
Engineering with Computers (1995) l 1:173-184
�9 1995 Springer-Vertag London Limited Engineering

C~nputers

A Generic Model for Building Design

J. D. Biedermann* and D. E. Grierson**
Civil Engineering Department, University of Waterloo, Ontario, Canada

Abstract. The design of building structures has benefited
considerably through computer automation, but further
developments in this field are still required. This paper
present~ a generic approach to computer automation of the
detailed design of building structures. Because of its high level
of abstraction, the resulting model is applicable to a wide
range of structure types. Other advantages include the use of
a consistent data model for software design and implementa-
tion, abstract data types for the representation of engineering
data, the ability to represent heuristic knowledge, and the
ability to evaluate design results in an intelligent manner.

Keywords. Building structures; Detailed design; Ob-
ject-oriented; Knowledge representation

1. Introduction

The detailed design of building structures begins with
the structure topology and construction material
chosen during the preliminary design stage. In per-
forming the detailed design the engineer must deter-
mine the member sizes and connection details that are
structurally adequate for safety and serviceability, as
well as ensuring that the design is economical. Usually
this involves an iterative process of member sizing,
structural analysis and conformance checking. The
design engineer may use available software which
encompasses the entire process (e.g. [1]) or which
performs only one or more of the subprocesses (e.g.
[2]). The resulting design is then critiqued using
engineering judgment and heuristics and, if changes
are made to the design, the synthesis cycle is usually
repeated. Finally, upon convergence, design drawings
are produced, often using computer aided drafting
tools.

Correspondence and offprint requests to." J. D. Biedermann, School
of Engineering, University of Guelph, Guelph, Ontario, Canada,
NlG 2Wl.
* Assistant Professor. ** Professor.

In the past, structural engineers mainly used
computers for only the analysis portion of the detailed
design process. Member sizing and conformance
checking were done by hand, and previous experience
and design heuristics were relied upon heavily. As
computers became more prevalent, software became
available which helped to reduce the workload of
conformance checking and member sizing. Today
there are software packages available which provide
analysis, member sizing and conformance checking for
particular types of structures, e.g. steel or reinforced
concrete frames [1, 3]. In addition, there are graphical
routines for pre- and post-processing the data, thereby
allowing engineers to verify toplogy and loadings, and
to view the structural response, such as moment and
shear diagrams and deflected shapes [1].

It may appear that computer automation for
structural design has reached a state that design
engineers are content with. However, this is not the
case, as the increasing power and availability of
computers only serve to increase the demands made
by the engineers relying on them. Researchers and
practising engineers alike have identified areas for
improvement [4, 5]. Tyson [5], as a practising
engineer, suggests that what is needed now is an
effective way to integrate the analysis, member sizing,
conformance checking and drawing processes into one
uniform system. He makes the observation that the
current practice of representing engineering data is
based on the analysis mode! rather than the actual
geometric representation, and identifies the problems
with this approach. The idea of a complete integrated
design environment which addresses all stages of
structural design and the various parties involved is
being addressed by a number of researchers [6-8].
These researchers identify the many benefits of an
integrated system for structural design but, owing to
the large scope and complexity of the problem, must
focus their efforts on small subsystems while develop-
ing the theoretical foundation needed for further
development. This is admirable work but falls short

174 J.D. Biedermann and D. E. Grierson

of being able to meet the requirements identified by
Tyson [5] in the near future.

This paper presents research into a generic approach
to the computer automation of the design of structures.
The research focuses on detailed design and the
development of a generic model which is applicable
to all types of building structures. The purpose of the
model is to provide: (a) an enhanced capability for
simulating the detailed design process; (b) the ability
to evaluate design results in an intelligent manner; and
(c) a wide range of applicability in the area of detailed
design of building structures. The approach addresses
many of the concerns and needs identified by engineers
for computer automated structural design [4, 53,
especially with respect to the representation of design
data and the ability to integrate the data representation
with the design activities. The paper begins with a
definition of a building and provides a model for
representing the design data and relationships. The
software environment requirements are then discussed.
Finally, work on the development and implementa-
tion of the model is described and an example is
presented.

!

T

\

- " 2 7 -

I i R m , , , , ~ ~

Fig. L Low-rise residential building.

" - ' ~ II 1

~:.-~:~..~ - ~!

Fig. 2o Low-rise once building.

T

2. Definition of a Building

Structural engineers involved in building design
encounter a wide variety of building types, which vary
from one another in their topology, their construction
material and in their load resisting systems. Figures
1 to 6 help illustrate these differences. Figure 1 depicts
a low-rise residential building which would typically
be constructed of light wood framing with a concrete
foundation. The sloping roof could be designed as
beams or trusses. A low-rise office building is shown
in Fig. 2. Office buildings must be designed to provide
as much open space as possible as well as an adequate
amount of window area. A popular structural system
design for this type of building is a rigid frame on the
perimeter with well-spaced interior columns, and a
construction material of either steel or reinforced
concrete. The penthouse which is required for mechan-
ical services adds irregularity to the building topology.
The medium rise office building of Fig. 3 has many of
the same characteristics and requirements of the
low-rise building of Fig. 2. However, the structural
system design places more importance on the lateral
force resisting system because of the increase in height.
Again, topological irregularities are present owing to
the penthouse and lower level.

Buildings are not always constructed in one mater-
ial. Often the structural system is a combination of
materials such as reinforced concrete, steel, wood and

T

Fig. 3. Medium-rise office building.

masonry. Figure 4 depicts a vertically mixed system
where the lateral force resisting system of the high-rise
building changes from a rigid exterior frame and
interior shear wall system made of reinforced concrete
to a rigid exterior frame and braced core made of
structural steel. Figures 5 and 6 give two further
examples of high-rise buildings, each with yet another
type of structural system for lateral load resistance;
an outrigger system is used for Fig. 5 and a framed
tube with core in Fig. 6. The cut-off corner of the
building in Fig. 6 makes the structure unsymmetrical
and hence the designer must have increased concern
for torsion.

A Generic Model for Building Design 175

Fig. 4. Vertically mixed system.

j -27;
/

/ / r

. . 4 \

Fig. 5. Outrigger system.

Fig. 6. Framed tube with core.

The examples presented in the foregoing cover a
wide range of building design from simple low-rise
buildings to complicated high-rise buildings. It is
apparent that the structural designer will encounter
different construction materials, irregular geometry
and many types of structural elements from beams
and columns to walls and floors. In addition, the
design often proceeds in stages where the engineer
initially selects a structural subsystem for detailed
design, such as the lateral load resisting system for tall
buildings, and then other structural subsystems or
elements are progressively designed over time.

The foregoing discussion has noted the many
differences that exist among buildings but did little to
elaborate on their similarities. A computer-based
generic approach to detailed design requires defining
the minimum information that the engineer must
provide as input data so that any type of building can
be designed. In other words, it is necessary to identify
the common characteristics of all buildings. At this
point we are not concerned with how this information
is to be specified but rather with what information is
required to be specified. Table 1 defines the general
information required for all types of buildings.

All buildings are constructed of one or more
materials and must be designed according to a
governing design standard. A system of units must be
specified (e.g. metric or imperial). As indicated by the
square brackets in Table 1, default values can often be
used.

The format in Table 1 allows for specifying any
number of construction materials, for each of which
additional information must be specified as outlined
in Table 2.

The simplest topology a building can have is that
of a three-dimensional (3D) shape with regular storey
heights and bay widths. Many skeletal buildings can
be defined in this manner by providing the number of
bays in two horizontal directions, the bay widths and
the joint types, the number of storeys, the storey
height and the joint types in the vertical direction. The
regular 3D skeletal shape which results is a good

Table 1. General information.

Identifier
Material(s)
[Design code]
[Design units]
[Force]
[Lengthl
[Braced or unbraced]
[First order or P - A]

176 J.D. Biedermann and D. E. Grierson

Table 2. Material-specific information.

Steel Reinforced concrete Composite

If y] f'c If y]
[fu] [density] If u]
[standard sections] [7] f'c

Prestressed concrete Masonry Wood

f'c f'm wet or dry
f'ci [masonry unit type] [treatment]

fpu [sawn timber or glue-lain]
Aps
pre- or post-tensioned
[grouted or not]

starting point for the generic approach. Initially, it
could be assumed that the material of the resulting
beams and columns is the first material that the user
specified (Table 1), and that there are fixed supports
at all column bases.

Modifications and enhancements of the regular 3D
topology will most likely be required. Irregular shapes
may be created by modifying storey heights or bay
widths, or by deleting beams and columns. In
addition, joints may be added, deleted or moved, while
supports may be added, deleted or changed to a
different kind. Bracing members may be added to the
structural system. Figure 7 illustrates just a few of the
wide variety of bracing patterns which engineers often
use. Vertical and horizontal areas may be specified to
be solid walls and floors of specified thickness and
material, with perhaps openings specified within them.
Once all the structural components are defined, the
construction material for any of them may then be
changed in order to represent mixed or composite
construction systems.

The specified loadings that a building must resist
are dependent upon the geographic location of the
building, the intended occupancy and use of the
building, and the governing design standard. It is the
engineer's responsibility to ensure that the building is
designed for the correct loads though software may
exist to help in the specification of these loads. In
general these loadings may be defined as a combination
of nodal loadings and member loadings with applicable
load factors. A nodal loading consists of point loads,
and/or moments, and/or prescribed displacements
acting at the building joints (nodes). Each nodal
loading is given a name (for load combination and
identification purposes) and is described by a list of
nodes and their load descriptions. Similarly, member
loadings representing distributed, and/or point loads,
and/or self-stressing effects (e.g. thermal, prestress etc.)

acting on building members are described by a name,
and a list of members and their load descriptions,,

As an example, consider the skeletal steel building
illustrated in Fig. 8a. Adopting the generic model
approach just described, this building is initially
defined as a regular skeletal building with three 10 m
bays in the Z direction, two 5m bays in the X
direction and six 5 m high storeys in the Y direction,
with all connections rigid and supports fixed, resulting
in the topology shown in Fig. 8b. Transforming from
Fig. 8b into Fig. 8a is accomplished simply by deleting
the beams and columns in the shaded area of Fig. 8b
and modifying the width of the third bay in the Z
direction to 15 m. Figure 8c shows the nodal and
member loadings acting on a typical interior frame.
The remaining design information required to define
the design problem includes the material and its
design properties, the governing design standard, the
design units, whether the building is braced or not
and whether first- or second-order analysis is required.

/ \

Fig. 7. Bracing systems.

A Generic Model for Building Design 177

/
/ Y X

lO lo 15
t I I

/ / , /
/

10 lO 10
t I I

/

/

/

/

/

/

/

/

/

Y
/

/

,M

(a)

Wind-Str Wind-Sor
40 30

70 60 =

70 60 - - :

70 60 =

70 60 =

70 60 "

I
I / / .

(b)

Member Loadings:

Dead Load = 15 kN/m

Dead Load = 5 kN/m
i : " " : : : " : I

Live Load = 3 kN/m

Live Load = 5 kN/m
r / / / / / / / / / # / / / / / / / 7 / / / / #

Live Load = 8 kN/m
�9 . ~ x x ~ •

Nodal Loads:

= kN

(c)

Fig. 8. Rigid frame with mezzanine.

3. Building Data Model

Figure 9 illustrates the data model proposed by this
study. The model identifies, at a high level of
abstraction, the objects and their interrelations in-
volved in the detailed design of any structure. The
objects and relationships shown are derived directly
from the modelling of a structural design, which is a
necessary part of the detailed design process whether
it is done manually or with the aid of a computer.

A structure* is designed using one or more materials.
The spatial coordinates of joints, supports and load
application points of the structure are represented
as nodes. The topology is further defined by the
structComps (structural Components). Typically in
detailed design the structComps are collected into
design groups, where each member of a group is given

* The following notation is used in the text of this paper: Class
anObject method/message/behaviour attribute 0++ code.

the same design properties. The various objects of the
model are interrelated as indicated in Fig. 9. For
example, each structComp will have a number of nodes
associated with it. Figure 9 also shows that a structure
is usually designed for a number of different loadCases.
Each structComp and each node will have a different
response for each loadCase and these are represented
as a strCmpLCR (structural Component Load Case
Result) and nodulLCR, respectively.

Apart from simply identifying the objects and their
relationships as shown in Fig. 9, it is also necessary
to identify the attributes and behaviour for each class
of objects. This study adopts an object-oriented
approach [9] for the design and implementation of
the generic software for detailed design of structures.
Object-oriented programming languages allow for the
creation of abstract data types (objects) which link
attributes and behaviour together, thereby facilitating
the representation of engineering data based on actual
physical entities [10, 11]. For example, the class

178 J . D . Biedermann and D. E. Grierson

 Material 1

i

Group I

1 :l relationship

1 :many relationship

~ many:many relationshipm

inheritance relationship<

S t r u c t u r e -

4StructCo

w

+oadCase]

 NodalLCR [--
@trCmpLCR

Fig. 9. Generic data model for structural design.

Table 3. Attributes and behavior of class
structure.

Attributes Behaviour

name setStructuralSubSystem
materials getLoadCaseResults
nodes addNodes
members addMembers
groups addGroups
loadings checkNodeConnections
loadCases design
task analyze
designTool verify
strSubSystem critique

earlyDesign
groupMembers
saveObjects

Structure, which is a generic class applicable to all
types of engineering structures, has the (partial) list of
attributes and behaviour given in Table 3. Many of
the attributes are objects themselves or constitute lists
of references to other objects, e.g. nodes is a list of
references to all the nodes that belong to a structure.

The data model of Fig. 9 is generic and developed
at a high level of abstraction. In order to apply this
model to an actual design problem, some of the
objects of the model must be specialized. This is done
in a hierarchical manner that allows for inheritance
of common attributes and behaviour. For example,
Fig. 10 depicts an (incomplete) hierarchy for the class
StructComp as would be required in the design of a
building, and Table 4 provides a brief list of some of
the attributes and behaviour that corresponds to this

StructComp

Beam Column

/ i ~ -

RoofBm FlrBm IntCol ExtCul]
]

SteeIRfBm SteelFIrBm SteellntCol SteelExtCo~

Fig. 10. Structural component class hierarchy.

hierarchy. At the top of the hierarchy is the parent
class StruetComp that defines the attributes and
behaviour common to all structCornp objects. For
example, each struetComp has the attribute nodes
which is a list of references to the nodes to which it is
connected. Common behaviour includes storing the
results of a loadcase (putLCR) and then identifying
which loadCase is most critical and saving this
information as the attribute govkCR (governing load
case result). A structComp is then able to use this
information when exhibiting some expected behaviour,
e.g. returning the worst response (get WorstResponse).
Further down the hierarchy the class StreelFlrBm is
identified. At this deepest level of specialization all the
attributes and behaviour required for detailed design
have been defined.

What is not apparent from the listing given in
Table 5 are the heuristics embedded in the subclass

A Generic Model for Building Design 179

Table 4. Attributes and behaviour of the StructComp class
hierarchy.

Class StructComp Class Beam: subclass to StructComp
attributes: attributes:

name span
nodes topBracing
group bottomBracing
loadCaseResults behaviour:
govLCR getSpan
selfDL
delfLimitRatio Class Roof Bin: subclass to Beam

behaviour: inherits from Beam and sets values
getName specializes Beam behaviour
getWorstResponse
getGovLCR Class SteeiRoofBm: subclass of Roof Beam
saveSelf behaviour:
putLCR getMaterialType

behaviour associated with each type of StructComp.
The need to represent these heuristics is partially
responsible for the fact that the StructComp hierarchy
is specialized by material type. That is, the default
values for some of the attributes and many of the
design heuristics are material dependent (for example,
the span-to-length ratio heuristic defining the maxi-
mum allowable deflection for a beam span), and it is
computationally advantageous to attach these heur-
istics directly to a class of objects such as SteelFlrBm

are essentially the same. Descriptions of the object-
oriented paradigm and various object-oriented lan-
guages can be found in a number of references
[9, 12, 13-17] and are not included in this paper. It is
sufficient to say that the object-oriented approach
allows for defining classes of objects which encapsulate
attributes and behaviour, and that these classes can
be defined in a hierarchical manner.

The object-oriented approach has a number of
advantages [9, 12]. The objects which result are easily
identified and related to by the engineer doing the
design [11, 18]. The attributes and behaviour of each
class of objects can be defined to meet the many
different tasks that may be required during the course
of a design, e.g. drafing, cost estimating, analysis etc.
[7]. The inheritance feature of the object-oriented
approach allows for a layered approach to software
design [8], permits attacking the problem at different
levels of abstraction [10] and provides for efficient
software development through code reuse.

Finally, an efficient and friendly graphical user
interface is required in order to initially define the
structure and monitor the design process [5]. While
the implementation of such an interface is not
addressed by the present study, it would proceed
directly from the information provided earlier in
Section 2 of this paper.

4. Software Environment Requirements

The data model discussed in the previous section was
developed through an object-oriented decomposition
of the problem where the objects both identify entitites
in the real world and encapsulate their attributes and
behaviour. Each object is autonomous and collabor-
ates with other objects to achieve the solution to the
detailed design problem being modelled. This approach
is quite different from the procedural decomposition
of a problem that is most often used in developing
engineering software. Procedural decomposition in-
volves breaking a large problem into several smaller
subproblems. Each subproblem becomes a subprogram
in a targer program which operates by systematically
calling the subprograms and sharing common data.

Each decomposition technique has advantages and
disadvantages 1-9, 12]. The advantages of the object-
oriented decomposition technique are fully realized by
implementing the model using an object-oriented
programming language (such as C++) . For such a
programming language, the data model created
during the software design stage and the data model
actually implemented to solve the problem at hand

5. Prototype Development and
Implementation Details

An initial prototype named GOOD_B (Generic
Object-Oriented Detailed design of Buidings) has
been developed in the C + + language using the data
model discussed in section 3. The detailed design of
steel building frameworks is presented for illustration,
where the software package SODA [1] is used for the
structural analysis and design stages while GOOD_B
performs pre- and post-processing of the data. The
prototype can be easily modified to use other available
design and/or analysis packages (e.g. for wood,
reinforced concrete, etc., structures).

As an object-oriented program, GOOD_B is essen-
tially a compilation of the definitions of the classes
required for the detailed design of buildings. These are
the classes identified in Fig. 9 and those resulting from
specialization of any one of those classes, such as are
presented in Fig. 10 for structural components. The
class definition provides the attributes and methods
or behaviour common to all objects of that class and,
therefore, can be thought of as a template from which
an object can be created (instantiated). In this way

180 J.D. Biedermann and D. E. Grierson

i !::i!!)ii% !s: ~ ~ 3b

Input File 3a G O O D B ~ . Building
A 1 ; 4 . ~ ' I - ~ Object

�9 y ' /Design

~ User 2d : ::: :::: ::::::::: :::::

V Aoe,ysi,,Des go
R u'ts

Analysis/Design
Software

Fig. 11. Conceptua] overview of the GOOD_B system.

each object of a class has its own values for the
attributes, but shares the methods which define its
behaviour . P rog ram contro l is th rough message
passing, where an object responds to a message by
invoking the appropria te class method.

Figure 11 provides a conceptual overview of the
G O O D _ B system. Initially the user must produce a
text file (Fig. 11; la) with the required object data
which defines the building (as discussed in section 2).
An example of such data is given in Table 5. Ideally
this data would be created through an intelligent
graphical user interface. The user then runs G O O D B
(Fig. 11; lb), which is implemented in the C + +
language and, therefore, has a m a i n () function to
initiate program execution. The pr imary purpose of
m a i n () is to create an object of the class Building
and then begin the design process. A listing of m a i n ()
follows:

main() {
ifstream infile ("bldg. in", ios: : in);
char input[81];
int line =80;
infile, getline(input , line, '; ~);
Building theBldg(input~ infile);
theBldg, doTask(),
}

The text file "bldg.in", which holds the required
input data, is opened and is associated with the
ifstream (input file stream) object infile. The identify-
ing name of the building is read from the text file and
stored in the variable i n p u t . The object theBldg, of
the class B u i l d i n g , is then created by calling the class
constructor*

T a b l e 5. Example input file.

ID: RFwithMezz;
2D; ClsD;
KN; metre;
Braced; First Order; design;
Materials; 1;
steel; 400 450;
Nodes: 24;

joint; J4; 35 5 0;

FixedSupport; $2; 10 0 0;

SteelIntCol: IC5; 2; J13; 1; J16; 1; material:
1;

Load cases:
Node loadings: 2;
Wind-Str; 6;
J1;70 0 0 0 0 0;
J5;70 0 0 0 0 0;
J9;70 0 0 0 0 0
J12;70 0 0 0 0 0;
J15;70 0 0 0 0 0;
J18;40 0 0 0 0 0;

Load combinations: 4;
1; 2; DL; 1.25; LL; 1.5;
#2; 3; DL; 1.25; LL; 1.125; Wind-Str; 1.125;
3; 2; DL; 1.25; Wind-Str; 1.5;
#4; 2; DL; 1; Wind-Ser; 1;

* A constructor is the C++ class initialization function. It is used
to initialize the data members (attributes)of the class to some values
and can also perform other tasks. Reference [19] provides further
information on programming in C++.

A Generic Model for Building Design 181

Building theBldg(input, infile);

and passing to it the variables (in parentheses) which
have the value of theBldg's name and the input file.
A partial listing of the class Building constructor
follows:

Building:: Building(char*id, ifstreum&inputFile)

getSimpleDutu(inputNile);
getMaterialDatu(inputFile);
getNodeData(inputFile);
setTopDispNode();
setlnterStoryNodes();
getGroupData(inputYile);
getNemberData(inputNile);
checkNodeConnections();
getLoadCases(inputNile);
if (task:: CRITIQUE)
getLoadCaseResults();

The purpose of the constructor is to process the input
file (Fig. 11; lc) and assign the attributes of theBldg
their appropriate values. Many of theBldg's attributes
are objects of other classes, e.g. Group, Node, Struct-
Comp, and each of them have constructors which also
read the input file in a similar manner. For example,
the method getMemberData is responsible for creating
all the structComps that are a part of theBldg. The
statement

case S TE~,LROOFBM:
members -* add(*(new SteelRoofBm(inputFile,

this)));

found in getMemberData results in the creation of an
object of the class SteelRoofBm by calling its con-
structor and passing the input file to it. The methods
getMaterialData, getNodeData and getGroupData
behave similarly. In this way all the objects required
in the design process are created.

GOOD B then sends the message doTask to
theBldg (the last statement in the listing of m a i n ())
that instructs it to perform its given task, which is to
do detailed design using an available software package.
This results in r collecting its members into
designGroups and then producing the input file used
by the analysis/design software specified in the input
file (Fig. 11; ld).

Because of the many activities involved in detailed
building design, the objects are required to be
persistent beyond the duration of any one executable
program in which they may be used (e.g. analysis,
conformance checking, drafting etc.). Therefore, all the
objects are provided with the ability to read and write
their current state to a Building Object Database
(BOD). The objects do this once the input file for the
analysis/design software is produced (Fig. 11; le).

Control now returns to the user (Fig. 11; lf), who
runs the analysis/design package (Fig. 11; 2a). Once
complete, the results are written to a file (Fig. 11; 2c)
and again the user runs GOOD B (Fig. t 1; 3a). This
again creates theBldg but this time the BOD (Fig. 11;
3b) is used as the input file by the constructor and the
task has changed from ~design' to 'critique'. The last
statement given in the listing of the Building con-
structor causes theBldg to read the results stored in
the results file (Fig. 11; 3c) produced by the analysis/
design software. Again, the message doTask is sent to
theBldg but this time the method critique is invoked.
At this point, theBldg critiques the resulting design.
Interaction with the user (Fig. 11; 3d) takes place as
GOOD_B suggests changes to the design. Upon
completion of the critique stage, the objects are again
written to the BOD (Fig. 11; 3e) and control returns
to the user. If the suggested changes to the design are
accepted by the user, then GOOD_B produces the
necessary input file for the analysis/design software
and the user goes through the process again. Other-
wise, the design is deemed complete and its description
is located in the BOD.

Figure 12 provides a representation of how a design
proceeds by illustrating the classes, their methods,
some of the message passing that occurs and some of
the implementation details of the methods. As stated
earlier, theBldg is created in the main() function of
GOOD_B and is sent the message to invoke the
method doTask inherited from the class Structure.
Initially the value of the attribute task is DESIGN,
and, therefore, the method design is invoked. The class
Structure method design calls the methods earlyDesign
and designSolution for the purpose of first making
some early design decisions and then finding the
detailed design solution. One of the early design
decisions to make involves the grouping of the
structural components into design groups for reasons
of economy and ease of construction. This grouping
is done by the class Building method groupMembers.
Once all the members have been collected into design
groups, each group is sent the message picklnitSection
which results in an initial design section being chosen
for theGroup based on heuristics, e.g. all the beams of
a similar span and the same material are grouped
together. The method designSolution is a specialized
method defined by the class Building. For steel
structures, it results in the production of the input file
for the SODA program [1] by calling the method
makePopFile. Before control returns to the user to
then run SODA (Fig. 11; 2a), theBldg changes the
value of task to CRITIQUE in anticipation of post-
processing of the design results and saves itself to the
BOD through the method saveObjects. The method

!82 J.D. Biedermann and D. E. Grierson

class Structure
N

task = DESIGN

d~ /
task = DESIGN/
esign /

iesig n /
lyDesign /
gnSolution/ f/~ class Group

/ critique / designSection = nil

/ earlyDes~gn / pickinitSec Jo

~ i ~ theGroup

f ", class Building

f
doTask

UpMem~rsJ
pBeams /
olunms /

/ designSolution /
/makePopFile /
/t~k: cRmotm /

/s eobjo= . _ /

~.,

theBldg

message

/implementation/
/ details /

class method

Fig. 12. Object interaction for Task = DESIGN.

saveObjects sends a message requesting the objects
involved in the design and belonging to theBldg to
save themselves; Fig. 13 illustrates this message
passing to an object of the class Group.

Once the analysis/design software has completed its
task, the user executes GOOD_B again (Fig. 11; 3a).
Figure 13 illustrates the sequence of events that result.
Once again the message doTask is sent to theBldg, but
this time task = CRITIQUE. Figure 13 shows that
both the Building and Structure classes define a
critique method. The Building critique method is
invoked and it in turn invokes the Structure critique
method (Structure: :critique, as shown in the figure).
In this way, after the Structure class method critique
is executed, the class Building is able to call the
additional method makePopFile to create the necessary
analysis/design input file. In Structure :." critique, the
method critiqueGroups is called which sends the
message critique to each of the groups belonging to
theBldg. (Each group then critiques its own design but
these details are not shown in Fig. 13). Finally the
objects of the design are saved when the method

/'I- class Structure

task = CPdTIQUE

RITIQUE /

criti ue

f class Group "~
~ u p s ~ designSection = some val~]

saveObjects /
M

]

7__2_ -.ls v~176 7
4 / : /sa, Se t

__)
theGroup

~ I isA

class Building " ~

/

~aoTask theBldg

message

/implementation/
/ /

class method

Fig. 13. Object interaction for Task = CRITIQUE.

saveObjects is invoked and the message saveSelfis sent
to all the objects involved in the design. Control
returns to the class Building critique method which
calls the makePopFiIe method if changes to the design
have occurred. With the critiquing of the design
complete, program control returns to the user (Fig.
11; 3d).

The GOOD_B system is very flexible and is easily
modified and extended because of its object-oriented
design. Extending the software to allow for other
design and analysis packages (e.g. for wood structures)
simply involves adding other methods to create and
process the corresponding data files and subclasses of
StruetComp. Incremental software development is
easily supported. For example, while the design
critiquing presented here has only considered the
collection of individual members into common-
property design groups, much more can be considered
in this regard simply by adding new critiquing
methods. For example, each Group object could
critique the chosen design section by adding the
method improveProfile to the class Group critique
method. This method would determine if a different
cross-section might be more suitable, e.g. a circular

A Generic Model for Building Design 183

versus a rectangular cross-section for reinforced
concrete design.

6. D e s i g n E x a m p l e

Consider the structural steel building framework in
Fig. 8. The loadings and analytical model are as
shown in Fig. 8c. Other necessary design information
is given in Table 6. The first run of the G O O D _ B
program results in the creation of five groups: all
exterior columns, interior columns and roof beams
are assembled into the groups named extCol, intCol
and rfBeam respectively; the floor beams are grouped
using a simple heuristic based on span (e.g. all beams
with spans lengths within 20% of one another are
grouped together), resulting in the creation of the two
beam groups named bmGrp # 1 and bmGrp # 2. Figure
14 illustrates this grouping.

The SODA software produces an optimal design
based on a minimum weight criterion [1]. (A mini-
mum weight design is often a minimum cost design,
which is important to structural designers and their
clients.) The design produced by the first SODA run
for the initial grouping in Fig. 14 has a weight of
32,9t5 kg and the design sections given in Table 7.
G O O D _ B uses the analysis and design results to
critique the design groups. The method splitGroup of

Table 6. Design information for rigid frame with mezzanine
example.

Name: RFwithMezz
2D braced frame
Design code: CSA-S16.1-M89

Units: kN, m

first-order analysis
Materials:

steel fy = 400 MPa
fu = 450 MPa

Load combinations:
1: t.25,DL + 1.5*LL
#2: 1.25,DL + 1.125,LL

+ 1.25*Wind-Str
#3: 1.25,DL + 1.5,

Wind-Str
#4: DL + Wind-Set

G r o u p s :

E x t C o l

In tCo l

R f B e a m

B r n G r p # 1

B m G r p # 2

!

f r rr #
Fig. 14, Initial grouping.

77"

Table 7. SODA run 1: design sec-
tion results.

rfBeam W310X158
bmGrp # 1 W610X140
bmGrp # 2 W310X 158
extCol W460X97
intCol W310X129

f

Groups:

1 _Fl fQeam

2 R I B e a m

b m G r p ~ l

b m G q : ~ 2

1 E x t C o l

2 _ = = . ~ 1

3_ExtCo~

4 _ E x t C o l

5_Ex tCo l

1 In tCol

2 IntCol

3_ ln tCo l

4_ ln ICo l

I

I

i !
i i
i i

I
7T 77"

Fig. 15. Grouping after critique stage�9

the class Group is a simple critiquing routine in which
the object group determines whether it should split
itself into possibly more than one group by inspecting
the response ratio of each of the structComps belong-
ing to it. If appropriate and if the user agrees, new
groups are created. G O O D B determines that the
original groups should be split for this example,
Specifically, rfBeam is split into two, extCol into five
and intCol into four new groups. Figure 15 depicts
these new groups. A new input file is created and the
user runs SODA again.

The second SODA run results in a lighter design
representing a 15% reduction in weight to 27,940 kg,
The design sections for the different groups are given
in Table 8. Executing G O O D _ B results in the groups
being critiqued again. This process continues as long
as G O O D _ B is able to suggest changes to the design
or until the user is satisfied with the results from
SODA.

7. Conc lus ions

The example presented in section 6 was intentionally
simplistic with respect to the initial grouping of the

184 J.D. Biedermann and D. E. Grierson

Table 8. SODA run 2: design sect ion results.

I RfBeam W610X155
2_RfBeam W200X52
bmGrp # 1 W310X 129
bmGrp # 2 W610X155
1 ExtCol W610X155
2_ExtCol W310X60
3_ExtCol W310X60
4_ExtCol W200X36
5_ExtCol W 310X31
1 IntCol W310X107
2_IntCol W460X97
3_IntCol W310X67
4 IntCol W200X31

structComps and the subsequent splitting of the groups
during the critiquing. The primary intent was to
present a working prototype to illustrate the effective-
ness of the approach. A much richer set of heuristics
can be implemented for grouping structComps, as well
as for critiquing the groups. Moreover, other critiquing
can include heuristic knowledge pertaining to a wide
range of design concerns (e.g. extending columns over
two floors, limiting the maximum depth of beams,
connectivity of the members etc.).

While presented at but a simple level, this work has
shown that a generic approach to the detailed design
of building structures is possible. The resulting data
model is applicable to a wide range of building
structures and can easily be implemented to make use
of a variety of different analysis/design software. Other
advantages of the approach lie in the consistent data
model, which is applicable to the different stages of
design (such as preliminary design, detailed design,
drawing etc.). Finally, the object-oriented approach
allows attributes and behaviour to be linked together
in such a way that readily facilitates the implementa-
tion of design heuristics, which form an important
part of the design process and which are often difficult
to account for in other programming environments
(such as the traditional procedural approach).

References

1. Grierson, D.E.; Cameron, G.E. (1990) SODA - Structural
Optimization Design and Analysis, Release 3.0, User Manual,
Waterloo Engineering Software, Waterloo, Canada

2. Wilson, E.L.; Hollings, LP., Dovey, H.H. (t972) Extended
Three-Dimensional Analysis of Building Systems - ETABS,
Report No. EERC 72-8, Earthquake Engineering Research
Center, University of California, Berkeley, California

3. PCA-FRAME (t992) Proprietary software of Portland Cement
Association, �9 1992

4. Miller, G.R. (1991) An object-oriented approach to structural
analysis and design, Computers and Structures, 40, 1, 75-
82

5. Tyson, T.R. (1991) Effective automation for structural design,
Journal of Computing in Civil Engineering, 5, 2, 132-140

6. An-Nahish, H.N.; Powell, G.H. (1991). An object-oriented
algorithm for automated modelling of frame structures: stiffness
modelling, Engineering with Computers, 7, 177-190

7. Abdalla, J.A. (1991) An object-oriented architecture and
concept for an integrated structural engineering system, Civil
Comp '91, AI and Structural Engineering, Edinburgh, Scotland,
147-155

8. Agbayani, N.; Sriram, D.; Jayachandran, P. (1992) An object
oriented framework for steel frame design - implementation
issue, Computing Systems in Engineering, 3, 5, 571-587

9. Booch, G. (1991) Object Oriented Design with Application,
Benjamin Cummings, Don Mills, Ontario

10. Baugh Jr, J.W.; Rehak, D.R. (!992) Data abstraction in
engineering software development, Journal of Computing in
Civil Engineering, 6, 3, 282-301

11. Fenves, G.L. (1989) Object-oriented models for engineering
data, in Computing in Civil Engineering, Computers in
Engineering Practice, Proceedings of the 6th Conference,
ASCE, Atlanta, Georgia, 564-571

12. Powell, GM.; Abdalla, G.A.; Sause, R. (1989) Object-oriented
knowledge representations: cute things and caveats, in Comput-
ing in Civil Engineering, Computers in Engineering Practice,
Proceedings of the 6th Conference; ASCE, Atlanta, Georgia,
1-8

13. Kreutzer, W.; McKenzie, B. (1990) Programming for Artificial
Intelligence: Methods, Tools and Applications, Addison-
Wesley, Singapore

14. Nelson, M.L (1991) An object-oriented Tower of Babel, OOPS
Messenger: a quarterly publication of the Special Interest
Group in Programming Languages, 2, 3, 3-11

15. Thomas, D. (1989) What's in an object?, Byte Magazine, March,
231-240

16. Wegner, P. (1990) Concepts and paradigms of object-oriented
programming, OOPS Messenger; a quarterly publication of the
Special Interest Group in Programming Languages, 1, 1,
7-87

17. Wegner, P. (1989) Learning the language, Byte Magazine,
March, 245-253

18. Fenves, G.L. (1988) Object representations for structural
analysis and design, in Computing in Civil Engineering,
Microcomputers to Supercomputers, Proceedings of the 5th
Conference, Alexandria, Virginia, 502-511

!9. Lippman, S.B. (1989) C++ Primer, Addison-Wesley, New
York, for AT & T Bell Laboratories [reprinted 1990]

