be remade. This is, of course, the "treatment" for all of these conceptu- 
ai errors - -  to get the children to re-create the real situation which the problem 
describes and to think about the problem in that context. 

Choice of Situations and Tasks 

First there is the choice of a real context as a starting point. This is important 
from several viewpoints. Most obviously, it adds interest and secures fuller 
involvement of the pupils. But equally it helps them to relate mathematics and 
reality, so that they are more able to use their school experience to add insights 
into their daily environment. When making bus journeys, they will know that 
they can, if necessary, find out how many people got on or off simply by count- 
ing the number of people on the bus before and after and performing a subtrac- 
tion. This gives a modest sense of that greater power over the environment 
which is one of the most fundamental aims of mathematical education. It also 
enables significant learning to continue in some of the many hours of the day 
and week outside the mathematics classroom. 

Second, the problems contain immediately a variety of structures, but remain 
a single context for some time, before taking up similar kinds of problems in a 
different context. This promotes the learning of inter-relationships and avoids 
the degeneration of learning to identifying those child-invented rules which 
enable the immediately given problems to be solved without any depth of 
understanding. This phenomenon is widespread when limited sets of problems 
are given. For example, a set of problems all involving addition leads to the rule 
"Pick out the two numbers and add them", whereas a mixed set involving both 
addition and subtraction (and possibly other operations too) makes it necessary 
to recognize features of the situation which indicate the operation. In contrast, 
compare the task "Fill the gaps in 3/4 = 6/8 = ?/12 = 12/? ...". This allows cor- 
rect answers to be obtained simply by continuing the sequences on top and bot- 
tom, without any understanding of equivalence of fractions. A real context 
allows such pedagogical hazards to be dealt with by "thinking what it means in 
the real situation". 
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Choice of Other Contexts 

Situations of a similar kind, but based on skittle games (knock down three, how 
many are left?) or marbles (had five, won three, how many are there now?), are 
seen by van den Brink as going along with the bus problem. He notes that each 
of these presents somewhat different sets of structures and of number sizes (e.g., 
in skittles there are always complements of nine; in marbles there is greater 
emphasis on changes and combinations of changes). Thus a progression through 
these situations provides both consolidation and extension of the earlier work. 

Focus on Awareness of Structures and on Possible Misconceptions 

In this situation, we know that the initial state-unknown problems are hard and 
that confusion of state and change occurs and is related to assumptions of start- 
ing or finishing empty or full. It is therefore important that problems be includ- 
ed that give rise to these errors and that they be exposed, discussed, and 
corrected. We have mentioned above that it appears that awareness of the prob- 
lem structures, and how different errors arise in them, can be learnt by children; 
how to facilitate this at different ages is an important research question. 

This mode of problem does not provide direct, immediate feedback to the 
learners on the correctness of their response. "Retelling the story in a different 
way" might be possible - -  effectively checking the solutions to the harder prob- 
lem structures by redescribing the solved situation in "forward" terms. Thus the 
solution to the reverse bus problem, ? + 2 = 10, might be checked by restating it 
as "eight on the bus, two got on, then ten were on altogether". Checking with 
neighbours certainly happens, but at this age (about 5 or 6) it is also necessary 
that the teacher look at the children's book and hear the children's account of it 
to monitor their understanding and detect error and misconceptions. 

In this situation, after the introduction of the story and some oral problems, 
the pupils solve several given problems in writing, then make up a few similar 
ones of their own. Van den Brink has taken this creative principle a state further 
in getting the pupils to make up pages of an arithmetic book "for the children 
who will do this next year". Three such pages were prepared at intervals 
through the year, and finally the pupils were asked to arrange these in order of 
difficulty. This provoked intensive reflection on the work which had been done, 
on which problems were easier and which harder; and why, and which types 
should be grouped together, and so on. 

Chain-sums, where the bus makes several stops, are also included. The situa- 
tion was introduced first by means of active games in the playground, with rides 
on the school bus, and in the classroom, with discussion of the numbers of pas- 
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sengers getting on and off. The pupils were then given problems on a work- 
sheet; initially, the buses were drawn, later the problems were presented system- 
atically. The pupils similarly began by drawing the buses and writing in the 
numbers, later becoming more schematic. Mistakes were detected by the teach- 
er's marking of the written work. These appeared later in the year when the 
problems were presented without re-enactment of the game. The mistakes con- 
sisted mainly of breakdowns in conceptualization of the problem - -  for exam- 
ple, mistaking numbers on the bus and numbers getting on; these were corrected 
by thinking back to the real situation. 

Closely related structurally to the bus situation are some problems used in our 
own work on "change" problems with negative numbers (see Bell, 1993, pp. 
115-137). These include movements up and down the popular music charts 
and the football league tables, and a "world weather" situation, in which 
journeys around the world involve changes in temperature. As in the bus 
situation, all three kinds of change problems occur (the unknown may be the 
final state, the change, or initial state). Arrow diagrams similar to van den 
Brink's are used and an aim of our work is to develop in the children an 
awareness of the different types of problems. 

Reflection and Discussion 

When competence has been acquired in solving the main types of problems, it is 
possible to reflect on the different types. One may note, for example, that addi- 
tions and subtractions can cancel each other out or that when one asks how 
many people were on the bus before a certain number got on or off, this "think- 
ing backwards" requires the opposite operation to the one stated in the question. 
(For example, if there are three more after the stop, there were three less 
before.) 

S E C O N D  E X A M P L E  - -  R A T E S  

A unit of work from the Nottingham Diagnostic Teaching Project (Bell et al., 
1985) provides an example to compare with that of van den Brink. Entitled 
"Rates" (Bell and Onslow, 1987; Onslow, 1986), it concerns problems involv- 
ing two extensive quantities and their quotient (an intensive quantity) m in par- 
ticular, problems of price (quantity, cost, ~unit price), speed (distance, time, 
speed), and miles per gallon. Research using tests and interviews shows that 
many pupils' solutions to these problems fail because of the influence of numer- 
ical misconceptions, such as "multiplying makes bigger" or "small/big is impos- 
sible", and also because distinguishing the roles of the two quantities in a rate 
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such as kilometres per minute or pence per gram is a serious obstacle (Bell, 
Fischbein, and Greet, 1984; Bell et al., 1989). A representative task, aimed 
at the latter difficulty, is entitled The Thrifty Thackers (Figure 6). 

~ U I P ~  THE 

THRIFTY 

THACKERS 
Nhere i s  the bes t  p lace  for  the 
?hackers to buy each of  t h e i r  i tems? 

They are not concerned with how =ueh 
o f  each Item they buy. HOWever, they 
do want to get  the bes t  va lue  fo r  
t h e i r  money. 

L;st 

Raisins 45p_ 50n~J ~;~'~ 
Ribbon 17p - 60 c~m l .~_.e,~ 
Lemonade 53P. 2L ~. .~.~,~ . 

c ea z 
Raisins 140gin -l?_p 

Ribbon 85cm-23p 

L Lorn0nade 2-5L- 68p 
NATIOHAL 

aisins 240gin -z~ 

ibbon 110cm -32~ 

~.monade 1-5L- 42 p 

Figure 6. Task from rates teaching unit (Onslow, 1986). 
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Here the concepts of pence per gram and grams per penny for each item pro- 
vide the means of deciding the question, though the comparisons in some cases 
can be made by more global rates (e.g., amounts for 10 pence). The pupils are 
asked, after discussion of the various ways of solving the problem, to study the 
possibility of using both pence per gram and grams per penny in each case and 
to observe the relation between these quantities. Thus by sharpening the poten- 
tial conflict, attention is drawn to the area of possible confusion and the distinc- 
tion is clarified. The request to make up their own questions was not put to the 
pupils in this lesson, but to construct a set of data like this would be an appro- 
pilate and interesting challenge. A separate lesson was devoted to making up 
questions from the starting points illustrated in Figure 7. 

The pupils in question were not used to this task; they found it hard, and 
many attempts failed. But it was clearly valuable in exposing the difficulties and 
drawing attention to the essential characteristics of such problems. 

p©gBL  

l~lal,:e up ~ alu4st:;o~, 
f,-om ~ .  ,'.fo,-,,.,d:;.,~ p,.ov;ded 
in ea~-~ balloon. 

¢~ t ;o r~s  r~uLg also be.. 

Figure 7. Making up questions task (Onslow, 1986). 
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A somewhat different question-generating activity has been tried in some 
experiments conducted by French researchers (on learning of linear functions or 
rates). In this case, a small amount of data was presented and pupils, working in 
groups, were asked to make a list of some possible questions which might be 
answered from this data. From each group's list, one question was chosen, by 
the teacher, for the group to work on. Thus the generation of questions by the 
pupils was used, in this case, to provoke the pupils into a more global and 
extensive consideration of the problem and the relationships in it than would be 
obtained if they were simply given problems to solve (Rouchier, 1980). 

The Rates unit also contained two games; one of these is shown in Figure 9. 
Another type of game is Directed Scrabble. In this, players place cards to 

make complete "words" on the table, each word connecting at some point with 
the existing display. The thinking required - -  for example, "3rd... Down 7 .... 
10th", or as shown in Figure 8, "--6, up 4, -2" - -  brings the crucial concepts 
into play. Any misconceptions which exist show up in wrong card placement 
and thus are challenged and corrected. The game may be played either with the 
ordinal position cards (3rd, 4th, etc.) or with directed number cards; the "move" 
cards are the same in each case. 

-5 
[XAMq 

3 -2 
[X3VVN 

7 -9 

-6 
Figure 8. Directed Scrabble game 

These games, focusing on the crucial thought patterns, including common 
misconceptions, may be used repeatedly, in appropriate units of work, and thus 
make further contributions to long-term development. They can also emphasize 
common smactures in different contexts, as when the isomorphism is recognized 
between the ordinals and the negatives in the two versions of Directed Scrabble. 
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x CROS cJOvEp,- + 

A c01r~lgtor 9ome rot two plotlers (or two ELtN3mS). / 
Each playlet(or team) will need. se~ .f a, un~rsL..~ / O-Z 
Take it, In turn tO: ~ " /  1'5 

1) Choo~ I;WO number~l iPro~ I:he~.'~ / 
~) multipk/ ~ divide oo~ number" by the oLher- witt, (/ _ 
tJour" ~ulculator. ~ O'Zt " 

i,) If U~ a r ~ "  is *,1 the b~cd o~er it with y~r  \ O" 6 
counl:er. 

THE FIKST PIt~YER ~o~Xl~,,~)lb CRO~; THE . ~  

Figure 9. Number game (Onslow, 1986). 

Cognitive Conflict 

All the activities described here are designed to focus sharply on the key con- 
cepts in the field in question and thus help new concepts to be formed by refine- 
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ment of the more primitive, cruder concepts which precede them. In some cases, 
studies of conceptual development show the persistence of applying concepts 
appropriate to one field in an enlarged field where they produce inconsistencies 
and errors (e.g., multiplying makes bigger). In these and other cases, notations 
or other perceptual features may lend themselves to misinterpretations. 

The presence of such misconceptions, which may be more or less deeply 
rooted, may be shown by consistent patterns of error or by statements made in 
the course of discussion. Previous research may also have indicated the likeli- 
hood of the existence of certain misconceptions in the topic in question. If stu- 
dents are to overcome these misconceptions, the teaching must expose and 
discuss them. Results of the Nottingham research show that (1) conflict teach- 
ing, which deliberately exposes misconceptions, is more effective than a "posi- 
tive only" method which warns against the misconceptions and so avoids them; 
and (2) that learning from games and other concept-involving activities is very 
much enhanced by intensive discussion in which the concepts and principles 
become articulated explicitly by the pupils (Bell, 1986-87, 1992a, 1993; Bell et 
al., 1985; Swan, 1983a, 1983b). 

OTHER EXAMPLES --  USING THE SOCIAL SITUATION 

Our methods make considerable use of the social aspects of classroom life; this 
will be clear already. But there are some further ways of exploiting this situa- 
tion which deserve mention; these examples come from work done by French 
researchers. 

In the first case, a two-person number-guessing game has been designed so 
that the urge to find a winning slxategy causes the pupils to develop the con- 
cepts desired. In the second activity, the different results obtained (in an angle- 
measuring task) by different pupils are displayed, thus presenting a cognitive 
conflict to be resolved. In a third case, briefly mentioned, the demand for differ- 
ent groups of children to communicate information (about the thickness of sev- 
eral kinds of paper) forces them to develop concepts of number pairs which are 
effectively rational numbers. 

The game "Whose Number Is Larger?" is intended for pupils (seven and 
eight years old) who know and can write numbers at least in tens and units, and 
probably in hundreds too, but who are not yet fluent in interpreting the numera- 
tion system in relation to ordering. The two players are each given, privately, a 
card containing a number. Their task is to find who has the larger number by 
asking each other questions, in writing. There is a single message pad and one 
pencil. Each player writes his or her question. Then each writes the other's 
question, and so on, until one of them announces that he or she knows whose 



T E A C H I N G  DESIGN P R I N C I P L E S  31 

number is bigger. The only question forbidden is "What is your number?". In 
this situation, pupils normally begin by trying to guess their partner's number, 
then progress to "Is your number bigger than ... ?" - -  eventually trying to avoid 
revealing their own number. In the course of developing a strategy for this, they 
find it necessary to become aware of the function of the different digits. Ques- 
tions such as "Has your number got three digits?" and "Is it in the 30s?" are 
asked. Thus the urge to improve the game strategy leads to the development of 
the concepts desired; the conditions of the game have been carefully designed to 
achieve this effect (Comiti and Bessot, 1987). 

The second example is of a short lesson sequence on the Angle Sum of a Tri- 
angle (Balacheff, 1990). This aims to expose pupils' latent intuition that small 
triangles (and small-armed angles) have smaller angles than larger ones and that 
thin triangles do not conform in order to motivate a need to prove that the sum 
must be exactly 180 ° . 

Members of the class (12 year olds) are first asked to draw a triangle and 
measure its angles. The results are displayed on the blackboard and divergences 
discussed (see Figure 10). It is agreed in the class that since different triangles 
were used, different results are not surprising. Next, everyone has a copy of the 
same triangle, which they measure, and again the results are collected. Pupils 
are challenged to construct triangles which have small and large values for the 
angle sum. Some of them make the attempt. It becomes clear that certainty is 
not achieved and that some more definite type of demonstration is needed. (This 
is subsequently offered by the teacher.) In the course of this work, problems of 
measuring angles of small triangles, necessitating lengthening arms - -  and con- 
sidering the justification for this procedure - -  bring into play any existing mis- 
conceptions about angle size, space between arms, and arm length and thus 
contribute to the long-term development of angle concepts. And it is clear that 
the social situation of the classroom has been manipulated to establish the rele- 
vance of public discussion, agreement, and demonstration. 

X 

X 

X 

X 

X X 

X X X X 

X X X X X X X X X X X X X X X 

106 172 176 177 178 180 181 182 184 185 I86 189 190 198 231 

Figure 10. Class results for angle sums of triangles (Balacheff, 1990). 
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Other experiments by French researchers have used communication situa- 
tions to provoke (1) proof-construction by requiring one pair of pupils to pre- 
pare to explain and justify their problem solution to another pair (Balacheff, 
1982); and (2) concept-formation by requiring, for example, one group of pupils 
to request another to specify, in writing, which of five types of paper, of differ- 
ent thicknesses, they require (e.g., "23 sheets of paper 'A' make 0.6 cm 
[Brousseau, 1981]). 
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