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Abstract. Consider a Hamiltonian system of two degrees of freedom at an equilibrium. Suppose that the
linearized vectorfield has eigenvalues ia, ia, — ix, — ia(x€R, « > 0) and is not semisimple. In this paper
we discuss the real normalization of the Hamiltonian function of such a system. We normalize the Hamilto-
nian up to 4th order and show how to compute its coefficients. For the planar restricted three body problem
at L, the coefficient that plays an important role in the investigation of the qualitative behaviour of periodic
solutions near the equilibrium is explicitly calculated.

1. Introduction

Consider a Hamiltonian system of two degrees of freedom dz/dr = X, with Hamilto-
nian function H, which has an equilibrium point at the origin. Furthermore suppose
that the linearized vectorfield X = DX (0) has two purely imaginary eigenvalues
of multiplicity two and is not semisimple. In view of the multiplicity of the eigen-
values we say that X, isin 1 : 1 resonance. However the nilpotent part of X distinguish-
es our case rather strongly from the better known resonances k :I with k # /. Another
feature of this resonance is that it arises at the bifurcation between elliptic and hyper-
bolic equilibrium points (see Section 6).

The general real normal form of a 4 x 4 nonsemisimple infinitesimal symplectic
matrix with eigenvalues ia, io, — iz, — iz (2 € R, @ > 0) is given by

0 —a O 0
o 00 0
0 p o 0

Its corresponding quadratic Hamiltonian function on (R*, @) in coordinates x,, x,
and corresponding momenta y, , y, is equal to

Hz(xa J’)=OC(X1J’2 ~x2y1)—%p(xf+x§)~ (2)

Here w = dx, A dy, + dx, A dy, is the standard symplectic form on R*.

The normal form (1) can be found in the paper of Williamson (1936) who determines
the possible normal forms for a linear Hamiltonian system under real symplectic
changes of variables. Burgoyne and Cushman (1974) give an algorithm for finding
the normalizing real symplectic transformation. Also Roels and Louterman (1970)
give an algorithm for normalizing linear Hamiltonian systems. However they cons-
truct a complex normal form using complex symplectic transformations. As Burgoyne
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and Cushman (1974) pointed out, normal forms under complex symplectic transfor-
mations do not determine the real normal form.

In the following section we will start with a review of the general normal form
theory for Hamiltonian functions with the origin as an isolated critical point. Then
in Sections 3 and 4 we will derive the normal form up to order 4 and we show how
to compute the coefficients of the terms of degree 4 in this normal form from the
Taylor expansion (up to degree 4) in the original coordinates. In these sections we
will assume that the quadratic terms of our Hamiltonian are in the normal form
given by (2), that is, the linearized vectorfield X has corresponding matrix given by (1).

In Section 5 we consider the Hamiltonian function H corresponding to the equa-
tions of motion of the planar restricted three body problem at the Lagrange equila-
teral libration point L,. A. Deprit (1966) gives the Taylor expansion for this Hamil-
tonian function H at L,. For a special value u =y, of the mass parameter u the
matrix of the linearized vectorfield has purely imaginary eigenvalues and is not
semisimple. Therefore it can be brought in the form given by (1) (Burgoyne and
Cushman, 1974). We have o = %\/5, p = —1. We apply the results of Section 4 to
calculate the coefficient a, of one fourth order term (a, turns out to be a positive
rational number). Emphasis is laid on this specific coefficient because further study
(work in progress with R. Cushman and J. J. Duistermaat) reveals that the sign of
a, determines the qualitative behaviour of the system.

The important role of this coefficient is also clear from the article of Meyer and
Schmidt (1971). They analyze the existence and stability of periodic solutions in the
vicinity of the equilibrium for a system at or nearby the resonance under considera-
tion in the present paper and observe that the sign of a, determines whether the
periodic orbits remain or disappear when passing through resonance. Also Roels
(1975) considers the problem of the existence of periodic orbits at the resonance
situation. Henrard and Renard (1978) showed that also in his approach one has to
consider two different cases according to the sign of this coefficient. Both Meyer and
Schmidt and Roels use the complex normal form which has the disadvantage men-
tioned before.

Finally in section 6 we construct a versal deformation (Arnol’d, 1972) of the 4-jet
of the normalized Hamiltonian. The versal deformation of the quadratic part is a
two parameter deformation. One of these parameters describes the detuning in the
ratio of fundamental frequencies of the linear system. We discuss the dependence of
this two parameter normal form on the mass parameter p. It is proved that the family
in the planar restricted three body problem is generic in the sense that the derivative
of the detuning parameter with respect to u is nonzero.

The notation used here is basically that found in Abraham and Marsden (1978).

2. Normal Forms

In this section the normal form of a Hamiltonian function H on some real symplectic
vector space (V, w) will be discussed. Suppose that the Taylor series of H about zero
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begins with quadratic terms H,. Our special interest is in the case where the matrix of
the linear system corresponding to H, cannot be diagonalized. First we do some
linear algebra which enables us to give a proper definition of the normal form.

Let V be a finite dimensional real vector space. A linear transformation S: V-V
is called semisimple if each S-invariant linear subspace of ¥ has a complementary
S-invariant subspace.

LEMMA 2.1. If S:V — Vis semisimple then V =1m S @ ker S.

Proof. Since ker S = {ve V| Sv =0} is S-invariant and S is semisimple it follows
that there is an S-invariant W with V =ker S® W. Therefore im S = SV = SW.
Because S is invertible on W and W is S-invariant we have SW = W. 1

The S-N decomposition of a linear map 4 :V — V is the decomposition 4 =S + N
with S semisimple, N nilpotent and NS = SN (Hoffman and Kunze, 1961, ch. 7).

LEMMA 22. Suppose the S-N decomposition of a linear map A:V -V is given
then

(1) ker A =ker Snker N.

(1) im A =1imS@®im N nkerS.

Proof. Because N is nilpotent there is a me N with N+ 0 and N"=0for ne N,
n>m. Therefore on im S we have (S+N)"'=S HI-(S!N)+(S'N)—
—+-(ST'N)™]. Thus A is invertible on im S. Furthermore we have im S and ker S
both S- and N-invariant. Thus im(4 |im §) =im S, im(A4 | ker §) = im(N | ker §) =
=1im N nker S and ker(4 | im §) = 0; ker(4 | ker S) = ker(N | ker S) = ker Sn ker N.
Using Lemma 2.1(i) and (ii) follow. O

COROLLARY 2.1. Suppose Y is a complement of ker Snim N in ker §, ie.
ker S=Y®ker Snim N. Then Y is a complement of im AinV,ie. V=im A®Y.

Proof. Using Lemma 2.1 and 2.2 we have V=ker S@imS=Y® ker Snim N&@
@imS=Y®imA. [

In the following let (V, w) be a 2m dimensional symplectic real vector space with
co-ordinate functions (x, y) = (X, ..., X,, V.o Y h @O = Z;”:l dx; A dy,. Let P (V, R),
neN be the vector space of real homogeneous polynomials on V with degree n,
and let # P(V, R) be the vector space of real formal power series on V.

Suppose H=H, + H, + H, + - is the real valued formal power series on V of a
Hamiltonian function H, H € P (V,R). We suppose H, to be in normal form, that
is, the matrix of the linear vectorfield X is in its real symplectic normal form. In other
words we suppose that we are given the S-N decomposition of X. Let &, %, and
A" be the Lie derivatives of elements of # P(V, R) with respect to X, the S-part of X
and the N-part of X respectively. Clearly & = & + 4" and &, & and A" map P (V, R)
into itself. Let £, %, and A", be the restrictions of &, % and A to P (V,R). Then
£,=, + N, is the §-N decomposition of £ ,. For n =2 let Y, be a complement
ofker ¥ nim A" inker & ,thatis Y @ ker & nim A" = ker & . Using Corollary
2.1 we then have Y, @ im &, = P (V, R). We can now formulate the following defini-
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tion: the Hamiltonian H is in normal form up to order k if H € Y for 3< n< k. Note
that for X semisimple Y, = ker & .

Let £, denote the Lie derivative with respect to the Hamiltonian vectorfield X ,
with Hamiltonian f € # P(V, R). In other words & , is the Lie derivative generated by f.
It is clear that & . maps &# P(V, R) into itself. Define the operator

1
exp ¥, = ), m,&ﬂ'}
nz0"""

Then the transformation ¢ 7o wlv, weV, vectors with components in & P(V, R))
defined by

w=¢ (v) = exp & (v) 3)

is a symplectic transformation. Note that ¢ (v) =expt¥ (v} is the flow of the vector-
field X (v) = Z ,(v).

COROLLARY 2.2. Suppose that He # P(V, R)is innormal form up to terms of degree
n—122. Then we can find a function Fe P (V, R) such that the symplectic transforma-

tion given by (3) with generator F brings H(w) into normal form up to terms of
degree n.

Proof. Let H, be the homogeneous term of order k, in the evaluation of H. We have
that ¢.(v) is the flow of the vectorfield X » and thus

d
The solution of this differential equation is

H\(¢5(v)) = exp tL H ($7(v)) = exp t.L H (v)

which for t = 1 gives

)= ¥ 1 o @)
mz=0 .

(Deprit, 1969). Thus the first term in H (¢.(v)) is of order k, the second of order
n+ k — 2 and the others are of higher order. Therefore (H° ¢ o) =H ) for2<k<
< n— 1, that is, the terms of degree k < rn — 1 are unaffected and remain in normal
form. Furthermore we have (H °¢p)(v) = H (v) + £ H,(v). Decomposing H (v)=
= G,(v) + H,(v) with G (v)eim & and H {v)eY, , we may choose F such that G (v)=
ZLF(v) = — £ H,(v). Then we have (H°¢,) (v) = H(v)eY,. I

3. A Special Case

Consider a Hamiltonian function H = H, + Hy+H,+ -on(R*,w=dx, ndy, +
+ dx, A dy,) starting with the quadratic polynomial

H,=alxy, —x,p) ~30(x}+x2); a>0,p==+1. (5)
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In this section we will derive the normal form of H up to order 4, that is, we will deter-
mine a basis for Y, and Y.

The matrix of the linear vectorfield X corresponding to H, is given by (1). Hence
its §-N decomposition is § + N with

0 —a O 0 0 06 0O
5= o 0 0 0 N o 0 000
o 00 —af “lp 000
0 0 « 0 0 p 00
Thus
0 5, 0
F = =z Xy — @Yy Ay, 6
aoc26x1 + axl@xz ocyzay1 +ay, 5y, (6)
0 0
N =px,—+ px,—. (7
layl 26))2

We will now introduce the complex co-ordinates (z, {) = (z,, z,,{,, {,) given by
Z, =X, +ix,,z, =y, +iy,,{; =x, —ix,,{, =y, —iy,. This defines a complex
linear isomorphism (x, y)r(z, {) from C* into itself, which transforms any polynomial
f in(x, y) to a polynomial f in (z, {). It maps real points (x, y) to {(z, {)eC*; { = z} and
a real polynomial f to an f such that f(z, {) = f{(z, {). In the sequel we will write { = Z,
with the convention that z is treated as a variable independent of z. In these (z, 2) co-
ordinates & and .4" become

- 0 0 0 0
— - 5 8
s la<21821 2152_1 22522 “ 5Z_Z>’ ®)

~ 0 0
= _ 7 — . 9
v p<21622+2162—2> ®)
If we use the notation (I, k) =(I,, L, k, k,) for the monomial z}! 2% Z}* Z& every real
homogeneous polynomial of degree m on R* in complex conjugate co-ordinates
(z, Z) may be written as

Yeulbk) with ¢, =z,

Here Zm denotes summation over all possible combinations / 1ol ky ky with [ 20,
k;z0and [, + 1, + k, 4+ k, =m. We have

PRy =ia(l, + 1, — k, — k) (I, k) (10)

Thus the kernel of & acting on the space of real homogencous polynomials of degree
n in complex conjugate co-ordinates is spanned by the monomials (I, k) with [, + [, +
+k +k,=n and [ +1, =k +k, Consequently 2(/, +1,)=2k, +k,)=n In
particular when n is odd ker # = {0}. Hence Y, = {0}, that is, the normal form of H
is void of third order terms. For n = 4 the kernel of 37" is spanned by the following
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monomials:
(2,0,2,0),(0,2,0,2),(1,1,1,1),{2,0,1,1),(1,1,0,2),(2,0,0, 2),
(1,1,2,0),(0,2,1,1),(0,2,2,0).
This implies that the kernel of &, is spanned by the real 4th degree polynomials:
e; =(2,0,2,0)=(x] + x3), e, =1(0,2,0,2)= (»2 + 22,
e;=(1,1,1, ) =02+ xg)(yf +¥3),
e,=Re(1,1,2,0)= +x2) X ¥+ X000
e;=Im(1,1,2,0)= (3 + xD(x, y, — X, 9,),
es=Re (0,2, 1, 1) =(y] + y3) (x, y; +x,¥,),
e,=1Im(0,2,1, 1) =(y? + y3)(x, ¥, — x, ,),
e, =Re(0,2,2,0)=(x,y, + x,¥,)" = (x, ¥, — X, 3,)%,
eo=1Im(0,2,2,0) =2(x, y, +x,9,)(x, ¥, — X, ¥,)-
Using (9) we find the image of 4" |ker &, :
41(2,0,2,0)=0,
A(0,2,0,2)=2p(1,1,0,2) + 2p(0,2, 1, 1),
AL 1L 1y =p(2,0,1, 1)+ p(1, 1,2,0),
A(1,1,2,0)=p(2,0,2,0) = 42,0, 1, 1),
A0,2,1,1) =2p(1, 1,1, 1) + p(0,2,2,0) = A (1, 1,0, 2).
A0,2,2,0)=2p(1, 1,2,0) = #(2, 0,0, 2).
Therefore the action of 4" on the basis {e,, ..., e} of ker & in P,(R*, R) is
Ae; =0, Ne, = pe,, Ne, = pe,,
Ae, =4dpe,, Ne; =0, A'eg =2pe,,
Ne, =2pe,, Neg = peg + 2pe,, Ney=2peg,
which implies that the image of A" |ker &, in P (R*, R) is spanned by {e,, e,, e, ¢,
eg + 2e,, ey} Hence a choice of Y, isthe span of {e, , e, ¢, e, + c,e,} wherec, — 2¢, #
# 0. Because Y, is not unique, the normal form of H is not unique. If we take — ¢, =

=c, =1 then Y is spanned by {e,,e,, e, — e5)}. Because e, — eg) = (x,¥, —
- x, Y1)2 we have as the fourth order terms in our normalized Hamiltonian

H,=a,(x;y,— xzyl)z + az(yf + y; F 4+ ag()’f + y;)(xlyz — X, y,) (1
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4. Computation of a,

On the symplectic vector space (R*, d¢, A dn, + d&, A dn,) consider the Hamiltonian
function

H(E m)y=alln, = En) —3p(E + )+ HyEm + HCm) + ... (12)

In Section 3 we found the normal form of H up to order 4. In this section we will
compute the coefficient a, in (11) in terms of the coefficients of H, and H ,. The results
of this section will be used in Section 5 where this coefficient a, in the real normal
form of the planar restricted three body problem at L, is explicitly computed.

The procedure will be as follows. First we will compute the function Fe P,(R*, R)
that generates the transformation ¢, which normalizes the Hamiltonian given by
(12) up to order 3 (see Corollary 2.2). This transformation is uniquely determined
because in Section 3 we found that ker &, = {0}. Hence by Lemma 2.2 ¥ ' exists
on P,(R* R) and thus F = ¥~ 'H,. Furthermore the effect of transforming H by
¢ is that it adds a fourth order term to H. Collecting terms of the desired form leads
toa,.

THEOREM 4.1. The symplectic transformation ¢, defined by (3) with generator
FeP,(R* R) such that £F = H, gives

(1) (Hedp)(x,»)=0,
(i) (Hodp),(x, y) = H,(x,y) + 3L H,(x, y). (13)
Proof. (i) follows from Corollary 2.2 and the fact that Y, = {0}. Using (4) we have
(Hodp), (x,y) = Hy(x, ) + L Hy(x, y) + 3 L 7H,(x, ).
Furthermore we have
LLIH (x, ) = 8, (£ H(x.9) = — 3 LU LF(x,y) = — 1 L H (%, )

using the fact that we have chosen F in such a way that #F = H,. Recall that £ is
the Lie derivative generated by I, . This proves (ii). d

Next introduce the complex conjugate co-ordinates defined in Section 3. Let
H(z, 2) denote the real function H(x,y) in complex conjugate co-ordinates. Then
Hamilton’s equations in these co-ordinates are

d _
£<;> = Xlz, 2),

where

Xy(z,2)=2 dH(z, 2).

— o o O
[ RS - M)

|

O =
SO -
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Note that the factor 2 appears because our complex conjugate co-ordinates are not
complex symplectic. [One can find easily co-ordinates that are complex symplectic,
forinstance:

u, = — (1/3/2)z,,u, = (1/3/2)z,, v, = (1//2)z,, v, = (1/5/2)Z,.

However working in these co-ordinates is not convenient.| Define the Lie derivative
of f(z, z) with respect to X 4(z, z) by

Lyf(z2)=d (DX 4z, 5) — 2 RE DU 2D

0z, 0z,
0H(z,2)0f(2,7)  ,0H(z,2)0f(z, %)
-2 +2 22
0z, 0z, Oz, 0z,
IO o) "
0z, oz,

In the following we use the same notation as in Section 3. Let P ((z, Z), C) denote
the space of homogeneous complex valued polynomials in (z, z) co-ordinates with
complex coefficients. A complex basis of P ((z,2),C) is M, ={(k);l, +1,+k, +
+k,=n120,k,20,i=1,2}. The following properties are easily obtained:

PROPERTY 1. Let ﬁk(z, z) be the real homogeneous polynomial H (x, y) in complex
conjugate co-ordinates. If (I, k) is a monomial of H . then (k, [) is also a monomial
of H oand ¢, = ¢,,.

PROPERTY 2. If G(z,2)eP ((z2),C) then [0G(z,2)]/0z, = [0G(z, 2)]/ 0z,. More-
over if G(z, z) is some real homogeneous polynomial in complex conjugate co-ordi-
nates then [0G(z, 2)]/0z, =[0Gz, 2) ]/0z,.

PROPERTY 3. #;=2,,.
~ _ N _
PROPERTY 4. L .50, 2) =(LxG6)(z,2) = 2 e, G Y)-

Using Properties 3 and 4 it follows that:
Fiz,2)= 2 'H,(z,2) (15)
$F=exp_‘2F=exp$i=¢F

and

(Hopp,(z,2)=H,(z, ) + 1% :H.(z 2). (16)

From Property 2 it follows directly that on M, the operators & and 4 and thus
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# and £~ ' commute with complex conjugation, that is,

P WL k)y=P N, k)= 2 (k).

So to find F €P,((z, Z), C) we have only to determine the image of the set M% =
={(L k)l + 1, +k, +k,=3;1,20,k>0,1, +1,>k +k,} under £ This we
do in the following way. Using (8) and (9) we have

P k)= ind,(l,k) where &, =(, +1,—k, —k,) (17)
and
ALK = pl(, + 1,1, — Lk, k) + pky(y, Lk, + 1,k — 1), (18)
Consider the decomposition Z =% + A Since ¥ N = A4 F we have
PN+ P NP =
=[I—-P N (PN (PN FE, (19)

using the fact that ./ =0 on P,((z, 2), C).

We use the expression (19) together with the formulas (17) and (18) to find the
image of the set M* under # . We then also know the image of M, under 2™,
that is, the image of the basis-elements of P,((z, z), C). We may express P! as the
matrix given in Table I. One can find the image of the ith monomial in the front
column by adding the monomials in the top row, giving each monomial the coefficient

found in the ith place of the corresponding column.
Let

H,(z,2) = Z,h, (1 k), F(z,2) = =, f, (k)

be the polynomials H,(x, y) and F(x, y) in complex conjugate co-ordinates. Because
P~'H, = F we may use Table I to express the coefficients of F in those of H. Let
(1, k) be the monomial on the jth place in the top row. Then the corresponding coeffi-
cient f,, is the sum of the h, corresponding to the monomials in the front column,
with the coefficients found in the jth column.

Now we are in a position to compute the coefficient a,,,, of the monomial
(0,2,0,2), which in real co-ordinates is (y; + y2)%, in the expression given by (16).
We have using Property 2 and (14):

H.z,z 0f,(z,2) 0F(z, 2) 0H ,(z,2) 0F(z, 2)
1o, =2 Rel 223227 L B s\ 2] 20
o 3(Z’ Z) e< aZl a22, Re 822 621 ’ ( )
where
0H .(z, Z
_%’Z) = 30,4002, 0,0,0) + 2h,, ,(1,1,0,0) + 2, (1,0,1,0) +
1

+hy420(0,0,2,0) + 2h,,,,(1,0,0,1) + A, ,(0,1,1,0) +
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+h6,10,0, 1, 1)+ 4, ,000,2,0,0) + A, ,,(0,0,0,2) +
+h,0,0,1,0,1)
= Zz(l + 1)h(i+ 1)jkl(i7j: k, l)

and
Q%Z’—Z) =2, + Dhys gyulisds ks D)
mﬁa(zz 2= 55(;—2) = 2,0+ Doyl L)
aFaff 2 éif_z) = 5,0+ D g i L))

Since (0, 2,0, 2) is the product of the monomials (0, 2,0, 0) and (0, 0,0, 2), (0, 0, 0, 2)
and (0,2,0,0),(0,1,0,1) and (0, 1,0, 1), the coefficient of (0,2,0,2) in (20) is
Co202 = 2 Re(3h1200f—0300 + hmozfmoz + 2h1101f0201 - 3hosoof-uoo -
- ho1ozf1ooz - 2hozo1f1 101)

i i i
=2 Re< - &h1002h0201 + &h1200h0003 + 2&h1101h0102 +

P

i i p
+&ho1tozh021o_?h01ozh ~h h —h h

0201 0300™0012 ~ 2"0300"0003

o4 a

i p
~2-hyyg By — 45 b0k
o 0201°°0111 O(2 0201 0102>

4
= &[Re (h1002) Im(Ry,0,) + Im(h,55,)Relhg,0,) ] —

4
- &[Re(hIZOO) Im(hyg05) + Imh,,50) Relhgpe3)] —

8
_&[Re(hum)lm(homz)+Im(h1101)Re(h0102)]_
— 102 Re(r,, )7 = 102 [Tk, )]? —

az[ e(hy50,)] ocZ[ m(hg50;)]

22 Re(h,.)]? — 22 [Im(h, . )2 21

- ?[ e(hga00) 1" — &7[ m( 0300)]' (21)

Thus the coefficient a,,,,, of (0,2, 0, 2) in (16) is

= o202+ Co20a- (22)

Q9202
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5. Calculation for the Restricted Three Body Problem

In this section we will consider the planar restricted three body problem in a rotating
co-ordinate frame at the critical mass-ratio of Routh that is for the mass-parameter
i we bave p=p, =3(1— é\/@).

According to Deprit (1966) the Hamiltonian function describing this system with
the origin at the equilateral Lagrange equilibrium point L, can be written as

HE n,pe,p,) =H,(& 1, p,, p,) + Hy &)+ Hy (& m) + -

with
Hz(éa , pga P,,) = %(P,? + p,zl) - (ép,, - 71P¢) + wzgéz + woznza
H3(69 7’]) = 603063 + CD21€27[ + wlZEnz + CO037]3,
H &) =08 + 0,83+ 0,80 + 0,,&° + o ",
where

—QEn= 3 3 o

p=0g=0
is the potential energy of the system. For the coefficients we have
16cw,, = — 10y cos 38 + 3{ cos(a + B),
16w,, = — 30y sin 3§ + 3 sin(x + f),
16¢,, = 30y cos 36 + 3 cos(a + f),
16w, = 10y sin 3B + 3{ sin(«x + B); (23)
128w, , = — 18 + [20 + 35 cos 6]9,
128w, , = 1400 sin 6,
128w, , = — 36 — 2100 cos 6,
128w, , = — 1406 sin 6,
128w,, = — 18 — [20 — 35 cos 6$]9; (24)

where we have the relations

y=1-—2u, 0% =1+ 3y, {2 =34 92

s

1
cos 2ff = 5 sin 2f = %\/5, cos o = %, sin o =

which for p = u, give

N RN R
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- 23
cos2f = %\/i sin 2f = 1. /46, cosa=1% [—

. 1
sinoa =32 % 25)

Thus we have
H,(E 1,00 p,) = H02 + P2) — H1 — 2/2)8% = X1+ 2/2)n* — (¢p, — 1p,).

The real symplectic co-ordinate change which brings H, into its real infinitesimal
symplectic normal form is found by Burgoyne and Cushman (1974). It is given by

2
f=m (o= 2) M= L, -2y,
2
Pe=— 33x, — 2y,), b, = _\Z_; (3x; —2y,), (26)

where
1

1/2
(12 27
p) (1 ﬁ) ) 27

The new quadratic Hamiltonian becomes

Hy(x, y) = 1/2 (x,y, — x,0,) + Hx2 + x2), (28)

For the higher order terms we have, using complex conjugate co-ordinates (z, z) as
defined in Section 3,

Et=d (N)(z, + 7, + 2iz, — UZ,) (— iz, + iZ, — 22, — 2Z,)°

2

~ o 1\e/ 1 \4
:dpq('l)qu(Zl’Zz’Zl’Zz) where dpqu)z(_%)ﬁq(ﬁ) (ﬁ)

EnP =d,, (MG (2,25, 2, Z,).
It follows that
G‘w(z1 v Zyy 2152, = G Mizy,iz,, — iz, —iz,). (29)
Thus if we write d, instead of dyy (A) we have
A,z ) =2k, (Lk) =dyg0,,G,,(z )+ d, 0,,G,,(z,2) +
+d,,0,,G,,(iz, — iz) + d 0., G, (iZ, — iz).

We may now compute the &, , they are listed in Table IL For convenience define

A3 1
a :\/E 7 Qo3 Tg7% )
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b 1 A
=@, — -0, ,,
813 30 4 12
A3 1
c=/2{ 3w, +— (30)
< 4 03T g
d 3 +-w
= — —
813 30 4 12
TABLE II
List of coefficient #,,
h =h —Lb +ia) h =k =—~Ld—i
3000 = %0030 = "% a 2010 1020 8l ic)
100 = Mooa1 = i(c + id) hrgor = Po120= — %(a —ib)
h1200 = Fog12 = 3(d + ic) Bivio="hion =3lc —id)
ho300 = Pogos =@+ ib hyiyoy =hoyy = —d+ic
o210 = hyo0, = 3la—ib)
h =hyg,=c—id

0201

To find the coefficients of A 4+ we proceed in the same way. In this case we only have
to find the coefficient 4,,,,. We have

(Z 2)=d Wy, 40(2’ 2)+dy; 05, 631(27 2)+ dzzwzzézz(z’ )+
+d,0,,G, (i7, —i2)+ d,,0,,G,,(iz, ~ iz).
Thus the coefficient £, ,, in ﬁ4(z, 2)=Z,h, (k) is

3
Ror02 = ¥ Waot 5@y + 340 00, (3B
Using (24), (25), and (27) we obtain

hozor = — 1%7 [(% l\/5) (18-200—350 cos 68) +
+ (&~ 2./2) (18 + 206 — 356 cos 68) + 9 + 1955 cos 6]

- _%[90 105<5——3>—60\/§5}= —2 X015 = — 153,
(32)

Knowing the coefficients of H ; and using the results of Section 4 it is possible to
compute c,,,, Which is the coefficient of the monomial (0, 2,0, 2) in 3¢ FI:I ;- To do
this use (21) and Table II, putting « = 7./2 and p = — 1 in (21). We obtain

Cozos = 4a? + 5¢2) + 4(b% + 5d%) — 4/2(2c* — ac) + 4/2(2d* — bd).  (33)
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Substituting (30) into (33) and collecting terms gives

Co202 =~ %(wgo +g,) + 5 (@5,0,, + W430,;) + 23{(“%1 + i)+
159/ 22y — 02,) + T/ 2 (05,0, — 0y 5,)- (34)

Using (23), (25) and some trigonometric formulas an exact calculation of the terms of
(34) gives

w2, + o2, =27 8[(10y cos 38 — 3¢ cos(a + B))* +
+ (10y sin 38 + 3¢ sin(« + £))?]
=278[109 y* + 27 — 60 y{ cos & cos 48 + 60 y{ sin « sin 4[]

240
=2_S|:<169+?>'))2+27:]:2_9 x 373 x 12337

and similarly

w3, — o= — 2712 x 2577./2,
i + w2, =272 x 951,
w2, —w?, =212 x 5337./2,

W3 W,yy + Wyow,, = — 277 X 659,
. 11129
Wo3Wyy — Wyg®y, = — 2712 x _3'\/E

Substituting these values into (34) gives

=210 x 373 x 29293.

Co202

Now our aim was to compute the coefficient a, of (y7 + y3)* in the 4th order normal
form of H. This coefficient a, equals the coefficient a,,,,, of the monomial (0, 2,0, 2) =
= z372. Thus for the planar restricted three body problem we have

h 39~ 0.068 287 .... (35)

Ay =dgz02 = Co202 T M9202 = 364

Appendix

In this appendix we will outline how to construct a versal deformation (Arnol’d,
1972) of the normalized Hamiltonian function

H=H,+H,,

see (5), (11).
This enables us to study the system X, passing through resonance. In the case of
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the planar restricted three body problem at L, we will discuss the relation of the
parameters of this versal deformation with the mass parameter which generates a
I-parameter family.

Consider the Hamiltonian function of Section 3. Normalizing up to order 4 and
omitting higher order terms gives the truncated Hamiltonian

H*(XJ):O‘(XJZ—xzyl)—%f)(xf+x§)+al(x1yz—x2y1)2+
+a,(yT + ¥ Fay(x,y, — x0T 3 p=x1 (36)

The coefficients are constants.

For the restricted three body problem we have a =1./2, a, = o535, @, and a, two
fixed constants and p = — 1.

It follows from the construction of the normal form that X, is an integrable system
with integrals the energy H* and M(x,y)=x,y, — X, y, -

The linearized vectorfield corresponding to H* is X. Consider the orbit of X under
the adjoint action of the real symplectic group Sp(w, R). Note that im ad, is the
tangent space to this orbit. As in Corollary 2.1 we may construct a space Y transversal
to the orbit at X. The infinitesimal symplectic matrices

0 -1 .0 0 001 0
1 00 o0 000 1
“e=lo 00 —1] 2 &=l o 0 o
0 01 0 000 0

form a basis of Y. Thus a two parameter versal deformation of X is
X+ve +vye,=X . (37)

Let X ¢ Y be some other deformation of X, depending smoothly on the parameter

pwith X, = X. As a direct consequence of the implicit function theorem we have the
following:

PROPOSITION 5.1. For v near zero and p near p, we have X , conjugate to X, by
a smooth family of real symplectic mappings P,. Moreover there are smooth real valued
Sunctions Y, and Y, with v, = (1), v, = ¥, (u).

Consider now the planar restricted three body problem at L. The matrix for the
linear vectorfield, depending smoothly on the mass ratio y, is found in Deprit (1966)
and is given by

0 1
-1 0
B =
K (1 -39) 0
0 +20 -

. 82 =43 —3u+1).

— O O e
o = = O
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By a linear symplectic transformation P, see (26), we can bring B, into normal form
A=pP! B, P.By (37) a versal deformation of A4 is

0 — 32—, v, 0

X = %\/5+v1 0 0 &)
v -1 0 0 —3/2-v,

0 ~1 1/2+v, 0

Consider the family §# =P !B , P. By the above proposition Eu and X must have
the same characteristic polynomials. Thus

V= = 324+ G QT - 270
vy =5—3Q7u = 27pH)"%; (38)
furthermore (3,/2 + v,)* = 1 — v,. Note that the eigenvalues of X are

Gv2+ vl)[ tit (;_vvz )1/2]. (39)

2 2

We see that the sign of v, determines whether we have purely imaginary eigenvalues
or eigenvalues with non-zero real part. Furthermore we see that v, completely deter-
mines the frequency ratio.

We have
dv, 3
-5 =—32/69+0
lpmp,  °

and thus the 1-parameter family generated by the mass-parameter is generic.

Of course the above discussion also holds if we consider the corresponding
Hamiltonian functions, instead of the vectorfields. Thus a versal deformation of
H%is

HY (x,y) = H3(x, y) + v, (x, ¥, — X,9,) + 3V, (¥ + y3). (40)
Here (x, y, — x,,) and (y? + y2) are the basis elements of Y, defined as in Section 2.

We now extend the above discussion to 4-jets of functions. Consider the
Hamiltonian H*, (36). The orbit ¢ of the 4-jet of H at zero under symplectic diffeo-
morphisms ¢ of (R*, w) which leave the origin fixed is the set of all 4-jets of functions
H*° ¢. Note that ¢ depends only on the 4-jet of ¢ at zero. The space transversal to ¢
is Y, + Y,. Thus we have a five parameter versal deformation of H* which we may
write as

H¥(x, y) = alx,y, — X, 9,) = 3 p(x3 + x) + 2v(y] + y9) +
+ a4, (x1y2 - x2y1)2 + az(yf + y§)2 +
+a,(v] + ¥ ey, — x,0,); (41)
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considering the coefficients as parameters in the neighborhood of some fixed value
(v near 0) except for p whichis +1 or — L.

Hence by an extension of Proposition 5.1 we deduce that the one parameter family
of 4-jets of Hamiltonian functions of the planar restricted three body problem at L,
generated by the mass parameter, can be brought into (41) by the 4-jet at 0 of a smooth
family of symplectic difffomorphisms which preserve the origin.

The coefficients «, v, a, , a,, and a, depend smoothly on u for u near u, . For « and
v the dependence on u follows from (38) and (40). We have o = %\/5 +v,andv=v,.
So v is the detuning parameter.
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