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Abstract. In order to make the traditional product structure 
tree representation amenable to concurrent engineering 
relationships like perspective-of and dependent-on have to be 
added to the essential part-of relationship. Complex data can 
be held in proprietary formats, while simple data will be in a 
common representation for direct access by diverse disciplines. 
Coordination among team members in a project can be carried 
out using such a model. Besides, a virtually unified view 
of all the data is possible, though they may lie in distributed 
and heterogeneous data bases. A very necessary characteristic 
of  such a model is that its time evolution should be easy to 
represent in order to reflect the dynamic nature of  product 
development, where the model itself, and not merely the data 
values change. Managing versions is also facilitated by the 
comprehensive structure of  the Unified Product Data Model 
(UPDM). 

Keywords. Concurrent engineering; Configuration 
management; Data model; Design Process; Engineer- 
ing data management; Product data management. 

1. Introduction 

Product data modeling has been extensively studied, 
focusing on the standards for expressing the data 
required to define the finished product for design and 
manufacturing (1). In the context of the DICE 
(DARPA Initiative in Concurrent Engineering) project 
these standards are seen as highly desirable to be 
adopted and followed by the CAD vendors and tool 
developers, so that part data of all types may be 
exchanged among the gamut of engineering tools. But 
DICE is not focused on the standards issues, but on 
the question of how best to share the product 
information among a team. Given that the engineering 
data are not represented in any substantial way today 
in universally recognized computer representations 
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and file formats, the challenge is to see how far one 
can go without those standards in making informa- 
tion, resident in incompatible formats and possibly 
distributed, available, nevertheless, at the workplace 
of a product development team member without 
delay. Today's multi-functional product data are 
captured in proprietary formats and follow different 
representations. If one may hazard a guess, this is 
likely to remain the situation far into the future, 
because the tools themselves are being developed 
much faster than the standards. A second important 
requirement is that the data sharing in product 
development must concern not just the finished 
design, but also the evolving incomplete design which 
is constantly changing throughout the project. 

The data that need to be shared fall into two 
classes: 

�9 Extremely complex data structures containing 
hundreds and thousands of data elements with 
hundreds and thousands of relationships among 
them. Example: an electronic circuit layout 
schematic. 

�9 Simple data consisting of numbers and text that 
characterize a part. 

Both types need to be shared. The former type will 
be produced by an engineering tool in a proprietary 
format and need to be processed by another tool in 
its own proprietary format to conduct an analysis in 
another perspective of the total product design. The 
only known solution to this situation is to write 
custom translators to perform as faithful a computer 
translation as possible, and touch it up by hand 
finally. 

The second type of information needs to be held in 
one common representation in order that humans and 
computer group work tools (such as constraint 
management systems and notification systems to 
coordinate team work) may directly access those 
data. 
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2. Unified Product Data Model 

The Unified Product Data Model (UPDM) that we 
propose should hold the first type of information as 
a pointer to a file of a certain type; and the second 
type of information directly in computer memory, 
visualizable by humans, and programmatically access- 
ible by computer tools. Assume that this information 
is placed there by one perspective; then any other 
perspective can bring the required Complex data into 
its own tool by invoking a translator on the file 
pointed to (the pointer is not the pathname of the file 
but a unique ID of the file which is translated to a 
pathname by an information server). A person can 
directly view the Simple data or they may be conveyed 
programmatically to any CE tool that processes the 
data (for example, a CE Notification System or a CE 
Constraint Management System). The name-space of 
the tool desiring the data and the name-space of the 
CE service that holds the UPDM will be different. 
Therefore all such accesses to the UPDM must be 
mediated by a look-up table to translate between the 
name-spaces. These tables should be embedded in the 
client tool. 

The UPDM was suggested on p. 78 et seq. in the 
DICE Red Book [2]. It is built as a product structure 
tree with the basic part-of relationship to express the 
successively lower levels of decomposition of the 
product. The CE aspect of the data model consists of 
the fact that any individual node of the tree repre- 
senting an assembly, sub-assembly, or component has 
multiple slots to represent the various perspectives of 
that node, and when one of the perspective slots is 
opened up it may consist of some Complex structures 
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Fig. 1. Example of a Unified Product Data  Modei of a turbine 
blade in an aircraft engine. 

(pointers to proprietary file formats) and some Simple 
structures (a vector of numbers and strings). An 
example, relying as always on the now familiar turbine 
blade in DICE, is shown in Fig. 1. 

3. Hierarchical Relationships 

The part-of relationship defines the outline of the 
whole tree. The perspective-of relationship is a bag to 
hold all the data that are owned by and defined by one 
perspective (though others may have to assent 
consensually, and could be dependent on the data). 
The mutual influence of decisions on other decisions 
is also an essential component of a model of the 
product data to support CE. Hence all data attributes, 
whether Complex or Simple, have dependent-on 
relationships specifying perspectives that need to be 
notified if the value of that data attribute changes. In 
case certain automatic computing processes should be 
invoked, the dependent-on relationship performs that 
action too. 

The hierarchical structure of the UPDM is excellent 
for encouraging the re-use of earlier product data. For 
example, an entire sub-assembly available from an 
earlier project may be attached to a node of the new 
product structure tree to record a design decision to 
use a previously designed sub-assembly. One may 
then modify a portion of it for the present project. 
Since industrial products, such as automobiles, may 
have only 10-15% new components from one model 
to the next, this re-use of earlier components, sub- 
assemblies and assemblies is the rule rather than the 
exception. The modeling methodology proposed 
above supports this effectively and graphicallY - and 
it is the intent to explore how it can be implemented 
in at least one of our data modeling tools, the Team 
Coordination enabling technology, called the Project 
Coordination Board [3]. 

4. Product Data Access 

The UPDM is a virtual unification of nil the data; it 
is not a common representation of all the data, nor 
does it attempt to be one. Common representations 
are extremely unlikely to be realized if one truly wishes 
to cover all the data that specify a product, from the 
diagnostic program to test a component in the field 
(logistics perspective) to the numerical control program 
that will be used to cut a mechanical part on a 
machine tool (manufacturing perspective), the multi- 
media user manual (documentation perspective), the 
shape (aerodynamic perspective), temperature profile 
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(thermal perspective), and so on. One may even 
argue: what need is there to have a common represen- 
tation when what one really needs are translators? The 
STandard for the Exchange of Product model data 
(STEP) is being developed as an international standard 
for product data sharing [1]. If there actually is one 
gigantic STEP model of all of the data to define a 
product, then the word Translator will be replaced by 
the word Application Protocol. Conceptually the 
world without STEP and the world with the most 
complete STEP are no different: when you need data 
to be exchanged between perspectives, you will have 
to execute a procedure in both cases. 

The U P D M  is also a directory to all the data that 
arise in the course of the product development and 
are needed in toto to define the product for all stages 
of the development, and for all perspectives that work 
with the product. In a UPDM for CE some of the 
data are really there, explicitly modeled and stored in 
computer memory and on auxiliary storage. Some of  
the data are present with one level of indirection, but 
still on-line, as an index to a data base or document 
repository - but the user has to switch context to get 
at that data. And some of the data are not present on 
the computer at all, because they are lying in a file 
cabinet and the pointer from the U P D M  is a reference 
to a file folder within a file cabinet - a human must 
go and look it up to access it. 

5. Process 

The process by which the product is developed is not 
stored in the UPDM. It is captured as a set of reusable 
development processes, stored in a process library, 
and categorized by perspective. It is also stored in the 
history of the project as fragments of rationale and 
annotation of decisions taken. It is optional whether 
to consider these as Product Data which must be 
linked to the UPDM, or as Project Data, unlinked to 
it. The generality of the U P D M  described above 
would indicate it is better to link the annotations in 
a design notebook as an annotation pointer (index) 
from the relevant node in the product structure tree 
into the Design Notebook data base [4]. 

The process also has the limited, but often used, 
connotation of the manufacturing process. This is 
indeed stored in the UPDM, because the UPDM 
contains the data required to define the product in the 
manufacturing perspective. Therefore the manufactur- 
ing perspective will have contributed to fully defining, 
after debating if need be with other perspectives, the 
final decisions on the manufacturing process. For 
example, it will define a tool, a jig, a tool path, a feed 

rate, etc., for a metal cutting process. So in the sense 
of manufacturing process, the product model does 
contain the process; though not in the sense of the 
product development process, which is considered in 
the previous paragraph. 

6. Configuration Management 

The product structure tree, for all the convenience it 
affords, is also a fairly compact way of holding the 
configuration of a product. Consider a product like 
an automobile with several thousand parts. Assume 
each part has half a dozen perspectives, and the simple 
data aggregates for each perspective, such as a length, 
a mass, certain elastic constants, etc., can be held in, 
say, 20 numbers, and the complex structures occupy 
at most half a dozen CAD files to which the product 
structure tree will only hold pointers. Including 
overhead the whole product structure tree will occupy 
just 2.5 Mb of data. Of course, the CAD files 
themselves may occupy a thousand times more data, 
gigabytes in extent, but that is not unexpected. The 
compactness of the product structure tree here 
advocated comes through when it is realized that the 
next model will need just another 2.5 Mb to hold the 
configuration, and an additional 15% or so for the 
CAD files of those parts that have actually changed 
from the earlier model. Because of the compactness it 
is quite possible in a project to hold even a score of 
versions at any time that are under investigation by 
different groups. However this proliferation is not 
expected to multiply geometrically in the nature of the 
basic concurrent engineering of product development, 
which enforces synchronization and consistency among 
various perspectives periodically [5]. This consensus 
is the basis of the sign-off through which the different 
perspectives agree and make consistent their respective 
contributions to product definition, so that for 
instance, the maintenance diagnostic provided by the 
logistics perspective for a part conforms to the 
functional schematic of the part put out by the design 
perspective. Hence the entire system of engineering 
change notices can be integrated with the product 
structure tree as a design annotation perspective with 
slots to embed the customary annotation for engineer- 
ing changes; the actual engineering-intensive drawings 
describing the changed part are automatically pointed 
to from the product structure tree. 

Once the changes have been made and agreed upon, 
those portions of the tree can be made read-only by 
the project leader to prevent further inadvertent 
change. However, during product development, before 
partial consensus is reached, it is likely that the values 
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of several parameters will be changed by the respon- 
sible developers many times. The tree should have the 
flexibility of holding lists of alternate values with 
identification of the proposers. This many-valuedness 
wilt enhance the ability to represent the flux of activity 
in product development by providing the temporary 
storage needed to hold the input for studies of 
trade-off among different perspectives. There is a great 
deal of communication and interchange that goes on 
among the developers, quite apart from their co- 
ordination via the shared data of the product structure 
tree. It is the purpose here to advocate the extreme 
usefulness of sharing the evolving product data model 
as a foundation for coordination among product 
developers; but there is even more coordination that 
needs to take place via meetings, messages, and 
multi-media communication. 

It is clear that the UPDM for a finished product 
can provide a very essential function of structured 
Configuration Management. The tree has all the 
information (or pointers to the information), in every 
form, that defines the product. An NC program to 
machine a component on a machine tool is there, 
pointed to from the Manufacturing perspective for 
that part. A stress analysis color plot for the part is 
also there, pointed to from the analysis perspective. 
A service manual for the product is also present, 
referenced from the logistics perspective. And so on, 
for all other artifacts, documents, computer programs, 
jigs, drawings, parts lists, etc., which constitute the 
product definition. The files themselves may be on-line 
to the user, or off-line managed by other computer 
systems, or by humans tending hard copy archives. In 
the ideal case all the files would be in an electronic 
store, at minimum scanned in from hard copy, and all 
of them would be accessible on-line to the authorized 
personnel; but it is the UPDM's comprehensive 
structure that makes it possible to define a Product 
Version uniquely and completely, and the UPDM at 
least will be available on-line. Product developers will 
be able to know from their workplace the entire 
information constituting the product or any com- 
ponent of it, no matter where it is resident in the 
organization and in what form. This in itself is a vast 
improvement over the situation prevailing in industry 
today. 

Consider the need to sub-contract the manufacture 
of a particular part. The UPDM will lead one straight 
to the part and reveal the total information available 
defining the part, and any required drawings, annota- 
tion, documents, materials, jigs, etc., can be marked 
for printing with a utility. The precise documents and 
drawings needed, organized in a meaningful sequence 
for external manufacture, are thereby available in 

short order. These so-called technical data packages 
(TDPs) are extremely hard to get at and retrieve 
in organizations that carry a great variety of 
products [6]. 

7. CITIS and CALS 

This aspect of the UPDM parallels the goals of the 
Contractor Integrated Technical Information Services 
(CITIS). CITIS is meant to be the single entry point 
for access to technical data stored at the site of a 
contractor, who is obligated by a government contract 
to supply electronically the technical data specified in 
a contract for acquisition of a product from that 
vendor [7]. Some contracts calt for no more than a 
list of items to be available on-line to the government, 
but they may go so far as to mandate access to the 
actual CAD data and its translation into an agreed 
neutral format. The UPDM is suited to this purpose 
admirably. By browsing the product structure tree, at 
its appropriate level of abstraction, the user can 
identify the data that are available, what it pertains to, 
and in what native form it exists. If the user iS 
interested in accessing the data, provision has to 
be made for file transfer and translation after per- 
forming user access controls. More often than not, the 
user wishes to view the data on the screen; one can 
safely assume the frequency of the view type of 
accesses will far outnumber the file transfer type of 
accesses. What can be done to satisfy this critical need 
which was identified on p. 90 of the Red Book [2]? 

Normally the model and the accompanying data 
dictionary are considered as meta-data, i.e. data that 
describe the definition, structure, form, purpose, units, 
etc., of the data stored about the artifact. We propose 
that such meta-data be extended to include access 
methods to obtain the artifact data. The UPDM 
should hold pointers to the necessary software 
routines for accessing the data lying in remote files. 
Further, this should also enable a user to execute the 
proprietary applications on remote computers using 
those files and bring the resulting graphic image to 
the workstation from which the user is currently 
interrogating the UPDM. The methods may be 
recorded explicitly at the time the data are published 
on the UPDM by the product developer, or they 
could even be generated automatically from the 
recta-data. In this way the goal of heterogeneous 
distributed access to alt of the data comprising the 
product can be achieved in a uniform way. More- 
over, such data access will be just as usable and 
advantageous during product development (the focus 
of CE), as it is after product development is completed 
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(the focus of CALS - -  Computer-aided Acquisition 
and Logistics Support - -  and CITIS). Indeed, in the 
sense that CE visualizes the development cycle as 
continuing until the product's retirement from use, the 
CALS requirement of data access may be subsumed 
in the CE requirement. 

8. Model Itself Changes 

The UPDM is meant to support the product develop- 
ment process, which goes through several distinct 
stages in every industry. At each stage, the type of 
decisions that are taken are different, and the UPDM 
needs to support the collaboration of persons on those 
decisions. The UPDM is a skeleton to hold partial 
decisions around which the team's work will be 
communicated and coordinated. It is on these decisions 
that there must take place the propagation of 
influence of one decision on another, in order to 
ultimately reach consensus. We posit that not one, but 
several UPDMs are needed over the product develop- 
ment life-cycle. The one at the concept development 
stage will address the requirements issues heavily, as 
well as the target performance parameters, the shape, 
the base technologies that will be used, and the market 
prNections and risk. Further down the road, when 
one of several alternatives for the concept has been 
chosen, the UPDM should encourage the visualization 
of the entire development process that must be 
undergone, with possible iterative cycles, in many 
perspectives. This will therefore be a different model 
that will show up the architectural composition of the 
product and key starting points for the design in 
various areas. The final product model at the end will 
be the fully fleshed out model that was adumbrated 
in Fig. 1 above, one in which all the necessary product 
design, manufacturing, and logistics characteristics 
and support procedures have been identified and 
developed. In sum, the UPDM for CE should really 
be a family of UPDMs, one for each distinctive stage 
of a product's development cycle. Furthermore, the 
UPDM is a dynamic, changing, and incrementally 
evolving one as the product is developed. 

This dynamism is part of the normal IPD (Integrated 
Product Development) process. Hence, it is inap- 
propriate to define models that are compiled, as 
though all programs that access the model thereafter 
are going to be working from a constant and 
unchanging model. At any point, any perspective has 
the latitude to freely add to the product structure tree 
- -  new part-of nodes, new perspectives, new attributes 
- -  and without this capability the whole IPD process 
would be hobbled, and would not reflect the great flux 

and creativity that accompanies team involvement in 
product development. It is this fact that makes any 
modeling process that compiles some model written 
in a computer language into an invariant schema, 
wholly unsuitable for the product development process. 
The schema should be built up interactively and 
graphically with a tool that supports the building of 
schema trees depicted above; and the engineering user 
should have the ability to import interactively into his 
program (by a programmatic interface), or write to a 
file in a standard format (by a programmatic or user 
interface), any desired portion of the whole tree. A 
computer data modeling tool satisfying the above 
critical requirements exists in one enabling technology 
at the Concurrent Engineering Research Center 
(Team Coordination) and will be used consistently 
with another enabling technology (the Information 
Sharing Server). The interchange between them, as 
also the exchange between data held in these CE 
services and any CAD tools, will take place through 
a single intermediate file format, conforming to an 
acceptable standard that other vendors can also be 
expected to inter-operate with. This format has not 
yet been decided, but is likely to be a STEP physical 
file format with its accompanying EXPRESS schema 
generated on the fly to reflect the current state of 
the product definition. It will be natural to generate 
EXPRESS definitions from the internal represen- 
tation of the dynamic model, as a way of conveying 
the model to any other tool in a standard way, 
and this should be possible within the limitations of 
defining arbitrary data types and entities in EXPRESS. 

9. Dynamic vs Static Data Model 

The creation and evolution of such a dynamic data 
model are central to the coordination of the team 
because the data model has precisely the data 
elements around which cooperative decisions are to 
be taken at that stage of the product development. It 
is held in the memory of the Team Coordination tool 
called the PCB (Project Coordination Board) [3], 
and constraints, notifications, and ownership links are 
attached to the explicitly held data therein (the 
simple structures). Whenever a data attribute value 
changes it is these links that enable the evaluation of 
constraints and cause the notification of the team 
members concerned. Therefore, it is a unique feature 
of the UPDM for CE that it holds that type of data 
too - who is affected by a data attribute value, and 
what requirement of the customer or limitation 
imposed by the organization must be checked when 
the value changes. 
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The product data model that will be built by 
the ISS (Information Sharing Server) [8] at CERC 
will serve to model the well-defined and completely 
laid out information of past products that is contained 
in some commercial data bases. Naturally, this data 
model is static; and one may separate the process of 
data definition of the class and data population of the 
instances. The ISS serves as the uniform gateway to 
access past information about numerous products 
contained in legacy data bases. The UPDM, by 
contrast, is meant to support the inchoate, still 
incomplete, and constantly evolving definition of a 
new product that is under development. The UPDM 
does not separate data definition from instance data 
assignment and storage; it is a structure through 
which one specifies at once the instance data of a 
single new product, as well as its structure. 

10. Summary 

To summarize: the unified product data model is a 
dynamic product structure tree linked by the part-of 
and attribute-of relationships, which are amplified for 
CE by the essential perspective-of, owned-by and 
dependent-on relationships. They allow complex data 
in proprietary file formats to be pointed to and 
exchanged by translation steps, or simpler data 
(aggregates of numeric data) to be held explicitly in a 
common representation in computer memory and 
exchanged by direct programmatic access or visual 
access with a graphical data visualization tool. The 
Team Coordination and Information Sharing Systems 
will agree on a common format for the physical data 
file and corresponding data definition to exchange 
data. The UPDM is a virtual unification of all the 
data; it is not a common representation of all the data. 
The underlying tree of the UPDM is a key to 
configuration management also. A family of qualita- 
tively different models are necessary at different stages 
of product development. Important CE services can 
work from this unified data model: the team co- 
ordination service, the information sharing service, the 
constraint management service, the design annotation 
service, and the methods for integration of CAD tools 
with CE services. The UPDM is therefore the most 
important element in constructing a CE environment, 
but its propensity to change necessitates using an 
interactive graphical tool to accomplish the modifica- 

tions. However, at any time, one may extract the 
current data definition (schema) in a standard descrip- 
tive modeling language, such as EXPRESS, and the 
current data in a standard format, such as the physical 
STEP file forrnat. 
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