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Abstract. Consider a Hamiltonian system of two degrees of freedom at an equilibrium. Suppose that the 
linearized vectorfield has eigenvalues ic~, ict, -ic~, -ic~(ctE ~, c~ > 0) and is not semisimple. In this paper 
we discuss the real normalization of the Hamiltonian function of such a system. We normalize the Hamilto- 
nian up to 4th order and show how to compute its coefficients. For the planar restricted three body problem 
at L 4 the coefficient that plays an important role in the investigation of the qualitative behaviour of periodic 
solutions near the equilibrium is explicitly calculated. 

I. Introduction 

Cons ide r  a H a m i l t o n i a n  system of  two degrees of f reedom d z / d t  = X n with H a m i l t o -  

nian funct ion H, which has an equ i l ib r ium po in t  at the origin. F u r t h e r m o r e  suppose  

tha t  the l inear ized vectorfield X = DXH(O)  has two pure ly  imag ina ry  eigenvalues 

of mul t ip l ic i ty  two and  is no t  semisimple.  In  view of  the mul t ip l ic i ty  of  the eigen- 

values we say that  X n  is in 1 : 1 resonance.  However  the n i lpo ten t  pa r t  of X dis t inguish-  

es our  case ra ther  s t rongly  f rom the bet ter  k n o w n  resonances  k :l with k 4: I. A no the r  

feature of this resonance  is tha t  it arises at the b i furca t ion  be tween ell iptic and  hyper-  

bol ic  equ i l ib r ium poin ts  (see Sect ion 6). 

The  general  real  n o r m a l  form of a 4 x 4 nonsemis imple  inf ini tesimal  symplect ic  

ma t r ix  with eigenvalues ic~, ic~, - ia, - ia (a a R, c~ > 0) is given by  

(i - ~ o) 
o o  
0 0 -- ' P = • 1. (1) 

p c~ 

Its co r r e spond ing  quadra t i c  H a m i l t o n i a n  funct ion on (~4, co) in coord ina te s  x l ,  x 2 

and  co r r e spond ing  m o m e n t a  Yl, Y2 is equal  to 

H 2 ( x  ' y) = c 4 x l y  2 _ x2yl)  __I~D(X 12 + x2). (2) 

Here  co = dx I /x dy 1 + dx 2/x dy 2 is the s t anda rd  symplect ic  form on ~4. 

The  n o r m a l  form (1) can be found in the pape r  of Wi l l i a mson  (1936) who de te rmines  

the poss ib le  n o r m a l  forms for a l inear  H a m i l t o n i a n  system under  real symplect ic  

changes  of variables.  Burgoyne  and  C u s h m a n  (1974) give an a lgor i thm for f inding 

the no rma l i z ing  real  symplect ic  t rans format ion .  Also Roels  and  L o u t e r m a n  (1970) 

give an a lgo r i t hm for no rma l i z ing  l inear  H a m i l t o n i a n  systems. However  they cons- 

t ruct  a complex  n o r m a l  form using complex  symplec t ic  t rans format ions .  As Burgoyne  
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and Cushman (1974) pointed out, normal forms under complex symplectic transfor- 
mations do not determine the real normal form. 

In the following section we will start with a review of the general normal form 
theory for Hamiltonian functions with the origin as an isolated critical point. Then 
in Sections 3 and 4 we will derive the normal form up to order 4 and we show how 
to compute the coefficients of the terms of degree 4 in this normal form from the 
Taylor expansion (up to degree 4) in the original coordinates. In these sections we 
will assume that the quadratic terms of our Hamiltonian are in the normal form 
given by (2), that is, the linearized vectorfield X has corresponding matrix given by (1). 

In Section 5 we consider the Hamiltonian function H corresponding to the equa- 
tions of motion of the planar restricted three body problem at the Lagrange equila- 
teral libration point L 4 . A. Deprit (1966) gives the Taylor expansion for this Hamil- 
tonian function H at L 4. For a special value ]2 = ]21 of the mass parameter ]2 the 
matrix of the linearized vectorfield has purely imaginary eigenvalues and is not 
semisimple. Therefore it can be brought in the form given by (1)(Burgoyne and 

__  1 Cushman, 1974). We have c~ - � 8 9  p = - 1. We apply the results of Section 4 to 
calculate the coefficient a 2 of one fourth order term (a 2 turns out to be a positive 
rational number). Emphasis is laid on this specific coefficient because further study 
(work in progress with R. Cushman and J. J. Duistermaat) reveals that the sign of 
a 2 determines the qualitative behaviour of the system. 

The important role of this coefficient is also clear from the article of Meyer and 
Schmidt (1971). They analyze the existence and stability of periodic solutions in the 
vicinity of the equilibrium for a system at or nearby the resonance under considera- 
tion in the present paper and observe that the sign of a 2 determines whether the 
periodic orbits remain or disappear when passing through resonance. Also Roels 
(1975) considers the problem of the existence of periodic orbits at the resonance 
situation. Henrard and Renard (1978) showed that also in his approach one has to 
consider two different cases according to the sign of this coefficient. Both Meyer and 
Schmidt and Roels use the complex normal form which has the disadvantage men- 
tioned before. 

Finally in section 6 we construct a versal deformation (Arnol'd, 1972) of the 4-jet 
of the normalized Hamiltonian. The versal deformation of the quadratic part is a 
two parameter deformation. One of these parameters describes the detuning in the 
ratio of fundamental frequencies of the linear system. We discuss the dependence of 
this two parameter normal form on the mass parameter #. It is proved that the family 
in the planar restricted three body problem is generic in the sense that the derivative 
of the detuning parameter with respect to ]2 is nonzero. 

The notation used here is basically that found in Abraham and Marsden (1978). 

2. Normal Forms 

In this section the normal form of a Hamiltonian function H on some real symplectic 
vector space (V, ~) will be discussed. Suppose that the Taylor series of H about zero 
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begins with quadrat ic  t e r m s  H 2 , Our  special interest is in the case where the matrix of  
the linear system corresponding to H 2 cannot  be diagonalized. First we do some 

linear algebra which enables us to give a proper  definition of  the normal  form. 

Let V be a finite dimensional  real vector space. A linear t ransformat ion S : V ~ V 

is called semisimple if each S-invariant linear subspace of V has a complementa ry  

S-invariant  subspace. 

L E M M A  2.1. I f  S" V ~  Vis semisimple then V = im S �9 ker S. 
Proof. Since ker S = {v ~ V[ Sv = 0} is S-invariant and S is semisimple it follows 

that there is an S-invariant W with V =  ker S O  W. Therefore im S = S V =  SW. 
Because S is invertible on W and W is S-invariant we have S W  = W. [] 

The S-N decomposition of a linear map  A : V ---, V is the decomposi t ion  A = S + N 

with S semisimple, N nilpotent and NS = SN (Hoffman and Kunze, 1961, ch. 7). 

L E M M A  2.2. Suppose the S-N decomposition of a linear map A : V ~  V is 9iven 

then 

(i) ker A = ker S c~ ker N. 

(ii) im A = i m  S |  N c~ ker S. 

Proof. Because N is nilpotent there is a m ~ N with N "  4 i 0 and N" = 0 for n e N, 
n > m .  Therefore on im S we have ( S + N ) - I = S - I [ I - ( S - 1 N ) + ( S - 1 N )  - 
. . . .  (S-IN)m].  Thus A is invertible on im S. Fur the rmore  we have im S and ker S 

both  S- and N-invariant.  Thus  im(A lira S) = i m  S, im(A ] ker S) = im(N I ker S) = 
= i m  N ~ ker S and ker(A I im S) = 0 ; ker(A I ker S) = ker(N [ ker S) = ker S c~ ker N. 

Using L e m m a  2.1(i) and (ii) follow. [ ]  

C O R O L L A R Y  2.1. Suppose Y is a complement of ker S c r i m  N in ker S, i.e. 
ker S = Y �9 ker S c~ im N. Then Y is a complement of im A in V, i.e. V = im A �9 Y. 

Proof Using Lemma 2. t and 2.2 we have V = ker S |  S = Y �9 ker S c~ im N �9 

O i m S =  Y (~ im A. [] 
In  the following let (V, co) be a 2m dimensional  symplectic real vector space with 

co-ordinate  functions (x, y) = (Xl, . . . ,  xm, Yl . . . .  , y,,), co = ~ i  ~_ ~ dx i A dy i. Let P(V,  ~), 
n e N be the vector space of real homogeneous  polynomials  on V with degree n, 
and let WP(V, ~) be the vector space of real formal power  series on V. 

Suppose H = H 2 + H 3 + H 4 + -.. is the real valued formal power series on V of a 
Hami l ton ian  function H, H ~ Pn(V, R). We suppose H 2 t o  be in normal  form, that  

is, the matrix of the linear vectorfield X is in its real symplectic normal  form. In  other  

words we suppose that  we are given the S-N decomposi t ion  of  X. Let 50, ~ ,  and 

JV be the Lie derivatives of  elements of  ~,~P(V, R) with respect to X, the S-part  of  X 

and the N-par t  of  X respectively. Clearly 50 = 5 P + JV and 50, 5 e and Y map  P(V,  N) 

into itself. Let s  and J #  be the restrictions of  50, 5 # and J f  to Pn(V, ~). Then 
50n = 5P, + At, is the S-N decomposi t ion  of  5 0 .  For  n >i 2 let Y be a complement  
o fker  5 P  c~ im ~ ,  in ker 5 P ,  that  is Y �9 ker 5 P  c~ im ~ ,  = ker 5P .  Using Corol lary  

2.1 we then have Y , O  im 5 0  = P(V,  ~). We can now formulate the following defini- 
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tion: the Hamil tonian  H is in normalform up to order" k if H e Y for 3 ~< n ~< k. Note  

that for X semisimple Y = ker 5O.  

Let 5Ol denote the Lie derivative with respect to the Hami l ton ian  vectorfield X I ,  
with H a m i l t o n i a n f  e@P(V, ~). In other words 5of  is the Lie derivative 9enerated b y f  
It is clear that 5Ol maps  WP(V, ~) into itself. Define the opera tor  

1 
exp d I = ,~o ~5o~"  

Then the t ransformat ion ~y:v-~w(v,  wE V, vectors with componen t s  in ~.~P(V, ~)) 
defined by 

w = ~bf(v) = exp 5of(v) (3) 

is a symplectic t ransformation.  Note  that qS~(v) = exp t5of(v) is the flow of  the vector- 
field X i(v ) = s i(v ), 

C O R O L L A R Y  2.2. Suppose that H 6 g P( V, ~) is in normal form up to terms of  degree 
n - 1 >1 2. Then we canfind a function F~P(V,  ~) such that the symplectic transforma- 
tion given by (3) with 9enerator F brings H(w) into normal form up to terms of 
degree n. 

Proof Let H k be the homogeneous  term of order k, in the evaluat ion of H. We have 
that qS~(v) is the flow of  the vectorfield X F and thus 

d 
H ' k(q~F (v)) = 5OFHk(C@(V)). 

The solution of  this differential equat ion is 

H t k(~Pv(V)) = exp tsovHk((~~ = exp t~qavHk(v) 

which for t = 1 gives 

1 m 
Hk(O F(V) ) = ~>~0 ~ ' ~  FHk(V) (4) 

(Deprit, 1969). Thus  the first term in Hk((OF(V)) is of order  k, the second of order 

n + k - 2 and the others are of  higher order. Therefore (H ~ q~F)k(V) = Hk(V ) for 2 ~< k ~< 

~< n - 1, that  is, the terms of  degree k ~< n - 1 are unaffected and remain in normal  
form. Fur the rmore  we have (Ho(ov),(v) = H (v) + 5OFH~_(v). Decompos ing  H (v)= 
= G,(v) + H',(v) with G (v)eim 5 ~ and H'(v)e Y,, we may choose F such that  G(v) = 
5fF(v) = - 5 O F H z ( v ) .  Then we have (Hoqbv),(v) = H'(v)e Y .  [] 

3. A Spec ia l  Case  

Consider  a Hamil tonian  function H = H 2 + H 3 + H 4 + --. on (N4, co = dx 1 /x @1 + 
+ dx 2/x dyz) starting with the quadrat ic  polynomial  

H 2  = ~ ( x l Y  2 _ X z Y l )  _ 1 2 2 . ~p(x 1+x2) ,  c~>0, p = + l .  (5) 
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In this section we will derive the normal  form of H up to order  4, that  is, we will deter- 
mine a basis for Y3 and I14" 

The matr ix of the linear vectorfield X corresponding to H 2 is given by (1). Hence 
its S - N  decomposi t ion  is S + N with 

Thus  

(0 0 )(0o00) 
0 0 0 0 0 0 

S =  0 0 0 N =  " - ' p 0 0 0 

0 0 ~ 0 0 p 0 0 

0 0 0 
~ =  - . x 2 = - - - + . x l = - - -  - - + c ~ y l - ~ y  2, (6) Ox 1 Ox 2 ~YaOy 1 

(7) 

We will now introduce the complex co-ordinates  (z, ~ )=  (z I , z 2, ~1, ~2) given by 

z l  = Xl  + ix2 ,  Zz = Yl + iY2, ~ = Xl --  iX2, ~2 = Yl  -- iY2" This defines a complex 
linear i somorphism (x, y)~-~(z, ~ ) f rom  C 4 into itself, which transforms any polynomial  
f in (x, 3;) to a polynomial  f in (z, ~). It maps real points (x, y) to {(z, ~)~C4; ~ = 5} and 

a real polynomial  f to an f such that  f (z ,  ~) = f (z ,  ~). In the sequel we will write ~ = 5, 
with the convent ion that 5 is treated as a variable independent  of z. In these (z, 5) co- 
ordinates ~ and ~ become 

i~  Z 1 [JZ1 {JZ1 (~Z2 Z (~ 
= = -  - Z~ ~ + z 2 -  - , ( 8 )  

~ = p  z , ~ Z z + e l ~ 2  . (9) 

If we use the nota t ion (1, k) = (l 1 , 12, k 1 , k2) for the monomia l  zl~ z2Z~ -i  ~< Zz_-k~ every real 
homogeneous  polynomial  of degree m on R 4 in complex conjugate co-ordinates  
(z, 5) may  be written as 

~ , % ( l ,  k) with % = Ckl' 
m 

Here ~ , ,  denotes summat ion  over all possible combinat ions  ll,  12, k , ,  k 2 with l~ ~> 0, 

k~1> 0 and l, + 12 + k 1 + k 2 = m. We have 

57(1, k )=  io~(l 1 + l 2 - k s - k2)(l , k) (10) 

Thus  the kernel of f f  acting on the space of real homogeneous  polynomials  of degree 
n in complex conjugate co-ordinates  is spanned by the monomials  (I, k) with I~ + l 2 + 
or- k 1 + k 2 = r/ and 11 + 12 = k 1 + k 2. Consequent ly  2(1, + 12) =- 2(k 1 + k2) = r/. In 
part icular  when n is odd ker 5 7  = {0}. Hence Y3 = {0}, that is, the normal  form of H 
is void of third order  terms. For  n = 4 the kernel of 5 7  is spanned by the following 
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monomials :  

(2, 0, 2,0), (0, 2, 0, 2), (1, 1, 1, 1), (2, 0, 1, 1), (1, 1, 0, 2), (2, 0, 0, 2), 

(1, 1,2,0),(0,2, 1, I),(0,2,2,0).  

This implies that  the kernel of 5e 4 is spanned by the real 4th degree polynomials:  

e; = (2, O, 2, O) = (x 2 + x2 )2 2, e2 = (0, 2, O, 2) = (y~ + y22)2, 

(1, 1, 1 ,1)  = (:,12 

Re (1, 1, 2, 0) = 

I ra( l ,  1 , 2 , 0 )=  

Re (0, 2, 1, 1)= 

2 2 2), 
+ Xz) (Y l  + Y2 

+ x )(Xxyx + x y2), 

e 3 = 

e 4 = 

e 5 ~  

e 6 

e? = Im(0, 2, 1, 1) = (y~ + yZ)(x I Y2 - xzY l ) ,  

e s = Re (0, 2, 2, O) = (x 1Yl + x2 Y2) 2 - (x ,  Y2 - -  X 2  Yl) 2' 

e 9 = I m  (0, 2, 2, 0) = 2(x 1 y,  + x2Y2) (x  1Y2 - -  X2 Yl)" 

Using (9) we find the image of ~4~1 ker ,5~ 4 : 

A7(2, O, 2, O) = O, 

.a~(0, 2, 0, 2) = 2p(1, 1, 0, 2) + 2p(0, 2, 1, 1), 

A~(1, 1, 1, 1) = p(2, 0, 1, 1) + p(1, 1, 2, 0), 

J~(1, l, 2, 0) = p(2, 0, 2, 0) = A7(2, 0, 1, 1), 

~/V(0, 2, 1, 1) = 2p(1, 1, 1, 1) + p(0, 2, 2, 0) = ~ ( 1 ,  1, 0, 2). 

~7(0, 2, 2, 0) = 2p(1, 1, 2, 0) = A7(2, 0, 0, 2). 

Therefore the action of J #  on the basis {e~, . . . ,  e9} o fke r  Y in P4(N 4, N) is 

,A/'e 1 = O, J g e  4 = pea,  ~Are? = Pe9, 

./V'e 2 = 4pc6,  .Are 5 = O, J g e  8 = 2pc 4, 

,/V'e 3 = 2pc,, ,  a 4 # e  6 = pe s + 2pc 3, ~ U e  9 = 2pc 5 , 

which implies that  the image of JV'I ker 504 in P4(N 4, N) is spanned by {el, e4, e 5, e6, 
e 8 + 2e3, eg}. Hence a choice of Y4 is the span of {e 2 , e 7 , c 1 e s + c2e3} where c 2 - 2c 1 =fi 
=fi 0. Because 174 is not  unique, the normal form of H is not  unique. If we take - c I = 

1 = c 2 - ? -  then Y4 is spanned by {%, 1 _ _ eT,~(e 3 - e8)}. Because 2a(e3 %) = (XaY 2 
- Xzy0 2 we have as the fourth order terms in our normalized Hamil tonian 

H4 a l ( x tY  2 _ X z y l ) 2  + a2(y2 + y 2 ) 2  2 2 
~ -  2 + a3(Y 1 + y z ) ( x l y2  - Xzyl). (1 1) 
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4. Computation of a 2 

On the symplectic vector space (N4, d~ 1 /x dr/1 + d~2 A dr/2 ) consider the Hamiltonian 
function 

H(~, t/) ~--- ~ ( ~ l t l 2  - -  ~2/~1 ) 1 ~ / 3 ( ~ 1 2  +. 422) + H3(~ ' t/) + H~(4, t/) + .... (12) 

In Section 3 we found the normal form of H up to order 4. In this section we will 
compute the coefficient a 2 in (11) in terms of the coefficients of H 3 and H 4. The results 
of this section will be used in Section 5 where this coefficient a 2 in the real normal 
form of the planar restricted three body problem at L 4 is explicitly computed. 

The procedure will be as follows. First we will compute the function F~P3(~  4, R) 
that generates the transformation ~b F which normalizes the Hamiltonian given by 
(12) up to order 3 (see Corollary 2.2). This transformation is uniquely determined 
because in Section 3 we found that ker 5P 3 = {0}. Hence by Lemma 2.2 ~ 3  a exists 
on P3(R 4, R) and thus F : 5 ~  ~H 3. Furthermore the effect of transforming H by 
q5 F is that it adds a fourth order term to H. Collecting terms of the desired form leads 

t o  a 2. 

T H E O R E M  4.1. The symplectic transformation (o v defined by (3) with 9enerator 
FeP3(N 4, N) such that ~ F  = H 3 9ires 

(i) (H ~ qbv)3(x, y) = 0, 

(ii) (H~ y) = H4(x, y) + �89162 y). (13) 

Proof. (i) follows from Corollary 2.2 and the fact that I13 = {0}. Using (4) we have 

1 2 (Ho ~bF),,(x , y) = H,,(x, y) + .Lf FH3(x, y) + 2~qC~vH2(x, y). 

Furthermore we have 

~(,FHz(X,1 2 y) = � 8 9 1 8 9 1 8 9  ) 

using the fact that we have chosen F in such a way that ~ F  = H 3. Recall that 5 ~ is 
the Lie derivative generated by H 2 . This proves (ii). [] 

Next introduce the complex conjugate co-ordinates defined in Section 3. Let 
/l(z, 5) denote the real function H(x, y) in complex conjugate co-ordinates. Then 
Hamilton's equations in these co-ordinates are 

d ( z ) = x h ( z ,  5), 
Tzzr 

where 

Xi!(z, 5) = 2 0 0 - 1 d/~(z, 5). 
0 1 0 

1 0 0 
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Note that the factor 2 appears because our complex conjugate co-ordinates are not 
complex symplectic. [One can find easily co-ordinates that are complex symplectic, 
for instance: 

u~ = - ( 1 / ~ ) z  2, u 2 = (1 /~ ) z~ ,  v~ = (1/X/2)Zl, v 2 = (1/%~)5 2. 

However working in these co-ordinates is not convenient.] Define the Lie derivative 
off(z ,  ~) with respect to Xp,(z, 5) by 

L ~ f ( z ,  5) = d f ( z ,  5)X~(z, 5) = 2 ~/~(z' 5)Of(z, 5) _ 
~52 (~Z 1 

_ 2 O/-7(z, i),3f(z, 5) ~- 20/7(z, 5) Of(z, 5) 
851 8Z 2 0Z 2 051 

_ 2 #/7(z, 5)Of(z, 5) (14) 
(~Z 1 #5 2 

In the following we use the same notation as in Section 3. Let P ( ( z ,  5), C) denote 
the space of homogeneous complex valued polynomials in (z, 5) co-ordinates with 
complex coefficients. A complex basis of Pn((z,z) ,  C) i s  M n = {(/, k); l I + l 2 + k I + 

+ k 2 = n, I i >1 O, k i/> 0, i --  1, 2}. The following properties are easily obtained: 

PROPERTY 1. Let Hk(Z, 5) be the real homogeneous polynomial Hk(X , ~) in complex 
conjugate co-ordinates. If (l, k) is a monomial of/~k then (k,/) is also a monomial 
of/-t k and Ckt = Clk" 

PROPERTY 2. If G(z, 5)eP ((z, 5), C) then lOG(z, 5)]/Oz~ = lOG(z, 5)]/05~. More- 
over if G(z, 5) is some real homogeneous polynomial in complex conjugate co-ordi- 

nates then lOG(z, 5) ]/0z~ = lOG(z, 5)]/~5~. 

PROPERTY 3. ~ = 27H" 

PROPERTY 4. 5r , 5) = (2#HG)(z, 5) = 5r y). 

Using Properties 3 and 4 it follows that" 

P(z, 5) : 27 -1 /73(z  , 5) 

q5 v = exp 27r = exp 5a~ = qS~ 

and 

(/7 o +:)4(z, 5) = /7 , ( z ,  5) + �89 5). 

(15) 

(16) 

From Property 2 it follows directly that on M n the operators g and X and thus 



NONSEMISIMPLE 1 :l RESONANCE AT AN EQUILIBRIUM 139 

s and 5~-1 commute  with complex conjugation,  that  is, 

- 1(/, k) = L~- 1(I, k) = 2 -  l(k,/). 

So to find ff~P3((z, z), C) we have only to determine the image of the set My = 

= {(/, k); l 1 + 1 2 -[- k 1 q- k 2 = 3; I i >1 O, k i >/O, 1 1 + 1 2 > k 1 + k2} under  27 -1. This we 
do in the following way. Using (8) and (9) we have 

57(I, k) = i~6~k(l, k) where 6~k = (l 1 + l 2 - k 1 - k2) (17) 

and 

J~(l, k) = Pl2(l 1 + 1, l 2 - 1, kl ,  k2) + Pk2(ll ,  12, k I -~- 1, k 1 - 1). (18) 

Consider  the decomposi t ion  2 = 57 + Y .  Since 57~7 = ~ 5 7  we have 

s  = (i + 57-1~,7)- 1 57 1 =  

= [ I  --  5 7 -  1 / ~  _~ ( 5 7 -  1~7~)2 __ ( 5 7 -  1 /~ ' )3157-  1 (19) 

using the fact that 9 4 = 0 on P3((z, 5), C). 
We use the expression (19) together  with the formulas (17) and (18) to find the 

image of the set M* under s 1. We then also know the image of M 3 under  L~-1, 
that  is, the image of the basis-elements of P3((z, s C). We may express 2 - 1  as the 
matr ix  given in Table I. One can find the image of the ith monomia l  in the front 
co lumn by adding the monomials  in the top row, giving each monomia l  the coefficient 
found in the ith place of the corresponding column. 

Let  

H3(Z , Z) = Y~3htk(l, k), if(z, z) -= Y~3fzk(l, k) 

be the polynomials  H3(x, y) and F(x, y) in complex conjugate co-ordinates.  Because 
2 - 1 / t  3 = ff we may use Table I to express the coefficients of/~ in those of/43- Let 
(l, k) be the monomia l  on t he j t h  place in the top row. Then  the corresponding coeffi- 
cient fzk is the sum of the h~k corresponding to the monomia ls  in the front column, 
with the coefficients found in the j th  column. 

N o w  we are in a posit ion to compute  the coefficient a02o2 of the monomia l  
(0, 2, 0, 2), which in real co-ordinates  is (y2 + y2)2, in the expression given by (16). 

We have using Proper ty  2 and (14): 

Re(SH3(z, 5)c?ff(z, 5 ) ~ \  ~ 8=zz2 J (O~H3(Z,uz2 5)8if(z, 5))851 , (20) �89176 5) = 2 - 2 Re ~ _  

where 

0/73(z, 5) 
~ z ~  - 3h3~176176 0, 0, 0) + 2h21oo(1, 1, 0, 0) + 2h201o(1, 0, 1, 0) + 

+ hlo2o(0,0, 2,0) + 2h20o1(1, 0 ,0  , 1 )+  h111o(0, 1, 1 , 0 ) +  
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and 

+ hl.o11(O,O,l, 1)+h12oo(0,2,0, O) + h~oo2(0,0,0,2) + 

+ h ~ 1 o i ( 0 , 1 , 0 , 1 )  

= E2( i+l )h ( i+l ) j k l ( i , j , k ,  

~/~3(z, ~) 
~z 2 

Of(z, ~) &~(z, ~) 

~52 ~Z 2 

--  Y2(J + 1)hi(i+ l)kz(i,J, k, 1), 

- -  ~2( i  ~t_ 1)f(i+ l)jkl(k, 1, i,j), 

- -  ]~2(J + 1) f i(j + l Jkl(k' I, i, j). 

Since (0, 2, 0, 2) is the product of the monomials  (0, 2, 0, 0) and (0, 0, 0, 2), (0, 0, 0, 2) 
and (0, 2, 0, 0), (0, 1, 0, 1) and (0, 1, 0, 1), the coefficient of (0, 2, 0, 2) in (20) is 

C0202 = 2 Re(3ht2ooJ~3o o + hloo2LlO2 + 2 h l l o l L 2 o l  - -  3ho3oof~2o o - 

-- holo2floo 2 -- 2ho2olfalol)  

i i i 
2 Re - ~hloo2h0201 + ~h1200hoo03 + 2~hl lolholo2 + 

+iholo2ho2~o~ p i p . ~2holo2ho2ol -- ~ho300ho012 ~~ho300hoo03 - -  

- -2 iho2olhol  t l -  4 P~2ho2olholo2) 

4 
= ~ [Re(hlo02) Im(h0201 ) + Im(hlo02) Re(h0201) ] - 

IRe(h1200) Im (hooo3) + Im (h 12 oo) R e  (hooo3)]  - 

~[-Re(hl lol) Im(holo2) + Im(hllo1) Re(holo2) ] - 

- 1 0  P-2 [Re(ho2o0] 2 - 10 P-2[Im(ho2ol)] 2 -  

--  2 P~[Re(h0300)] 2 c a  - 2~P~2 Jim(h0300)] z- (21) 

Thus the coefficient a0202 o f ( 0 ,  2, 0, 2) in (16) is 

a 0 2 0 2  = h0202 + c0202. (22) 
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5. Calculation for the Restricted Three Body Problem 

In  this sect ion we will cons ider  the p l ana r  restr icted three  b o d y  p r o b l e m  in a ro t a t ing  
c o - o r d ina t e  f rame at the critical mass - ra t io  of  R o u t h  tha t  is for the m a s s - p a r a m e t e r  

/~ we have  # = #1 = �89 - ~,~69).  
A c c o r d i n g  to Depr i t  (1966) the H a m i l t o n i a n  func t ion  descr ib ing  this sys tem with  

the or ig in  at  the equi la tera l  L a g r a n g e  equ i l ib r ium po in t  L 4 can  be wri t ten  as 

H(~, ?], p~. p.) = n~(~, ,7, & ,  p.) + g3(r ?]) + HAr ?]) + ' 

with  

where  

H 1 2 2(r ?], PC, P,) = ~(P~ + p2) _ (r -- ?]P~) + 6020 'r q- ('002 t]2, 

H3(r  ?]) = 0)30 r -~ 0)21r 71- 0)12r 2 -]- 0)03?] 3, 

H4(~ ,  ?]) = 0)4.0 r -~ 0)31r -~- 0)22r 2 -}- (2913r ~- 0904?] 4, 

--~'~(~,?])= ~ i(DpqCP?] q 
p=0q=0  

is the  po ten t i a l  ene rgy  of  the system. F o r  the coefficients we have  

160930 

160)21 

160)12 

160)o3 

1280)4o 

1280)31 

1280)22 

1280)13 

1280)o4 

where  we have  the re la t ions  

= - 107 cos 3/3 + 3~ cos(c~ +/3), 

= - 307 sin 3/3 + 3~ sin(e +/3),  

= 307 cos 3/3 + 3~ cos (e  +/3), 

= 107 sin 3/3 + 3~ sin(~ +/3) ;  

= - 18 + [20 + 35 cos 6/3]6, 

= 1406 sin 6/3, 

= - 36 - 2106 cos 6/3, 

= - 1406 sin 6/3, 

= - 18 - [20 - 35 cos 6/3]c5; 

7 = 1 - 2#, 62 = 1 + 372, ~2 = 3 + ~)2 

1 
cos.2 B = ~, sin 2/3 = , cos e = 5' 

which  for # = PI  give 

. / 5  
sin c~ - " ~  

(23) 

(24) 



144 

c o s  = 

9g sin c~ = g 

Thus we have 
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sin 217 = ~ , , / ~ ,  cos e = �89 , 

(25) 

H2(~, q, pc, p,) = ~v~ + p2) _ ~1 - 2x/2)~ 2 - ~1 + 2x/2)q 2 - (~p, - qpr 

The real symplectic co-ordinate change which brings H 2 into its real infinitesimal 
symplectic normal  form is found by Burgoyne and Cushman (1974). It is given by 

where 

= - ~2 (xl - 2y2)' 

p~ = - �89 - 2yl), 

t /=  x /~2 (x  2 - 2 y l )  , 

P" = - 4 ~  (3xl - 2y2)' (26) 

2 = ( 1  1 ~  1/2 
- ~ j  . (27) 

The new quadrat ic  Hamil tonian  becomes 

H 2 ( x , y  ) = � 8 9  12~(x 1 + x2). (28) 

For  the higher order terms we have, using complex conjugate co-ordinates  (z, z-) as 
defined in Section 3, 

~ptlo = d pq(2)(z I + 51 + 2iz  2 - -  2i52)P ( - -  i z  I . q -  iZ 1 - 2z  2 - 2ff2)q 

~"n v = a , . ( 2 ) ~ . ( z  I , z : ,  e I , e2). 

It follows that 

G qp(Zl , z2, if1,52) = G pq(i~l , i~2, - iz l  , - iz2)" (29) 

Thus if we write dpq instead of dpq(2) we have 

/~3(z, z-) = Y~3 hlk (l, k) ---- d30(.030G30(z, z-) Jr- d21 (.021 221  (Z, Z-) ~- 

+ d12co12G21 (ie, - iz) + do3e)03 G30(i~, - iz). 

We may now compute  the h~k, they are listed in Table  II. For  convenience define 

23 __ 1 ) \ ,  
a =,,/2(7%3 
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1 2 
b = ~ 0 ) 3 o  - ~0)12' 

~3 1 ), C ~ 0 ) 2 1  

3 2 
d =-- 8~3 (-030 -I- ~0 )12  

(30) 

TABLE II 
List of coefficient h~k 

h3000=Bo030 = - ~ ( b + i a )  

h2100 = ho021 = - � 8 8  

h12oo = hoof2  = �89 + ic) 
ho3oo = hooo3 = a + ib 

h2010 = t~1020 = - ~(d  - ic) 
h200t = ho120 = - 3 (  a - ib) 
h~110 = ft~011 = ~(c  - id) 

h l l o l = h o l l t  = - d + i c  

h0210 = h1002 = ~(a - ib) 
ho2ol = holo2 = c -  id 

To find the coefficients o f /44  we proceed in the same way. In this case we only  have 
to find the coefficient ho2o2. We have 

/~4  (Z, Z-) = d40 (.040 G40 (z, z~ ~- d 31 ~ G31 (z, z-') -~- d 22 0)22 G22 (z, z-) + 

q- d 1 3 0 ) 1 3 G 3 1 ( i z  , - i z )  + do40)o4G40(iz, - -  i z ) .  

Thus the coefficient ho2o2 in /44(z ,  z-) = Z4hlk(l , k) is 

3 1 + ~ 2 4  (31) ho2o2 - -  8 ~ 0 ) 4 0  -1- 4--0)22 0)04" 

Using  (24), (25), and (27) we obtain 

ho2o2--  - 1 ~ s l  [ ( 9 +  23 / ~ ) ( 1 8 _ 2 0 3  356 cos 6fl) + 

+ (9 _ ~,, /~)(lS + 206 - 356 cos 6fl) + 9 + 105  fi~ COS 6fi] 2 v 

3)60  1 2 o 101  128 1024" 

(32) 

Co2o2 = 4(a z + 5c 2) + 4(b 2 + 5d 2) - 4 , ~ ( 2 c  2 - ac) + 4x/2(2d 2 - bd). (33) 

K n o w i n g  the coefficients o f /~a  and using the results of Section 4 it is possible to 
1 compute  Co2o2 which is the coefficient of the monomia l  (0, 2, 0, 2) in 5 ~ p H  3. To do 

this use (21) and Table II, putting e = �89 and p = - 1 in (21). We obtain 
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Substi tut ing (30) into (33) and collecting terms gives 

335 z 2 2 21 3 2 
C 0 2 0 2  - -  s [O)30 -~- (L)03) -~- ~ - ( O ) 3 0 ( D 1 2  -~- 0 )030- )21 )  ~- ~ ( 0 ) 2 1  + 0 ) 2 2 ) +  

+ 59x/2(0)32o - 0)o3)2 + 7x/~(0)3o0)12 - 0)03021) �9 (34) 

Using (23), (25) and some t r igonometr ic  formulas  an exact calculat ion of the terms of 

(34) gives 

2 2 0)30 + 0)03 = 2-8[ (107  cos 3fl - 3( cos(~ +/3))2 + 

+ (10y sin 3/3 + 3( sin (c~ +/3))2] 

= 2 - s  [109 72 + 27 - 60 7~ cos c~ cos 4/3 + 60 ;~( sin c~ sin 4/3] 

= 2 - 8 [ ( 1 6 9  + ~20)72  + 2 7 ]  = 2 - 9  x 3 -3  x 12337 

and similarly 

2 2 = _ 2 -  12 2577xf~, 0 ) 3 0  - -  0 ) 0 3  )< 

2 2 - 9  0)21 + 0)12 = 2 x 951, 

09221--0)22 = 2  -12 X 5337Xf2 , 

0)030)21 + 0)3OO912 = -- 2 . 9  X 659, 

�9 2_12 11129 /~  
0 ) 0 3 0 ) 2 1  - -  0 ) 3 0 0 ) 1 2  = - -  )< T v "  

Substi tut ing these values into (34) gives 

C0202----2 -1~ • 3 . 3  X 29293�9 

NOW our  a im was to compu te  the coefficient a 2 of (y  2 + y2)2 in the 4th order  no rma l  

fo rm of H. This coefficient a 2 equals the coefficient ao2o2 of the m o n o m i a l  (0, 2, 0, 2) = 
2 - 2  = z 2 z 2 . Thus  for the p lanar  restricted three b o d y  p rob lem we have 

a2 = ao2o2 = Co2o2 + ho2o2 = 8~4 ~ 0.068 287 .... (35) 

A p p e n d i x  

In  this appendix  we will outl ine how to cons t ruc t  a versal de format ion  (Arnol 'd,  

1972) of the normal ized  Hami l ton i an  funct ion 

H = H 2 + H4,  

see (5), (11). 

This  enables us to s tudy the system X n passing th rough  resonance.  In  the case of 
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the planar restricted three body problem at L 4 we will discuss the relation of the 
parameters  of this versal deformation with the mass parameter  which generates a 
1-parameter family. 

Consider the Hamiltonian function of Section 3. Normalizing up to order 4 and 
omitting higher order terms gives the truncated Hamil tonian 

= __ i 2 + X 2) + ai(x i _ H*(x ,  y) o~(xly 2 x2Yl) - 2P(x1 Y2 x2Yl) 2 q- 

+ a2(y ~ + y2)2 + a3(x l y  2 _ x 2 y l ) ( y 2  + y22); p = + 1. (36) 

The coefficients are constants. 
1 For  the restricted three body problem we have c~ gx/~, a2 = 8 ~ 4 ,  a~ and a 3 two 

fixed constants and p = - 1. 
It  follows from the construction of the normal form that X w is an integrable system 

with integrals the energy H* and M(x ,  y) = xx Y2 - X2Yl" 
The linearized vectorfield corresponding to H* is X. Consider the orbit of X under 

the adjoint action of the real symplectic group Sp(co, R). Note  that im ad x is the 
tangent space to this orbit. As in Corollary 2.1 we may construct a space Y transversal 
to the orbit at X. The infinitesimal symplectic matrices 

(i i~ 0 !) 0 0 
el = 0 0 - and e 2 =  0 0 

0 1 0 0 

form a basis of Y. Thus a two parameter  versal deformation of X is 

X + v 1 e 1 + v2e 2 = X v. (37) 

Let X . r  Y be some other deformation of X, depending smoothly on the parameter  
# with X I = X. As a direct consequence of the implicit function theorem we have the 
following: 

P R O P O S I T I O N  5.1. For v near zero and tt near tt 1 we have X conjugate to X v by 

a smooth fami ly  o f  real symplectic mappings P .  Moreover  there are smooth real valued 

funct ions ~91 and ~k z with v I = ~kl(#), v 2 = 02(#)- 
Consider now the planar restricted three body problem at L 4. The matrix for the 

linear vectorfield, depending smoothly on the mass ratio #, is found in Deprit  (1966) 

and is given by (0l 110) 
- 0 0 1 ; 

Bu= ~(1 0~3(5) 0 0 
�89 + - 1 

62 = 4(3#a _ 3# + 1). 
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By a linear symplectic transformation P, see (26), we can bring B into normal form 
A = P -  1Bu ' p. By (37) a versal deformation of A is 

Xv = N ~  + Vl 0 0 v 2 
\ _1 ~ 0 0 

- 1  0 

Consider the family Bu = P -  1Bup. By the above proposition/Tu and X must have 
the same characteristic polynomials. Thus 

-~- 1 1 1 111 "~%~ + (~ + a(27/~ - 2 7 / / 2 ) 1 / 2 ) 1 / 2 ,  

1 _ �88 - 27#2)1/2; (38) v 2 - - ~  

f u r t h e r m o r e  ( � 8 9  + v )2 = ! _ 1 2 v 2. Note that the eigenvalues of X are 

1 - 

We see that the sign of v 2 determines whether we have purely imaginary eigenvalues 
or eigenvalues with non-zero real part. Furthermore we see that v 2 completely deter- 
mines the frequency ratio. 

We have 

dV d , . = . ,  = - 0 

and thus the 1-parameter family generated by the mass-parameter is generic. 
Of course the above discussion also holds if we consider the corresponding 

Hamiltonian functions, instead of the vectorfields. Thus a versal deformation of 
H*'is 

1 2 
H ~ , v ( X  , y) -~- H~(x,  y )  "+" V l ( X l Y  2 - -  x 2 Y l )  -[- ~ v 2 ( y  I -'[- y2) .  ( 4 0 )  

Here (x 1 Yz - x2Ya) and (y2 + y22) are the basis elements of Yz defined as in Section 2. 
We now extend the above discussion to 4-jets of functions. Consider the 

Hamiltonian H*, (36). The orbit (9 of the 4-jet of H at zero under symplectic diffeo- 
morphisms q~ of (~4, co) which leave the origin fixed is the set of all 4-jets of functions 
H* ~ q~. Note that (_9 depends only on the 4-jet of r at zero. The space transversal to (9 
is Y2 + Y4" Thus we have a five parameter versal deformation of H* which we may 
write as 

* __ 1 2 X 2 ) 1 2 H~ (x, y) = ~ ( x l Y  2 X2Yl) _ ~p(x  x + + ~v(y 1 + y2) + 

-k a l ( x l y  2 -- xzyl)  2 + a2(Y 2 + y2)2 + 

+ a3(Y ~ + y~) (x ly  2 -- x2 yl); (41) 
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considering the coefficients as parameters in the neighborhood of some fixed value 
(v near 0) except for p which is + 1 or - 1. 

Hence by an extension of Proposit ion 5.1 we deduce that the one parameter  family 

of 4-jets of Hamiltonian functions of the planar restricted three body problem at L 4, 
generated by the mass parameter,  can be brought  into (41) by the 4-jet at 0 of a smooth 
family of symplectic diffeomorphisms which preserve the origin. 

The coefficients e, v, a t ,  a2, and a 3 depend smoothly on # for # near #l" For  e and 
v the dependence on # follows from (38) and (40). We have 7 = �89 + v 1 and v = v 2 . 
So v is the detuning parameter.  
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