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F I N D I N G  M A X I M A L  O R D E R S  IN 
S E M I S I M P L E  A L G E B R A S  O V E R  Q 

G~.BOR IVANYOS AND LAJOS RSNYAI 

A b s t r a c t .  We consider the algorithmic problem of constructing a max- 
imal order in a semisimple algebra over an algebraic number field. A 
polynomial time if-algorithm is presented to solve the problem. (An if- 
algorithm is a deterministic method which is allowed to call oracles for 
factoring integers and for factoring polynomials over finite fields. The 
cost of a call is the size of the input given to the oracle.) As an ap- 
plication, we give a method to compute the degrees of the irreducible 
representations over an algebraic number field K of a finite group G, 
in time polynomial in the discriminant of the defining polynomial of K 
and the size of a multiplication table of G. 

Sub jec t  classifications. 68Q40, 11Y40, 68Q25, 11Y16. 

1. Introduct ion 

Let R be a Dedekind domain, K be the field of quotients of R and let .A be a 
finite dimensional semisimple algebra over K. An R-order in .A is a subring 
A C .A with the following properties: 

o A is a finitely generated module over R. 

o A has an identity element (this is necessarily the same as the identity 
element of .A and R). 

o A generates .A as a linear space over K. 

An R-order A in A is a maximal R-order if it is not a proper subring of any 
other R-order of A. 
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In a previous paper (R6nyaJ 1992) we studied aJgorithmic problems related 
to maximal orders in the case when K is an algebraic number  field and R is 
the ring of algebraic integers in K. Before discussing algorithmic problerns~ we 
specify some conventions concerning our input (and output)  objects. 

An algebra AM over a field K can be described by structure constants. If 
al~.o. ,a,~ is a basis of AM over K, then the products a~aj can be expressed as 
linear combinations of the a~ 

a i a j  -~- '~ij1r + '~j2a2 + " '~  + ~[ijmC~m �9 

The elements 7ijk E K are called structure constants. In this paper ~ algebra 
is considered to be given as a collection of structure constants. As an ~mportant 
special case, an algebraic number field K is given by the monic minimal poly- 
nomial f (x)  E 7Ix] of an integral element a e K over Q such that  K = Q(a).  
We shall also work with rings whose additive groups are finitely generated free 
Abelian groups. In this case the structure constants are integers given with 
respect to a basis over the integers l .  Subrings and ideals will be represented 
by bases whose elements are linear combinations of basis elements of a larger 
structure. 

The t ime complexity of an algorithm is described in terms of the size of 
the input. The size of a rational number p/q expressed in lowest terms is 
the number  of bits of p and q. The size of compound objects (polynomials, 
vectors, matrices, etc.) is the sum of the sizes of their components.  The size 
of an object X is denoted by size(X). In particular, we use the (somewhat 
ambiguous) notation size(AM), size(S), where AM is an algebra or S i~ a ring. 
This is understood to be the size of the representation of AM or S a~s an input 
or an output  of the algorithm considered. 

An algebra AM is central over K,  if C(AM) = K holds where C(A) is the 
center of AM: 

C(AM) = {a E AM: ab = ba for every b ~ AM}. 

If ,4 is central simple over an algebraic number field If ,  then by a theorem 
of Wedderburn AM is isomorphic to a full matrix algebra Mk (E) where E is a 
central skewfield over K. We have d i m g E  = d 2 for some positive integer d 
and this d is called the index of AM. In R6nyai (1992) the following algorithmic 
problem was considered: 

PROBLEM INDEX 
INSTANCE: A centraI simple algebra .4 over an algebraic number .~etd If  and 
a positive integer d <_ ~ A M ~  
QUESTION: Is the index of AM equal to d? 
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It was shown in Rdnyai (1992), Theorem 1.1 that INDEXE NP Cl co-NP. 
The proof is based on the fact that A contains a maximal D-order A (D is 
the ring of algebraic integers in K) which admits a short description and ver- 
ificationo To clarify the latter point, we introduce the notion of if-algorithms. 
A deterministic algorithm is an if-algorithm if it is allowed to call oracles for 
two types of ~ubproblems. These are the problem of factoring integers and the 
problem of factoring polynomials over finite fields. At present, no determinis- 
tic polynomial time methods are known to solve these two problems. Similarly 
an f-algorithm is a deterministic method which is allowed to call an oracle 
only for factoring polynomials over finite fields. In both cases the cost of a 
call is the size of the input passed on to the oracle. The main technical con- 
tribution of Rdnyai (1992) is a deterministic polynomial time if-algorithm to 
check if a given Lmodule  A C A is a maximal D-order in A. On the other 
hand, it was pointed out that there exists a maximal D-order A such that 
size(A) = size(A) ~ These two facts suggest the possibility of constructing a 
maximal D-order by a polynomial time if-algorithm. 

The main result of this paper is a polynomial time if-algorithm for con- 
strutting a maximal D-order A in a semisimple algebra r over an algebraic 
number field K. As an application, we give a deterministic method to compute 
the degrees of the irreducible representations over an algebraic number field K 
of a finite group G given by a multiplication table. The algorithm runs in time 
polynomial in the size of a multiplication table of G and in Rd(f)l, the discrim- 
inant of the given defining polynomial f of K. Such an algorithm apparently 
was not available before, even for the simplest case K = Q. 

The organization of the paper is as follows. Section 2 contains the basic 
statements from the theory of orders we need. In particular, Lemma 2.6 states 
that maximal D-orders and maximal Lorders coincide, while Propositions 2.4, 
2.5, and 2.9 make it possible to reduce the problem of finding maximal l -  
orders to that of finding maximal orders over the discrete valuation rings Z(p) 
for primes p dividing some starting discriminant. Most of the material can be 
found in Reiner (1975). Proofs are given only where a precise reference was 
hard to locate. 

In Section 3 we collect some statements about the radicals of orders over 
discrete valuation rings. These play an important role in the study of extremal 
orders later on. 

Section 4 and in particular Proposition 4.1 and Theorem 4.5 contain the 
statements which serve as the theoretical foundation for our algorithms. These 
two statements enable us to reduce the problem of finding maximal orders over 
discrete valuation rings to that of decomposing associative algebras over the 
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residue class fields. The ideas presented here are not new. They were used by 
Jacobinski (see Jacobinski 1971 or Reiner 1975, Chapter 39) in his approach to 
the theory of hereditary orders. We include proofs because Jacobinski worked 
with complete local rings. In the statements here the completeness of R is not 
assumed. Also, largely due to the fact that weaker results are sufficient for our 
purposes, it was possible to simplify some of the original arguments. 

Section 5 contains the algorithms. Theorem 5A provides the basic qter- 
ation step' of our subsequent methods for constructing maximal orders. We 
describe an algorithm that for a given Z-order A constructs an order F properly 
containing A if such an order exists. 

In Corollary 5.3 we give a polynomial time if-algorithm for constructing 
a maximal D-order A in a semisimple algebra .4 over an algebraic number 
field K. This settles in the affirmative the question raised in R6nyai (1992). 
We remark at this point, that on the basis of the theory of hereditary orders 
(Harada 1963) it is possible to give a more direct, but theoretically much more 
complicated algorithm to construct maximal orders. 

Perhaps the most interesting result of the paper is Corollary 5.6. We pro- 
pose a new deterministic algorithm to compute the degrees of the irreducible 
representations over an algebraic number field K of a finite group G given by 
a multiplication table. 

1.1. N o t a t i o n  and  t e rmino logy .  Throughout the paper we keep ourselves 
to the following notation and terminology: 
R: a Dedekind ring, i.e., a Noetherian integrally closed domain in which the 
nonzero prime ideals are maximal, 
K: the field of quotients of R, 
P: the unique maximal ideal of R, if R is a discrete valuation ring, 
~r: a prime element of R when R is a discrete valuation ring R, i.e., an element 
~r e R such that (~r) = P,  
,4: a finite dimensional semisimple algebra over K, 
order, we use this term for an R-order in the K-algebra A, 
F, A: orders, 
radical: the Jacobson radical of a ring or algebra, denoted by Rad(R), Rad(A), 
etc. 

2. Bas ic  facts  about  orders  

In this section we collect the basic facts and some elementary results from the 
theory of orders we need later on. Most of the statements and proofs can be 
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found in our principal reference Reiner (1975), Sections 9, 10. In this section 
we assume that  A is a separable algebra, i.e., semisimple and the centers of its 
simple components  are separable extensions of the ground field K. 

2.1. R e d u c e d  t r a c e  f o r m s  a n d  d i s c r i m i n a n t s .  First we introduce the 
reduced trace function of a semisimple algebra using a sequence of progressively 
more general definitions (for a central simple algebra, then a simple algebra, 
and finally for a semisimple algebra). 

The trace TAlK(X) of an element x E A over K is the trace of the K-linear 
transformation L~ : A --+ A defined by L~(a) = xa for a E A. 

If .A is a full matrix algebra over the field E,  d imEA = n 2, then there is 
another way to define traces of elements of Jl. Namely, if we have an isomor- 
phism r .A ~ M,~x,~(E), then we can take tr~/E(X) as the trace of the matr ix 
ex. This is independent  of the choice of the isomorphism r 

If A is a central simple K-algebra and d i m g A  = n 2, then there exists an 
extension field E of K which splits A, i.e., E | .A ~ M~x~(E). It can be 
shown that  trA/K(X) := trE| | 1) E K is independent of the choice of 
the splitting field E and we have n trA/g(x) = TA/K(X). Consequently, if the 
characteristic of g is zero (or prime to n), then trA/g(x) = ~W.4/g(x). 

If .A is a simple K-algebra with center L, then we can take trApc(x) := 
TL/Ktr.4/L(X). If A is a semisimple K-algebra with Wedderburn-decomposit ion 
,4 = r @. . .OAk ,  then we can define trA/K(X) := trAl/K(Xl ) + . . .  +tr~tk/K(Xk), 
where xi is the image of x under the projection r --~ .Ai onto the i th simple 
component  of .A. We call trA/g(x) the reduced trace of x over K. The map 
r: .A x .A --~ K defined by r(x,  y) := tr.4/K(xy) is a K-bilinear function and is 
called the bilinear trace form of .A over K. If ,4 is separable over K then ~- is 
a nondegenerate bilinear form. For the rest of this subsection we assume that  
A is separable over K. 

We shall omit  the subscript A / K  from T~t/K and tr.4/g whenever A and K 
are clear from the context. 

Let A be an R-order in A. Then for every element x E A, we have tr(x) E R 
(Reiner 1975, Theorem 10.1). Let n = dimKjl.  The discriminant of the order 
A is the ideal d(A) in R generated by the set 

{det(tr(xixj)),~,j=l ] ( x l , . . . , x ~ )  e A~}. 

It is clear that  if A C_ F, then d(F) I d(A). Moreover we have 

PROPOSITION 2.1. Assume that A C F, Then d(F) [ d(A) and A = F i f  and 
only i f d ( r )  = d(h) .  
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PROOF. Reiner (I975)9 Exercise 10.3 or 4.13. 

From a generating set of A as an R-module we can easily obtain a nonzero 
multiple of d(A): we select a subset {xl, o.~ x,,} of the generating set which is 
a K-basis of A. 

PROPOSITION 2.2. Let {xl~. . .  , x ,}  C_ A beaK-basis of A. Then ~hepgncipg 
ideal generated by ~he nonzero determinant d = det(tr(xix~))~,i=l is contained 
in the discriminant. 

PROOF. Obvious. cl 

PROPOSITION 2.3. Let {x l , . . .  , z , }  and d be as in Proposition 2.2. Le* F be 
any order containing A. Then d(r) c_ R{z, , . . . ,  c A. 

PROOF. The proof of Proposition 2.1 from Rdnyai (1992) works for semisimple 
algebras as well. cl 

Note that  if R is a principal ideal domain, then every R-order A admits 
an R-basis, say {x l ,~  x~}, and the discriminant d(A) is the principal ideal 
generated by the determinant  det(tr(xixi))~,j=~ (Reiner 1975, Theorem t0.2). 

2.2. Loca l i za t i ons .  if R is a Dedekind domain with quotient field K and P 
is a prime ideal in R, then the ring of quotients Rp = (R \ P)-~R C K is a 
discrete valuation ring. For an R-lattice M in A we can define the ioealization 
at P as follows: Me = R p M  C A. Me is an Rv-lat.tice. If M is a fult R.lattice 
in A (i.e., K M  = A), then Me is a full Rp-lattice in A, If A is an R-order, 
then Ap is an Rp-order. Moreover A is a maximal R-order if and only if Ap is 
a maximal Re  order for every prime ideal P of R. More generally, we have the 
following 

PROPOSITION 2.4. I f  F and A are R-orders in ,4 such that A C P, then there 
exists a pr ime ideal P of R such that Ap C Fp. 

PROOF. Reiner (1975), Theorem 3.t5. O 

To be more specific, for a rational prime p let Z(v ) denote the ring 

Z(p) = {r/s E Q; r , s  E Z, gcd(p,s)  = 1}. 

Z(v ) is a discrete valuation ring with unique maximal ideal pZ(v }. If A is a 
Z-order, then we use the notation A@ = Z(p)A. 
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2.3. O r d e r s  ove r  Z a n d  Z(N. There are some simple examples of orders, if 
M is a full R-lattice in A (i.e., K M  = A), then the left order of M defined 
by Or(M) = {x E A [ x M  C M} is an R-order in A (Reiner 1975, p. !09). 
The  right order is defined in a similar way. This type of construction is an 
important  algorithmic tool for constructing orders: 

PROPOSITION 2.5. / f  R = Z, and a full Z-module M in the Q-Mgebra A is 
given by a Z-basis, then O,(M) has a ][-basis of size (size(A) + size(M)) ~ 
and s ch a basis can be computed in time (size(A) + size(M))~ 

PROOF. In R6nyai (1992), Theorem 3.2 the s ta tement  is proved for a simple 
algebra A. The argument works in the more general case when A is semisimple. 
[2 

The next s ta tement  will be useful when we change the ring of coefficients 
from Z to D. 

LEMMA 2.6. Let K be an algebraic number field, A a finite dimensional semi- 
simple algebra over K and let A be a Z-order in A. Let D be the ring of algebraic 
integers of K.  Then F = DA is a D-order containing A. As a consequence, a 
maximal Z,order in A is a maximal D-order as well. 

PROOF. It is straightforward to check that  DA (the finite sums of the form 
cqx~, c~ E D, xi E A) is a ring which is a finitely generated D-module.  Also 

we have 1A E DA. [] 

The following s ta tement  gives a tool to reduce the problem of enlarging a 
Z-order to a similar problem for Z(N-orders. 

LEMMA 2.7. Let p be a rational prime and F be a Z-order. Suppose that f f  
is an ideal of F(p) such that f f  D_ pF(p) and Ol(ff) D F(p). Let 2- denote the 
inverse image of f f  with respect to the embedding r ~ F(p). Then wee have 
z D pr and Oz(Z) r. 

PROOF. Clearly 2" D pF and 2- is an ideal of D. Let al, a 2 , . . . , a t  be a 
generating set of 27, as a Z-module. Then the images of the elements ai (which 
will also be denoted by ai) form a generating set of 3" as a Z(p)-module. Now 
let a E Or(,7") \ F(p) . Then for i = 1 , . . . ,  t we have 

Oil1 ~i2 O~it 
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where aij,  flij E l and p does not divide fl~j. Now put fl = l'Iij/3ijo Then it is 
straightforward to check that  flaZ C_ 2" and consequently fla E Ot(:r). Final ly  
we observe that  fla ~ IF', for otherwise we have a E r(p). The proof is complete. 
D 

The next s tatement  demonstrates a simple but useful connection between 
the orders A and A(v ). 

PROPOSITION 2.8. Let A be a l-order in A. The map r : x ~ x + pA(v ) 
(x 6 A) induces an isomorphism of rings A/pA ~ A(v)/pA(v ). 

PROOF. Clearly r : A ~ A(vi/PA(v ) is an epimorphism of rings. It is 
straightforward to check that  ker(r = pA. [] 

The next s tatement provides a bound on the number of iterations in algo- 
ri thms which successively increase orders until a maximal order is obtained. 

PROPOSITION 2.9. Assume that we have the strictly increasing chain Aa C 
.. .  C A,,, of ][-orders in A. Let di be the positive integer generating the ideal 
d(Ai), for 0 < i < m. Then 

1 log2(do/dm) < 1 m _< ~ _ ~ log2 do. 

PROOF. For each i < m, di/di+l > 1 is the square of an integer (namely of 
the determinant  of the matrix transforming a Z,basis of Ai+t to a l-basis of 
Ai). We obtain the statement by taking the logarithm of 

r n - 1  
do di > 22m. [] 
d--s = ~I d , + l -  

i=0  

3 .  R a d i c a l s  o f  o r d e r s  o v e r  l o c a l  r i n g s  

First we recall some basic facts about the Jacobson radical of rings. For proofs, 
see for example Reiner (1975), Section 6.a. Let S denote an arbitrary ring with 
an identity element. Rad(S),  the Jacobson radical of S is the set of elements 
x E S such that  x M  = (0) for all simple left (or, equivalently, M x  = (0) for all 
simple right) modules M over S. Rad($)  is a two-sided ideal in $ containing 
every nilpotent one-sided ideal of $. Also, Rad(S) can be characterized as the 
intersection of the maximal left ideals in $,  and, equivalentIy, as the intersection 
of the maximal right ideals in S. If S is left or right Artinian (this holds for 



comput complexity 3 (1993) Finding maximal orders 253 

example if S is a finite dimensional algebra over a field) then Rad(S)  is the 
maximal nilpotent ideal in S. 

After these preliminaries let us return to our rings of interest. We assume 
that  R is a discrete valuation ring, P is the unique nonzero prime ideal of R, 
K is the field of quotients of R, and A is an R-order in a finite dimensional 
semisimple K-algebra A. 

PROPOSITION 3.1. The residue class ring A = A / P A  is an algebra with iden- 
tity element over the residue class field R = R / P  and dimKA = dim•A. If  
r A -+/~ is the canonical epimorphism, then PA C Rad(A) = r  and 
r induces a ring isomorphism A/Rad(A) ~ .~/Rad(.~). As a consequence, a 
left (or right) ideal Z of  A is contained in Rad(A) i f  and only i f  Z is nilpotent 
modulo PA, i.e., there exists a positive integer t such that 2 "t C_ PA. 

PROOF. Most of the statements are proved in Reiner (1975), Theorem 6.15. 
The  claim about the dimensions follows directly from the fact that  R is a 
principal ideal ring and A is a free R-module. As for the %nly if' part of the 
last s tatement,  every nilpotent ideal of A is contained in Rad(.~). [] 

PROPOSITION 3.2. If  A C F are R-orders, then there exists a positive integer 
s such that Rad(F) s C A. For any such s, Rad(F) s C Rad(A) is an ideal in A. 

PROOF. (For a part of the argument below see Reiner 1975, Ex. 39.3.) 
Using that  F _D A are full R-modules in A over a discrete valuation ring R, 
and Proposition 3.1, we infer that  there exist positive integers u and t such 
that  P=F C_ A and Rad(F) t _C PF.  Now s = tu will suffice to prove the first 
claim. If for some s we have 2" = Rad(F) s _C A, then Z is an ideal in A because 
AZ _ FZ = 2" and 2"A _C 2"1" = 2". Finally, for the integers t and u we have 

Z t(~+l) = Rad(r)  '~(~+1~ _c (pr)*(~+~) _ (pr)(~+1) 

= P0'+I)F = P .  P~F _C PA 

Proposition 3.1 implies that  2" E Rad(A). [] 

The following observation plays an important  role in Jacobinski's (1971) 
approach to hereditary orders. 

PROPOSITION 3.3. Let A C_ F be R-orders in +4 such that Rad(F) _C A. Then 
for any order A' such that A C_ A' C_ F we have Rad(F) _C Rad(A'). The canon- 
ical map r F --* [' = r/Rad(r) induces a bijection A' ~ A' /Rad(F)  between 
the set of orders A' lying between A and F and the set of the subalgebras of the 
R/P-algebra F containing A/Rad(F).  Moreover i f  A C_ A' C_ F, then we have 
Rad(A') = r162 
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PROOF. We have Rad(P) C. h g A". From this, Proposition :3.2 implies that 
Rad(r) c_ RM(A'). The statement about the correspondence of R-orders and 
R/P-subalgebras is obvious once we observe that any R-subMgebra A ~ such 
that A C A ~ C I" is actually an R-order. As for the last statement, we note 
that if J is a maximal left ideal of A', then Rad(r) g y, because ,are have 
Pad(r) c_ RM(A'). We infer that r induces a bijection between the set of the 
maximal left ideals of A' and the set of the maximal left ideals of A' /Rad(r) ,  
and the statement follows, [] 

4. E x t r e m a |  o rders  

In this section R is a discrete valuation ring, For R-orders in A we introduce 
the following partial ordering: F radically contains A if and only if g -~ A and 
Rad(r)  _D Rad(A). The orders maximal with respect to this partial ordering 
are called ectremal. Maximal orders are obviously extremal. The notion of 
extremal orders has been introduced in aacobinski (1971). The next statement 
is from Jaeobinski (1971), Proposition 1. We note first that if A is an R, order, 
then PA C_ Rad(A), so that Rad(A) is a full R-lattice--therefore Oz(Rad(a)) 
is an R-order. 

PROPOSITION 4. !. For any R-order A, the order O~(Raa(A), radicaI1y contains 
Ao Moreover, an R-order A of A is extremal if and onIy irA = O,(Rad(A)) (if 
emd only if A = Or(Had(A))). 

PROOF. Since Rad(A) is an ideal in A, a C_ Ol(Rad(A)). Also, Rad(A) is a 
left ideal in O,(Rad(A)) and by Proposition 3.11 for some t we have Rad(A)* C_ 
Pa  c_ PV,(pad(A)), hence Rad(A) C_ Rad(O,(Rad(A))). This implies that 
O~(Rad(A)) radically contains A. We infer that if A is extremal, then A = 
O,(R~d(A)). 

In the other direction, we suppose that A = O~(Rad(A)) and I" is an or- 
der radically containing A. By Proposition a.2 there exists an integer s > 0 
such that Pad(r)" _c Rad(a). For a n y ,  > 1 with this property we have 
aad(r )*- 'pad(A)  g P a d ( r ) ' - ' p a d ( r )  c__ Pad(a) ,  implying that Rad(r)  "'a C_ 
Ol(Rad(A)) = A. Proposition 3.2 implies that Pad(r)  s-1 c add(a) .  Con- 
tinuing in this way we obtain Pad(r) c_ Rad(h) and consequently Pad(r)= 
Rad(A). We conclude that r c_ o d P a d ( r ) )  = Odpad(a))  = A a=d r = a. [] 

PROPOSITION 4.2. Assume that A C F are R.orders. Then A + Rad(F) is an 
R-order radically containing A. 
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PROOF. It is straightforward to verify that A' = h + Rod(F) is an R- 
order containing A. Next, using the characterization of radicM-ideals from 
Proposition 3.1, we obtain that Rod(A) +Rod(F) is an ideal of A' and Rod(A) + 
 d(r) g Rad(A'). D 

PROPOSITION 4.3. Let A C_ F be R-orders and suppose that A is extremM. 
Then Rod(F) C Rod(A). 

PROOF. An immediate consequence of Propositions 4.2 and 3.2. O 

We remark that if A is an R-order in A such that Rod(A) = PA = ~rA then 
A is a maximal order. Indeed, Ot(rA) = Or(A) = A, hence A is extremal by 
Proposition 4.1. If F D A, then by Proposition 4.3 we have ~rF C Rod(F) C 
Rad(A) = rA, implying that r F  = rA and F = A. 

Theorem 4.5 plays a key role in our method for constructing a maximal R- 
order. The statement and the proof is a simplified version of Jacobinski (1971), 
Proposition 2. We need first an auxiliary lemma on semisimple algebras. 

LEMMA 4.4. Let B be a finite dimensional semisimple algebra over a field F. 
Let C be a maximal subalgebra of B such that Rod(C) ~ 0. Then there exists 
a two-sided ideal ,7 of C minimal among those containing Rod(C) which is a 
/eft ideal of B. 

PROOF. First we reduce the statement to the special case when B is simple. 
In general, by Wedderburn's theorem we have B = B1 @ ..- @ Bk, where the 
direct summands Bi are simple algebras. We observe first that C contains the 
center C(B) of B. Indeed, for the algebra C = <  C, C(B) > we have C' D C. 
Also, it is straightforward to verify that an element 0 ~ c E Rod(C) generates 
a nilpotent left ideal in C' as well, therefore Rad(C') ~ 0. This implies that 
C C B and hence C' = C and C _D C(B). 

We infer that C contains the identity elements ei E Bi of the ideals Bi and 
consequently we have C = elC @ .. .  @ eke. Now the maximality of C implies 
the existence of an index i, such that eiC is a maximal subalgebra of the simple 
algebra B, and ejC = By, if j ~ i. Clearly we have Rad(e,C) = Rod(C) ~ 0. 
Now a two-sided ideal oq~ of eiC minimal among those containing Rad(eiC) 
which is a left ideal of Bi will clearly suffice as J .  

For the rest of the proof we assume that B is a simple algebra. Let V be 
a simple left D-module, and let D stand for the algebra of B-endomorphisms 
of V. By Schur's lemma D is a division algebra over the field F and V is 
a right D-space. Moreover we have B = EndDV and hence Rad(C)V ~ 0. 
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We define the strictly decreasing chain of D-subspaces V = V0 D I~ D V2 
by V~+I = Rad(C)l~, for i = 0,1. From this chain of subspaces we obtain a 
decreasing chain of subaigebras/3 = B0 D B1 D B2 by letting 

& = { ,  E B l . v j  c vj for j = 0 , . . . , i } .  

Here B # B1 follows from B = EndDV. Moreover, 82 _D C implies that 
B1 = B2 = C. We infer that V2 = 0 and (R~(C)) 2 = 0. 

Then the annihilator off = {x E /3 [ xV1 = 0} is properly contained in 
/31 = C, and in fact is a two-sided ideal of C. It is Mso obvious that J is a left 
ideal of/3, and this implies that J D Rad(C). From/3 = EndDV we obtain that 
C/Rad(C) "~ EndhV1 ~ EndDV/V~. Thus, C/Rad(C) is ~ semisimp!e algebra 
with exactly two minimal ideals, implying the minimality of `7 over Rad(C). [3 

THEOREM 4.5. Let A C P be R-orders in `4. Suppose ~hat A is extremM and 
P is minimal among the R-orders properly containing A. Then there exists an 
ideal Z of A minimal among those containing Rad(A) such that O~(Z) ~ P. 

PROOF. By Propositions 4.3 and 3.3, we have that C = A/Rad(P) is a max- 
imal proper subalgebra of the semisimple F = R/P-algebra B = F/Rad(P). 
Moreover Had(C) # 0, since A C P and A is extremal. We can apply Lemma 4.4. 
There exists a minimal ideal ,7 of C above Rad(C) such that J is a left ideal 
in B. Now Z, the inverse image of J with respect to the natural map F --+ B 
clearly satisfies the requirements of the theorem. 

5. A l g o r i t h m s  

Let K be an algebraic number field, ,4 a finite dimensional semisimple algebra 
over K and A be a / -order  in ,4. Let D stand for the ring of algebraic integers 
of K. Suppose that fit is given by structure constants and h is given by a 
Z-basis. Suppose further that we are given a set S = {P1, p2 , . . . ,  P~} of rational 
primes such that A(p) is a maximal l(p)-order if p ~ S. By Proposition 2.3 the 
preceding condition is satisfied if S is the set of primes dividing a multiple of 
d(A). For a finite set S of primes we write ks = I]pesP. 

THEOREM 5.1. There exists an f-algorithm running in time (size(.A)+size(A)+ 
log ks) ~ that produces a Z-basis of a Z-order F D A, provided that such an 
order r exists. The f-oracle is employed to factor polynomials over GF(p) for 
p6S. 
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PROOF. If F exists, then there must  be an i, 1 < i < r such that  Ap~ C Fp~. 
We shall therefore test for 1 < i < r whether A is maximal at pi. If A is 
maximal at every p~, then A is a maximal Z-order. Otherwise, at the first i 
such that  A w is not maximal, we construct a Z-order F in A such that  Ap~ C Fp, 
and therefore A C F. Clearly it suffices to show that  a step of this iteration 
can be performed within the t ime bound stated because r < log 2 ks. 

Let p E S. We shall test first whether A(p) is an extremal Z(p)-order by 
checking if Ot(Rad(A(v)) ) = A(p). If not, then we construct a Z-order F D A. 
If A(p) passes the test, then we use the test of Theorem 4.5. If there exists 
an ideal 3" minimal among the ideals properly containing Rad(A(p)) such that  
O1(3") D A(p), then we construct a Z-order F D A. Otherwise we correctly 
conclude that  A is maximal at p. 

As for the first test, we compute the inverse image Z C_ A of Rad(A(p)) with 
respect to the embedding A --, A(p). By Lemma 2.7, A passes the first test if 
and only if Or(27) = A. Otherwise, F = Or(I)  is an order strictly containing A. 

We shall work with the finite algebra I3 = A/pA over GF(p).  We have 
dimaF(p)/3 = d imqA = n, and structure constants for 13 are easily obtained. 
We have size(/3) = (size(A) +size(A) +log p)O(1). From Propositions 3.1 and 2.8 
we infer that  Z is the inverse image of Rad(/3) with respect to the canonical 
map A ~ / 3 .  Rad(/3) can be computed in deterministic t ime (n+log  p)O(1) with 
the method of R6nyai (1990), Theorem 2.7. From a GF(p)-basis of Rad(/3) we 
can efficiently find a Z-basis of 27. (Note that  any Z-submodule M such that  
pA C M C_ A has a basis of size bounded by (size(A) + logp)~ Also, by 
Proposition 2.5 we can compute Or(S) efficiently. This finishes the description 
of the first test. 

The second test can be treated in a similar way. Let f f l , . . . , f f m  denote 
the minimal  ideals of 13 which contain Rad(/3). Note that  these ideals are 
the inverse images, with respect to the canonical map r : 13 ~ /3/Rad(/3), 
of the minimal ideals of the semisimple algebra/3/Rad(/3).  We have m < n. 
Let Zi denote the inverse image in A of d~ with respect to the map A --* 13. 
Propositions 2.8 and 3.1 imply that  Zx , . . . ,  Zm are also the inverse images of the 
minimal ideals of A(p) over Rad(A(v)). As in the first case, we obtain that  we 
have to compute  the rings Ot(Zi) for 1 < i < m. We can stop when A C Ol(Zi) 
is detected, because then we have an order properly containing A. 

The ideals J]  are obtained by the deterministic f-algorithm of Friedl and 
R6nyai (see R6nyai 1990, Theorem 3.1). The t ime requirement is (n + log p)O(a) 
and we call the f-oracle to factor polynomials over GF(p). From the ideals 
~ ,  the ideals Zi and the rings Ol(Z~) can be computed in deterministic t ime 
(size(A) + size(A) + logp) ~ o 
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With the method of Theorem 5.1 we can construct a maxim~i Z-order in 
A in if-polynomial time. First we need a starting Z-order. Let a1, o.~, am be 
the input basis of A over Q. Let d be the lowest common denominator of 
the structure constants with respect to this basis. Then the additive group A 
generated by l~ ,da l , . .o ,da ,  is a Z-order in J[. (This is a standard trick to 
make structure constants integraL) We put k = det(tr~/Q(d2a~aj)~i=~ ). By 
the results in Subsection 2.1, the elements tr~/q(aiaj) can be computed if we 
know the Wedderburn decomposition of ,4 over Q. The Wedderburn decom- 
position can be computed in deterministic polynomial time (Friedl & R6nyai 
1985, Theorem 7.6). We have size(A) = size(,A) ~ and log k = size(,A)~ 
Let S be the set of primes dividing k. We have/r _< k and S is obtained by 
factoring k. 

Repeated application of the algorithm of Theorem 5.1 gives a sequence of 
Z-orders 

A = F0 C F1 C . . .  C F,~ 

until a maximal l-order is obtained. By Proposition 2.9, m < ~ ~og 2 k~ We can 
control sizes during the  iteration. By Proposition 2.3 we have A C_ Fj C -~A, 
therefore Fj can be represented by a / -bas is  admitting a short description. 

THEOREM 5.2. Let A be a finite dimensional semisimpie algebra over Q given 
by structure constants. Then a maximal/-order A can be constructed by an 
if-algorithm running in time size(A) ~ E] 

COROLLARY 5.3. Let K be an algebraic number ~eld, A a finite dimensiona~ 
central simple algebra over K. Let D denote the ring of algebraic integers of K. 
Suppose that A is given by structure constants over K. Then a maximal D- 
order A in A can be constructed by an if-algorithm running in time size(A) ~ 

PROOF. From K and the structure constants of ,4 over K we can readily 
obtain structure constants of ,4 over Q. With the method of Theorem 5.2 we 
compute a / -bas i s  of a maximal Z-order A of ,4. By Lemma 2.6 we conclude 
that A is a maximal D-order as well. rn 

Corollary 5.3 gives an affirmative answer to the question proposed at the 
end of R6nyai (1992). 

Next we give an application to group representations. Suppose that K is 
an algebraic number field and D is the ring of algebraic integers of .K. Let G 
be a finite group, IG[ = n. We have the following theorem. 
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TI4EOREM 5.4. Suppose that G is given by its multiplication tame and D is 
given by a Z-basis. Then in deterministic time (size(K) + size(D) + n) ~ we 
can compute (a Z-basis of) a maximal D-order A in KG which contains the 
group ring DG. 

PROOF. In Reiner (1975), Theorem 41.1 it is shown that if A is a D-order 
(and hence by Lemma 2.6 if A is a Z-order) which contains F = DG, then 
h C_ n - iF .  This implies that  F(p) is a maximal Z(p)-order for every prime p 
not dividing n. Let S be the set of primes dividing n. As in the proof of 
Theorem 5.2 we compute a sequence of l-orders 

r = r0 C ['1 C . . .  C Fm 

until a maximal Z-order is obtained, by applying the method of Theorem 5.1. 
Since r,,, _ n - iF ,  for the discriminants d m =  d(rm) and do = d(F0) we have 
do < n=dimQKdm, and hence Proposition 2.9 implies that m < ~n dimQK log 2 n. 

Using the Z-basis of D we have as part of the input, we can efficiently 
construct a Z-basis of our starting order F. Since n counts in unary in the 
input size, we can afford to use trim division to construct S and to use the 
deterministic method of Berlekamp (i967) for factoring polynomials over finite 
fields at the second test. In this way we obtain the minimal ideals of B/Rad(B) 
in deterministic time (dimQK + n + p)O(1) (note that the dimension over Z of 
DG is n(dimQK)). The statement follows from Theorem 5.1. o 

COROLLARY 5.5. Let K be an algebraic number field given by the monic min- 
ima1 polynomial f E l[x] of an integral dement a E K such that K = Q(a).  
Let G be a finite group given by its multiplication table. Then in deterministic 
time (size(f) + d(f) + lal)~ w e  c a n  construct a maximal D-order h in KG 
which contains DG. 

PROOF. We can factor the discriminant d(f) by trial division. Once we have 
the primes dividing d(f) ,  we can compute a Z-basis of the ring of algebraic 
integers of K in time size(f) ~ (cf. Zassenhaus 1967 and Pohst 1989). The 
rest follows from Theorem 5.4. O 

The following statement seems to be new even in the case K = Q. 

COROLLARY 5.6. Let K, f ,  G be as in the preceding statement. Then the 
degrees of the irreducible representations of G over K can be computed in 
deterministic time (size(f) + d(f) + [GI)~ 
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PROOF. We consider the Wedderburn decomposition of KG: 

K G  ~ A1 @ A2 ~ " " @ Ak, 

where A~ ~ Mmx~(E~ ) where nl is a positive integer and Ei is a skewfield 
containing K in the center. Let Fi denote the center of Ai. Clearly Fi is a 
finite extension field of K and A/is  central simple over F/. 

We write m~ = dimg.A/, Ii = dimKEi. Straightforward calculation gives 
that the degree of the irreducible G-modules associated with ,A~ (i.e, the di- 
mension over K of the simple A~-modules) is ~ .  It suffices therefore to 
determine the integers m~ and li. The ideals .A~ and the numbers rnl are com- 
puted by the deterministic polynomial time method of Friedl & R6nya~ (1985)~ 
Theorem 7.6. 

We turn to the problem of computing the numbers li. We compute first a 
maximal l-order A in K G  by using the algorithm of Corollary 5.5. Next we 
form the l-orders Ai = Ai fq A in r This task is easily accomplished because 
we have Ai = eiA, where ei is the identity element of A/. Let Di denote the ring 
of algebraic integers of Fi. The maximality of A implies that A~ is a maximal 
Di-order in Ai. We intend to use a variant of the method of R6nyai (1992), 
Theorems 1.1 and 5.1 adapted to our setting at hand Co compute dimF~ El~ This 
suffices because we already know dimtcFi and we have li = dimv~Ei dimgF~. 
Using the notation of R6nyai (1992), we have ~ E ~  = icm{rae} where P 
ranges over the primes of Fi and m p  denotes the local index of A~ at P. 

Concerning finite primes P, the key observation is that we have to calculate 
the local indices rnp of Ai only for prime ideals P of Di which contain a rational 
prime p dividing I G l by Reiner (1975), Theorem 41.7, Here again we can use 
the deterministic factoring method of Berlel~mp. 

If P is a real prime, then we can not use directly the method of Eberly 
(1991), as it was done in R6nyai (1992), because this method uses randomiza- 
tion for finding a splitting element in Jti. Recently we have found a determinis- 
tic polynomial time algorithm for solving this subtask (R6nyai 1993). By using 
this procedure we obtain rap in deterministic polynomial time. This proves the 
statement. 

Most of the results of this paper, in particular Proposition 4ol and The- 
orem 4.5, are applicable to separable algebras over global fields (i.ei, number 
fields and univariate function fields over finite fields). Extending the algorithms 
of this paper to global fields will be the subject of a subsequent paper. 
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