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Abstract. The design of building structures has benefited 
considerably through computer automation, but further 
developments in this field are still required. This paper 
present~ a generic approach to computer automation of the 
detailed design of building structures. Because of its high level 
of abstraction, the resulting model is applicable to a wide 
range of structure types. Other advantages include the use of 
a consistent data model for software design and implementa- 
tion, abstract data types for the representation of engineering 
data, the ability to represent heuristic knowledge, and the 
ability to evaluate design results in an intelligent manner. 
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ject-oriented; Knowledge representation 

1. Introduction 

The detailed design of building structures begins with 
the structure topology and construction material 
chosen during the preliminary design stage. In per- 
forming the detailed design the engineer must deter- 
mine the member sizes and connection details that are 
structurally adequate for safety and serviceability, as 
well as ensuring that the design is economical. Usually 
this involves an iterative process of member sizing, 
structural analysis and conformance checking. The 
design engineer may use available software which 
encompasses the entire process (e.g. [1]) or which 
performs only one or more of the subprocesses (e.g. 
[2]). The resulting design is then critiqued using 
engineering judgment and heuristics and, if changes 
are made to the design, the synthesis cycle is usually 
repeated. Finally, upon convergence, design drawings 
are produced, often using computer aided drafting 
tools. 
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In the past, structural engineers mainly used 
computers for only the analysis portion of the detailed 
design process. Member sizing and conformance 
checking were done by hand, and previous experience 
and design heuristics were relied upon heavily. As 
computers became more prevalent, software became 
available which helped to reduce the workload of 
conformance checking and member sizing. Today 
there are software packages available which provide 
analysis, member sizing and conformance checking for 
particular types of structures, e.g. steel or reinforced 
concrete frames [1, 3]. In addition, there are graphical 
routines for pre- and post-processing the data, thereby 
allowing engineers to verify toplogy and loadings, and 
to view the structural response, such as moment and 
shear diagrams and deflected shapes [1]. 

It may appear that computer automation for 
structural design has reached a state that design 
engineers are content with. However, this is not the 
case, as the increasing power and availability of 
computers only serve to increase the demands made 
by the engineers relying on them. Researchers and 
practising engineers alike have identified areas for 
improvement [4, 5]. Tyson [5], as a practising 
engineer, suggests that what is needed now is an 
effective way to integrate the analysis, member sizing, 
conformance checking and drawing processes into one 
uniform system. He makes the observation that the 
current practice of representing engineering data is 
based on the analysis mode! rather than the actual 
geometric representation, and identifies the problems 
with this approach. The idea of a complete integrated 
design environment which addresses all stages of 
structural design and the various parties involved is 
being addressed by a number of researchers [6-8]. 
These researchers identify the many benefits of an 
integrated system for structural design but, owing to 
the large scope and complexity of the problem, must 
focus their efforts on small subsystems while develop- 
ing the theoretical foundation needed for further 
development. This is admirable work but falls short 
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of being able to meet the requirements identified by 
Tyson [5] in the near future. 

This paper presents research into a generic approach 
to the computer automation of the design of structures. 
The research focuses on detailed design and the 
development of a generic model which is applicable 
to all types of building structures. The purpose of the 
model is to provide: (a) an enhanced capability for 
simulating the detailed design process; (b) the ability 
to evaluate design results in an intelligent manner; and 
(c) a wide range of applicability in the area of detailed 
design of building structures. The approach addresses 
many of the concerns and needs identified by engineers 
for computer automated structural design [4, 53, 
especially with respect to the representation of design 
data and the ability to integrate the data representation 
with the design activities. The paper begins with a 
definition of a building and provides a model for 
representing the design data and relationships. The 
software environment requirements are then discussed. 
Finally, work on the development and implementa- 
tion of the model is described and an example is 
presented. 
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Fig. L Low-rise residential building. 
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Fig. 2o Low-rise once building. 
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2. Definition of a Building 

Structural engineers involved in building design 
encounter a wide variety of building types, which vary 
from one another in their topology, their construction 
material and in their load resisting systems. Figures 
1 to 6 help illustrate these differences. Figure 1 depicts 
a low-rise residential building which would typically 
be constructed of light wood framing with a concrete 
foundation. The sloping roof could be designed as 
beams or trusses. A low-rise office building is shown 
in Fig. 2. Office buildings must be designed to provide 
as much open space as possible as well as an adequate 
amount of window area. A popular structural system 
design for this type of building is a rigid frame on the 
perimeter with well-spaced interior columns, and a 
construction material of either steel or reinforced 
concrete. The penthouse which is required for mechan- 
ical services adds irregularity to the building topology. 
The medium rise office building of Fig. 3 has many of 
the same characteristics and requirements of the 
low-rise building of Fig. 2. However, the structural 
system design places more importance on the lateral 
force resisting system because of the increase in height. 
Again, topological irregularities are present owing to 
the penthouse and lower level. 

Buildings are not always constructed in one mater- 
ial. Often the structural system is a combination of 
materials such as reinforced concrete, steel, wood and 
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Fig. 3. Medium-rise office building. 

masonry. Figure 4 depicts a vertically mixed system 
where the lateral force resisting system of the high-rise 
building changes from a rigid exterior frame and 
interior shear wall system made of reinforced concrete 
to a rigid exterior frame and braced core made of 
structural steel. Figures 5 and 6 give two further 
examples of high-rise buildings, each with yet another 
type of structural system for lateral load resistance; 
an outrigger system is used for Fig. 5 and a framed 
tube with core in Fig. 6. The cut-off corner of the 
building in Fig. 6 makes the structure unsymmetrical 
and hence the designer must have increased concern 
for torsion. 
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Fig. 4. Vertically mixed system. 
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Fig. 5. Outrigger system. 

Fig. 6. Framed tube with core. 

The examples presented in the foregoing cover a 
wide range of building design from simple low-rise 
buildings to complicated high-rise buildings. It is 
apparent that the structural designer will encounter 
different construction materials, irregular geometry 
and many types of structural elements from beams 
and columns to walls and floors. In addition, the 
design often proceeds in stages where the engineer 
initially selects a structural subsystem for detailed 
design, such as the lateral load resisting system for tall 
buildings, and then other structural subsystems or 
elements are progressively designed over time. 

The foregoing discussion has noted the many 
differences that exist among buildings but did little to 
elaborate on their similarities. A computer-based 
generic approach to detailed design requires defining 
the minimum information that the engineer must 
provide as input data so that any type of building can 
be designed. In other words, it is necessary to identify 
the common characteristics of all buildings. At this 
point we are not concerned with how this information 
is to be specified but rather with what information is 
required to be specified. Table 1 defines the general 
information required for all types of buildings. 

All buildings are constructed of one or more 
materials and must be designed according to a 
governing design standard. A system of units must be 
specified (e.g. metric or imperial). As indicated by the 
square brackets in Table 1, default values can often be 
used. 

The format in Table 1 allows for specifying any 
number of construction materials, for each of which 
additional information must be specified as outlined 
in Table 2. 

The simplest topology a building can have is that 
of a three-dimensional (3D) shape with regular storey 
heights and bay widths. Many skeletal buildings can 
be defined in this manner by providing the number of 
bays in two horizontal directions, the bay widths and 
the joint types, the number of storeys, the storey 
height and the joint types in the vertical direction. The 
regular 3D skeletal shape which results is a good 

Table 1. General information. 

Identifier 
Material(s) 
[Design code] 
[Design units] 
[Force] 
[Lengthl 
[Braced or unbraced] 
[First order or P - A] 
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Table 2. Material-specific information. 

Steel Reinforced concrete Composite 

If y] f'c If y] 
[fu] [density] If u] 
[standard sections] [7] f'c 

Prestressed concrete Masonry Wood 

f'c f'm wet or dry 
f'ci [masonry unit type] [treatment] 

fpu [sawn timber or glue-lain] 
Aps 
pre- or post-tensioned 
[grouted or not] 

starting point for the generic approach. Initially, it 
could be assumed that the material of the resulting 
beams and columns is the first material that the user 
specified (Table 1), and that there are fixed supports 
at all column bases. 

Modifications and enhancements of the regular 3D 
topology will most likely be required. Irregular shapes 
may be created by modifying storey heights or bay 
widths, or by deleting beams and columns. In 
addition, joints may be added, deleted or moved, while 
supports may be added, deleted or changed to a 
different kind. Bracing members may be added to the 
structural system. Figure 7 illustrates just a few of the 
wide variety of bracing patterns which engineers often 
use. Vertical and horizontal areas may be specified to 
be solid walls and floors of specified thickness and 
material, with perhaps openings specified within them. 
Once all the structural components are defined, the 
construction material for any of them may then be 
changed in order to represent mixed or composite 
construction systems. 

The specified loadings that a building must resist 
are dependent upon the geographic location of the 
building, the intended occupancy and use of the 
building, and the governing design standard. It is the 
engineer's responsibility to ensure that the building is 
designed for the correct loads though software may 
exist to help in the specification of these loads. In 
general these loadings may be defined as a combination 
of nodal loadings and member loadings with applicable 
load factors. A nodal loading consists of point loads, 
and/or moments, and/or prescribed displacements 
acting at the building joints (nodes). Each nodal 
loading is given a name (for load combination and 
identification purposes) and is described by a list of 
nodes and their load descriptions. Similarly, member 
loadings representing distributed, and/or point loads, 
and/or self-stressing effects (e.g. thermal, prestress etc.) 

acting on building members are described by a name, 
and a list of members and their load descriptions,, 

As an example, consider the skeletal steel building 
illustrated in Fig. 8a. Adopting the generic model 
approach just described, this building is initially 
defined as a regular skeletal building with three 10 m 
bays in the Z direction, two 5m bays in the X 
direction and six 5 m high storeys in the Y direction, 
with all connections rigid and supports fixed, resulting 
in the topology shown in Fig. 8b. Transforming from 
Fig. 8b into Fig. 8a is accomplished simply by deleting 
the beams and columns in the shaded area of Fig. 8b 
and modifying the width of the third bay in the Z 
direction to 15 m. Figure 8c shows the nodal and 
member loadings acting on a typical interior frame. 
The remaining design information required to define 
the design problem includes the material and its 
design properties, the governing design standard, the 
design units, whether the building is braced or not 
and whether first- or second-order analysis is required. 

/ \ 

Fig. 7. Bracing systems. 
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Fig. 8. Rigid frame with mezzanine. 

3. Building Data Model 

Figure 9 illustrates the data model proposed by this 
study. The model identifies, at a high level of 
abstraction, the objects and their interrelations in- 
volved in the detailed design of any structure. The 
objects and relationships shown are derived directly 
from the modelling of a structural design, which is a 
necessary part of the detailed design process whether 
it is done manually or with the aid of a computer. 

A structure* is designed using one or more materials. 
The spatial coordinates of joints, supports and load 
application points of the structure are represented 
as nodes. The topology is further defined by the 
structComps (structural Components). Typically in 
detailed design the structComps are collected into 
design groups, where each member of a group is given 

* The following notation is used in the text of this paper: Class 
anObject method/message/behaviour attribute 0++ code. 

the same design properties. The various objects of the 
model are interrelated as indicated in Fig. 9. For 
example, each structComp will have a number of nodes 
associated with it. Figure 9 also shows that a structure 
is usually designed for a number of different loadCases. 
Each structComp and each node will have a different 
response for each loadCase and these are represented 
as a strCmpLCR (structural Component Load Case 
Result) and nodulLCR, respectively. 

Apart from simply identifying the objects and their 
relationships as shown in Fig. 9, it is also necessary 
to identify the attributes and behaviour for each class 
of objects. This study adopts an object-oriented 
approach [9] for the design and implementation of 
the generic software for detailed design of structures. 
Object-oriented programming languages allow for the 
creation of abstract data types (objects) which link 
attributes and behaviour together, thereby facilitating 
the representation of engineering data based on actual 
physical entities [10, 11]. For example, the class 
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Fig. 9. Generic data  model for structural design. 

Table 3. Attributes and behavior of class 
structure. 

Attributes Behaviour 

name setStructuralSubSystem 
materials getLoadCaseResults 
nodes addNodes 
members addMembers 
groups addGroups 
loadings checkNodeConnections 
loadCases design 
task analyze 
designTool verify 
strSubSystem critique 

earlyDesign 
groupMembers 
saveObjects 

Structure, which is a generic class applicable to all 
types of engineering structures, has the (partial) list of 
attributes and behaviour given in Table 3. Many of 
the attributes are objects themselves or constitute lists 
of references to other objects, e.g. nodes  is a list of 
references to all the nodes that belong to a structure. 

The data model of Fig. 9 is generic and developed 
at a high level of abstraction. In order to apply this 
model to an actual design problem, some of the 
objects of the model must be specialized. This is done 
in a hierarchical manner that allows for inheritance 
of common attributes and behaviour. For  example, 
Fig. 10 depicts an (incomplete) hierarchy for the class 
StructComp as would be required in the design of a 
building, and Table 4 provides a brief list of some of 
the attributes and behaviour that corresponds to this 

StructComp 

Beam Column 

/ i ~ - 

RoofBm FlrBm IntCol ExtCul ] 
] 

SteeIRfBm SteelFIrBm SteellntCol SteelExtCo~ 

Fig. 10. Structural component  class hierarchy. 

hierarchy. At the top of the hierarchy is the parent 
class StruetComp that defines the attributes and 
behaviour common to all structCornp objects. For 
example, each struetComp has the attribute nodes 
which is a list of references to the nodes to which it is 
connected. Common behaviour includes storing the 
results of a loadcase (putLCR) and then identifying 
which loadCase is most critical and saving this 
information as the attribute govkCR (governing load 
case result). A structComp is then able to use this 
information when exhibiting some expected behaviour, 
e.g. returning the worst response (get WorstResponse). 
Further down the hierarchy the class StreelFlrBm is 
identified. At this deepest level of specialization all the 
attributes and behaviour required for detailed design 
have been defined. 

What is not apparent from the listing given in 
Table 5 are the heuristics embedded in the subclass 
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Table 4. Attributes and behaviour of the StructComp class 
hierarchy. 

Class StructComp Class Beam: subclass to StructComp 
attributes: attributes: 

name span 
nodes topBracing 
group bottomBracing 
loadCaseResults behaviour: 
govLCR getSpan 
selfDL 
delfLimitRatio Class Roof Bin: subclass to Beam 

behaviour: inherits from Beam and sets values 
getName specializes Beam behaviour 
getWorstResponse 
getGovLCR Class SteeiRoofBm: subclass of Roof Beam 
saveSelf behaviour: 
putLCR getMaterialType 

behaviour associated with each type of StructComp. 
The need to represent these heuristics is partially 
responsible for the fact that the StructComp hierarchy 
is specialized by material type. That is, the default 
values for some of the attributes and many of the 
design heuristics are material dependent (for example, 
the span-to-length ratio heuristic defining the maxi- 
mum allowable deflection for a beam span), and it is 
computationally advantageous to attach these heur- 
istics directly to a class of objects such as SteelFlrBm 

are essentially the same. Descriptions of the object- 
oriented paradigm and various object-oriented lan- 
guages can be found in a number of references 
[9, 12, 13-17] and are not included in this paper. It is 
sufficient to say that the object-oriented approach 
allows for defining classes of objects which encapsulate 
attributes and behaviour, and that these classes can 
be defined in a hierarchical manner. 

The object-oriented approach has a number of 
advantages [9, 12]. The objects which result are easily 
identified and related to by the engineer doing the 
design [11, 18]. The attributes and behaviour of each 
class of objects can be defined to meet the many 
different tasks that may be required during the course 
of a design, e.g. drafing, cost estimating, analysis etc. 
[7]. The inheritance feature of the object-oriented 
approach allows for a layered approach to software 
design [8], permits attacking the problem at different 
levels of abstraction [10] and provides for efficient 
software development through code reuse. 

Finally, an efficient and friendly graphical user 
interface is required in order to initially define the 
structure and monitor the design process [5]. While 
the implementation of such an interface is not 
addressed by the present study, it would proceed 
directly from the information provided earlier in 
Section 2 of this paper. 

4. Software Environment Requirements 

The data model discussed in the previous section was 
developed through an object-oriented decomposition 
of the problem where the objects both identify entitites 
in the real world and encapsulate their attributes and 
behaviour. Each object is autonomous and collabor- 
ates with other objects to achieve the solution to the 
detailed design problem being modelled. This approach 
is quite different from the procedural decomposition 
of a problem that is most often used in developing 
engineering software. Procedural decomposition in- 
volves breaking a large problem into several smaller 
subproblems. Each subproblem becomes a subprogram 
in a targer program which operates by systematically 
calling the subprograms and sharing common data. 

Each decomposition technique has advantages and 
disadvantages 1-9, 12]. The advantages of the object- 
oriented decomposition technique are fully realized by 
implementing the model using an object-oriented 
programming language (such as C++) .  For such a 
programming language, the data model created 
during the software design stage and the data model 
actually implemented to solve the problem at hand 

5. Prototype Development and 
Implementation Details  

An initial prototype named GOOD_B (Generic 
Object-Oriented Detailed design of Buidings) has 
been developed in the C + +  language using the data 
model discussed in section 3. The detailed design of 
steel building frameworks is presented for illustration, 
where the software package SODA [1] is used for the 
structural analysis and design stages while GOOD_B 
performs pre- and post-processing of the data. The 
prototype can be easily modified to use other available 
design and/or analysis packages (e.g. for wood, 
reinforced concrete, etc., structures). 

As an object-oriented program, GOOD_B is essen- 
tially a compilation of the definitions of the classes 
required for the detailed design of buildings. These are 
the classes identified in Fig. 9 and those resulting from 
specialization of any one of those classes, such as are 
presented in Fig. 10 for structural components. The 
class definition provides the attributes and methods 
or behaviour common to all objects of that class and, 
therefore, can be thought of as a template from which 
an object can be created (instantiated). In this way 
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Fig. 11. Conceptua] overview of the GOOD_B system. 

each object of a class has its own values for the 
attributes, but  shares the methods which define its 
behaviour .  P rog ram contro l  is th rough  message 
passing, where an object responds to a message by 
invoking the appropria te  class method.  

Figure 11 provides a conceptual  overview of the 
G O O D _ B  system. Initially the user must  produce  a 
text file (Fig. 11; la)  with the required object data  
which defines the building (as discussed in section 2). 
An example of such data  is given in Table 5. Ideally 
this data would be created through an intelligent 
graphical user interface. The user then runs G O O D  B 
(Fig. 11; lb), which is implemented in the C + +  
language and, therefore, has a m a i n ( )  function to 
initiate program execution. The pr imary  purpose of 
m a i n ( )  is to create an object of the class Building 
and then begin the design process. A listing of m a i n (  ) 
follows: 

main() { 
ifstream infile ("bldg. in", ios: : in); 
char input[81]; 
int line =80; 
infile, getline( input , line, '; ~ ); 
Building theBldg( input~ infile ); 
theBldg, doTask(), 
} 

The text file "bldg.in",  which holds the required 
input data, is opened and is associated with the 
ifstream (input file stream) object infile. The identify- 
ing name of the building is read from the text file and 
stored in the variable i n p u t .  The object theBldg, of 
the class B u i l d i n g ,  is then created by calling the class 
constructor* 

T a b l e  5. Example input file. 

ID: RFwithMezz; 
2D; ClsD; 
KN; metre; 
Braced; First Order; design; 
Materials; 1; 
steel; 400 450; 
Nodes: 24; 

joint; J4; 35 5 0; 

FixedSupport; $2; 10 0 0; 

SteelIntCol: IC5; 2; J13; 1; J16; 1; material: 
1; 

Load cases: 
Node loadings: 2; 
Wind-Str; 6; 
J1;70 0 0 0 0 0; 
J5;70 0 0 0 0 0; 
J9;70 0 0 0 0 0 
J12;70 0 0 0 0 0; 
J15;70 0 0 0 0 0; 
J18;40 0 0 0 0 0; 

Load combinations: 4; 
# 1; 2; DL; 1.25; LL; 1.5; 
#2;  3; DL; 1.25; LL; 1.125; Wind-Str; 1.125; 
# 3; 2; DL; 1.25; Wind-Str; 1.5; 
#4; 2; DL; 1; Wind-Ser; 1; 

* A constructor is the C++ class initialization function. It is used 
to initialize the data members (attributes)of the class to some values 
and can also perform other tasks. Reference [19] provides further 
information on programming in C++. 
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Building theBldg( input, infile ); 

and passing to it the variables (in parentheses) which 
have the value of theBldg's name and the input file. 
A partial listing of the class Building constructor 
follows: 

Building:: Building( char*id, ifstreum&inputFile ) 

getSimpleDutu( inputNile ); 
getMaterialDatu( inputFile ); 
getNodeData( inputFile ); 
setTopDispNode(); 
setlnterStoryNodes(); 
getGroupData( inputYile ); 
getNemberData( inputNile ); 
checkNodeConnections(); 
getLoadCases( inputNile ); 
if ( task:: CRITIQUE ) 
getLoadCaseResults(); 

The purpose of the constructor is to process the input 
file (Fig. 11; lc) and assign the attributes of theBldg 
their appropriate values. Many of theBldg's attributes 
are objects of other classes, e.g. Group, Node, Struct- 
Comp, and each of them have constructors which also 
read the input file in a similar manner. For example, 
the method getMemberData is responsible for creating 
all the structComps that are a part of theBldg. The 
statement 

case S TE~,LROOFBM: 
members -* add( *(new SteelRoofBm( inputFile, 

this )) ); 

found in getMemberData results in the creation of an 
object of the class SteelRoofBm by calling its con- 
structor and passing the input file to it. The methods 
getMaterialData, getNodeData and getGroupData 
behave similarly. In this way all the objects required 
in the design process are created. 

GOOD B then sends the message doTask to 
theBldg (the last statement in the listing of m a i n ( ) )  
that instructs it to perform its given task, which is to 
do detailed design using an available software package. 
This results in r collecting its members into 
designGroups and then producing the input file used 
by the analysis/design software specified in the input 
file (Fig. 11; ld). 

Because of the many activities involved in detailed 
building design, the objects are required to be 
persistent beyond the duration of any one executable 
program in which they may be used (e.g. analysis, 
conformance checking, drafting etc.). Therefore, all the 
objects are provided with the ability to read and write 
their current state to a Building Object Database 
(BOD). The objects do this once the input file for the 
analysis/design software is produced (Fig. 11; le). 

Control now returns to the user (Fig. 11; lf), who 
runs the analysis/design package (Fig. 11; 2a). Once 
complete, the results are written to a file (Fig. 11; 2c) 
and again the user runs GOOD B (Fig. t 1; 3a). This 
again creates theBldg but this time the BOD (Fig. 11; 
3b) is used as the input file by the constructor and the 
task has changed from ~design' to 'critique'. The last 
statement given in the listing of the Building con- 
structor causes theBldg to read the results stored in 
the results file (Fig. 11; 3c) produced by the analysis/ 
design software. Again, the message doTask is sent to 
theBldg but this time the method critique is invoked. 
At this point, theBldg critiques the resulting design. 
Interaction with the user (Fig. 11; 3d) takes place as 
GOOD_B suggests changes to the design. Upon 
completion of the critique stage, the objects are again 
written to the BOD (Fig. 11; 3e) and control returns 
to the user. If the suggested changes to the design are 
accepted by the user, then GOOD_B produces the 
necessary input file for the analysis/design software 
and the user goes through the process again. Other- 
wise, the design is deemed complete and its description 
is located in the BOD. 

Figure 12 provides a representation of how a design 
proceeds by illustrating the classes, their methods, 
some of the message passing that occurs and some of 
the implementation details of the methods. As stated 
earlier, theBldg is created in the main(  ) function of 
GOOD_B and is sent the message to invoke the 
method doTask inherited from the class Structure. 
Initially the value of the attribute task is DESIGN, 
and, therefore, the method design is invoked. The class 
Structure method design calls the methods earlyDesign 
and designSolution for the purpose of first making 
some early design decisions and then finding the 
detailed design solution. One of the early design 
decisions to make involves the grouping of the 
structural components into design groups for reasons 
of economy and ease of construction. This grouping 
is done by the class Building method groupMembers. 
Once all the members have been collected into design 
groups, each group is sent the message picklnitSection 
which results in an initial design section being chosen 
for theGroup based on heuristics, e.g. all the beams of 
a similar span and the same material are grouped 
together. The method designSolution is a specialized 
method defined by the class Building. For steel 
structures, it results in the production of the input file 
for the SODA program [1] by calling the method 
makePopFile. Before control returns to the user to 
then run SODA (Fig. 11; 2a), theBldg changes the 
value of task to CRITIQUE in anticipation of post- 
processing of the design results and saves itself to the 
BOD through the method saveObjects. The method 
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class Structure 
N 

task = DESIGN 

d~ / 
task = DESIGN/ 
esign / 

iesig n / 
lyDesign / 
gnSolution/ f/~ class Group 

/ critique / designSection = nil 

/ earlyDes~gn / pickinitSec Jo 

~ i ~  theGroup 

f ", class Building 

f 
doTask 

UpMem~rsJ 
pBeams / 
olunms / 

/ designSolution / 
/makePopFile / 
/t~k: cRmotm / 

/s  eobjo=  . _ /  

~., 

theBldg 

message 

/implementation/ 
/ details / 

class method 

Fig. 12. Object interaction for Task = DESIGN. 

saveObjects sends a message requesting the objects 
involved in the design and belonging to theBldg to 
save themselves; Fig. 13 illustrates this message 
passing to an object of the class Group. 

Once the analysis/design software has completed its 
task, the user executes GOOD_B again (Fig. 11; 3a). 
Figure 13 illustrates the sequence of events that result. 
Once again the message doTask is sent to theBldg, but 
this time task = CRITIQUE. Figure 13 shows that 
both the Building and Structure classes define a 
critique method. The Building critique method is 
invoked and it in turn invokes the Structure critique 
method (Structure: :critique, as shown in the figure). 
In this way, after the Structure class method critique 
is executed, the class Building is able to call the 
additional method makePopFile to create the necessary 
analysis/design input file. In Structure :." critique, the 
method critiqueGroups is called which sends the 
message critique to each of the groups belonging to 
theBldg. (Each group then critiques its own design but 
these details are not shown in Fig. 13). Finally the 
objects of the design are saved when the method 

/'I- class Structure 

task = CPdTIQUE 

RITIQUE / 

criti ue 

f class Group "~ 
~ u p s ~  designSection = some val~ ] 

saveObjects / 
M 

] 

7__2_ -.ls v~176 7 
4 /  : /sa, Se t 

__) 
theGroup 

~ I  isA 

class Building " ~  

/ 

~aoTask theBldg 

message 

/implementation/ 
/ / 

class method 

Fig. 13. Object interaction for Task = CRITIQUE. 

saveObjects is invoked and the message saveSelfis sent 
to all the objects involved in the design. Control 
returns to the class Building critique method which 
calls the makePopFiIe method if changes to the design 
have occurred. With the critiquing of the design 
complete, program control returns to the user (Fig. 
11; 3d). 

The GOOD_B system is very flexible and is easily 
modified and extended because of its object-oriented 
design. Extending the software to allow for other 
design and analysis packages (e.g. for wood structures) 
simply involves adding other methods to create and 
process the corresponding data files and subclasses of 
StruetComp. Incremental software development is 
easily supported. For example, while the design 
critiquing presented here has only considered the 
collection of individual members into common- 
property design groups, much more can be considered 
in this regard simply by adding new critiquing 
methods. For example, each Group object could 
critique the chosen design section by adding the 
method improveProfile to the class Group critique 
method. This method would determine if a different 
cross-section might be more suitable, e.g. a circular 



A Generic Model for Building Design 183 

versus a rectangular cross-section for reinforced 
concrete design. 

6. D e s i g n  E x a m p l e  

Consider the structural steel building framework in 
Fig. 8. The loadings and analytical model are as 
shown in Fig. 8c. Other necessary design information 
is given in Table 6. The first run of the G O O D _ B  
program results in the creation of five groups: all 
exterior columns, interior columns and roof beams 
are assembled into the groups named extCol, intCol 
and rfBeam respectively; the floor beams are grouped 
using a simple heuristic based on span (e.g. all beams 
with spans lengths within 20% of one another are 
grouped together), resulting in the creation of the two 
beam groups named bmGrp # 1 and bmGrp # 2. Figure 
14 illustrates this grouping. 

The SODA software produces an optimal design 
based on a minimum weight criterion [1]. (A mini- 
mum weight design is often a minimum cost design, 
which is important to structural designers and their 
clients.) The design produced by the first SODA run 
for the initial grouping in Fig. 14 has a weight of 
32,9t5 kg and the design sections given in Table 7. 
G O O D _ B  uses the analysis and design results to 
critique the design groups. The method splitGroup of 

Table 6. Design information for rigid frame with mezzanine 
example. 

Name: RFwithMezz 
2D braced frame 
Design code: CSA-S16.1-M89 

Units: kN, m 

first-order analysis 
Materials: 

steel fy = 400 MPa 
fu = 450 MPa 

Load combinations: 
# 1: t.25,DL + 1.5*LL 
#2: 1.25,DL + 1.125,LL 

+ 1.25*Wind-Str 
#3: 1.25,DL + 1.5, 

Wind-Str 
#4: DL + Wind-Set 

G r o u p s :  

E x t C o l  ............. 

In tCo l  . . . . . . .  

R f B e a m  . . . .  

B r n G r p # 1  

B m G r p # 2  . . . . . . .  

! 

f r  rr # 
Fig. 14, Initial grouping. 

77" 

Table 7. SODA run 1: design sec- 
tion results. 

rfBeam W310X158 
bmGrp # 1 W610X140 
bmGrp # 2 W310X 158 
extCol W460X97 
intCol W310X129 

f 

Groups:  

1 _Fl fQeam . . . . . . . . .  

2 R I B e a m  . . . . . . .  

b m G r p ~ l  

b m G q : ~ 2  . . . . . . . . . . . .  

1 E x t C o l  

2 _ = = . ~ 1  

3_ExtCo~ . . . . . . .  

4 _ E x t C o l  . . . . . . . . . . . .  

5_Ex tCo l  . . . .  

1 In tCol  . . . . . . .  

2 IntCol  . . . . . . . . . . . .  

3_ ln tCo l  . . . . . .  

4_ ln ICo l  . . . . . . .  

I 

I 

i ! 
i i 
i i 

I 
7T  77" 

Fig. 15. Grouping after critique stage�9 

the class Group is a simple critiquing routine in which 
the object group determines whether it should split 
itself into possibly more than one group by inspecting 
the response ratio of each of the structComps belong- 
ing to it. If appropriate and if the user agrees, new 
groups are created. G O O D  B determines that the 
original groups should be split for this example, 
Specifically, rfBeam is split into two, extCol into five 
and intCol into four new groups. Figure 15 depicts 
these new groups. A new input file is created and the 
user runs SODA again. 

The second SODA run results in a lighter design 
representing a 15% reduction in weight to 27,940 kg, 
The design sections for the different groups are given 
in Table 8. Executing G O O D _ B  results in the groups 
being critiqued again. This process continues as long 
as G O O D _ B  is able to suggest changes to the design 
or until the user is satisfied with the results from 
SODA. 

7. Conc lus ions  

The example presented in section 6 was intentionally 
simplistic with respect to the initial grouping of the 
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Table 8. SODA run 2: design sect ion results. 

I RfBeam W610X155 
2_RfBeam W200X52 
bmGrp # 1 W310X 129 
bmGrp # 2 W610X155 
1 ExtCol W610X155 
2_ExtCol W310X60 
3_ExtCol W310X60 
4_ExtCol W200X36 
5_ExtCol W 310X31 
1 IntCol W310X107 
2_IntCol W460X97 
3_IntCol W310X67 
4 IntCol W200X31 

structComps and the subsequent splitting of the groups 
during the critiquing. The primary intent was to 
present a working prototype to illustrate the effective- 
ness of the approach. A much richer set of heuristics 
can be implemented for grouping structComps, as well 
as for critiquing the groups. Moreover, other critiquing 
can include heuristic knowledge pertaining to a wide 
range of design concerns (e.g. extending columns over 
two floors, limiting the maximum depth of beams, 
connectivity of the members etc.). 

While presented at but a simple level, this work has 
shown that a generic approach to the detailed design 
of building structures is possible. The resulting data 
model is applicable to a wide range of building 
structures and can easily be implemented to make use 
of a variety of different analysis/design software. Other 
advantages of the approach lie in the consistent data 
model, which is applicable to the different stages of 
design (such as preliminary design, detailed design, 
drawing etc.). Finally, the object-oriented approach 
allows attributes and behaviour to be linked together 
in such a way that readily facilitates the implementa- 
tion of design heuristics, which form an important 
part of the design process and which are often difficult 
to account for in other programming environments 
(such as the traditional procedural approach). 
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