
Engineering with Computers (1995) 11:167-172
�9 1995 Springer-Verlag London Limited Engineering

C~nputers

Modeling Evolving Product Data for Concurrent Engineering

K. J. Cleetus
Concurrent Engineering Research Center (CERC), West Virginia University, Morgantown, WV, USA

Abstract. In order to make the traditional product structure
tree representation amenable to concurrent engineering
relationships like perspective-of and dependent-on have to be
added to the essential part-of relationship. Complex data can
be held in proprietary formats, while simple data will be in a
common representation for direct access by diverse disciplines.
Coordination among team members in a project can be carried
out using such a model. Besides, a virtually unified view
of all the data is possible, though they may lie in distributed
and heterogeneous data bases. A very necessary characteristic
of such a model is that its time evolution should be easy to
represent in order to reflect the dynamic nature of product
development, where the model itself, and not merely the data
values change. Managing versions is also facilitated by the
comprehensive structure of the Unified Product Data Model
(UPDM).

Keywords. Concurrent engineering; Configuration
management; Data model; Design Process; Engineer-
ing data management; Product data management.

1. Introduction

Product data modeling has been extensively studied,
focusing on the standards for expressing the data
required to define the finished product for design and
manufacturing (1). In the context of the DICE
(DARPA Initiative in Concurrent Engineering) project
these standards are seen as highly desirable to be
adopted and followed by the CAD vendors and tool
developers, so that part data of all types may be
exchanged among the gamut of engineering tools. But
DICE is not focused on the standards issues, but on
the question of how best to share the product
information among a team. Given that the engineering
data are not represented in any substantial way today
in universally recognized computer representations

Correspondence and offprint requests to: K. J. Cleetus, Concurrent
Engineering Research Centre (CERC), West Viriginia University,
PO Box 6506, Morgantown, WV, USA. E-mail: jocle@cerc.wvu.edu

and file formats, the challenge is to see how far one
can go without those standards in making informa-
tion, resident in incompatible formats and possibly
distributed, available, nevertheless, at the workplace
of a product development team member without
delay. Today's multi-functional product data are
captured in proprietary formats and follow different
representations. If one may hazard a guess, this is
likely to remain the situation far into the future,
because the tools themselves are being developed
much faster than the standards. A second important
requirement is that the data sharing in product
development must concern not just the finished
design, but also the evolving incomplete design which
is constantly changing throughout the project.

The data that need to be shared fall into two
classes:

�9 Extremely complex data structures containing
hundreds and thousands of data elements with
hundreds and thousands of relationships among
them. Example: an electronic circuit layout
schematic.

�9 Simple data consisting of numbers and text that
characterize a part.

Both types need to be shared. The former type will
be produced by an engineering tool in a proprietary
format and need to be processed by another tool in
its own proprietary format to conduct an analysis in
another perspective of the total product design. The
only known solution to this situation is to write
custom translators to perform as faithful a computer
translation as possible, and touch it up by hand
finally.

The second type of information needs to be held in
one common representation in order that humans and
computer group work tools (such as constraint
management systems and notification systems to
coordinate team work) may directly access those
data.

168 K. J . Cteetus

2. Unified Product Data Model

The Unified Product Data Model (UPDM) that we
propose should hold the first type of information as
a pointer to a file of a certain type; and the second
type of information directly in computer memory,
visualizable by humans, and programmatically access-
ible by computer tools. Assume that this information
is placed there by one perspective; then any other
perspective can bring the required Complex data into
its own tool by invoking a translator on the file
pointed to (the pointer is not the pathname of the file
but a unique ID of the file which is translated to a
pathname by an information server). A person can
directly view the Simple data or they may be conveyed
programmatically to any CE tool that processes the
data (for example, a CE Notification System or a CE
Constraint Management System). The name-space of
the tool desiring the data and the name-space of the
CE service that holds the UPDM will be different.
Therefore all such accesses to the UPDM must be
mediated by a look-up table to translate between the
name-spaces. These tables should be embedded in the
client tool.

The UPDM was suggested on p. 78 et seq. in the
DICE Red Book [2]. It is built as a product structure
tree with the basic part-of relationship to express the
successively lower levels of decomposition of the
product. The CE aspect of the data model consists of
the fact that any individual node of the tree repre-
senting an assembly, sub-assembly, or component has
multiple slots to represent the various perspectives of
that node, and when one of the perspective slots is
opened up it may consist of some Complex structures

J

/ ' , * * " ~ o v e l a i l ~

J " ~ platform~eometry C

, ~ ' , ' " ~ platform_material
blade platform - - ~ ~ " - ~ - platf fact urlng/.g.g.g.g.g.g.g.~ ~

~ ~ platform analysls~ \ \ . _ - " - - blade_geomet r y ~

~ k ~ nw~'~r : poiaterlo handbook

~ _ _ lade_m anu fact uring

blade_aaalysls

Legend:
. Part-ofrelationship

Perspective-of relationship

Fig. 1. Example of a Unified Product Data Modei of a turbine
blade in an aircraft engine.

(pointers to proprietary file formats) and some Simple
structures (a vector of numbers and strings). An
example, relying as always on the now familiar turbine
blade in DICE, is shown in Fig. 1.

3. Hierarchical Relationships

The part-of relationship defines the outline of the
whole tree. The perspective-of relationship is a bag to
hold all the data that are owned by and defined by one
perspective (though others may have to assent
consensually, and could be dependent on the data).
The mutual influence of decisions on other decisions
is also an essential component of a model of the
product data to support CE. Hence all data attributes,
whether Complex or Simple, have dependent-on
relationships specifying perspectives that need to be
notified if the value of that data attribute changes. In
case certain automatic computing processes should be
invoked, the dependent-on relationship performs that
action too.

The hierarchical structure of the UPDM is excellent
for encouraging the re-use of earlier product data. For
example, an entire sub-assembly available from an
earlier project may be attached to a node of the new
product structure tree to record a design decision to
use a previously designed sub-assembly. One may
then modify a portion of it for the present project.
Since industrial products, such as automobiles, may
have only 10-15% new components from one model
to the next, this re-use of earlier components, sub-
assemblies and assemblies is the rule rather than the
exception. The modeling methodology proposed
above supports this effectively and graphicallY - and
it is the intent to explore how it can be implemented
in at least one of our data modeling tools, the Team
Coordination enabling technology, called the Project
Coordination Board [3].

4. Product Data Access

The UPDM is a virtual unification of nil the data; it
is not a common representation of all the data, nor
does it attempt to be one. Common representations
are extremely unlikely to be realized if one truly wishes
to cover all the data that specify a product, from the
diagnostic program to test a component in the field
(logistics perspective) to the numerical control program
that will be used to cut a mechanical part on a
machine tool (manufacturing perspective), the multi-
media user manual (documentation perspective), the
shape (aerodynamic perspective), temperature profile

Modeling Evolving Product Data for Concurrent Engineering 169

(thermal perspective), and so on. One may even
argue: what need is there to have a common represen-
tation when what one really needs are translators? The
STandard for the Exchange of Product model data
(STEP) is being developed as an international standard
for product data sharing [1]. If there actually is one
gigantic STEP model of all of the data to define a
product, then the word Translator will be replaced by
the word Application Protocol. Conceptually the
world without STEP and the world with the most
complete STEP are no different: when you need data
to be exchanged between perspectives, you will have
to execute a procedure in both cases.

The U P D M is also a directory to all the data that
arise in the course of the product development and
are needed in toto to define the product for all stages
of the development, and for all perspectives that work
with the product. In a UPDM for CE some of the
data are really there, explicitly modeled and stored in
computer memory and on auxiliary storage. Some of
the data are present with one level of indirection, but
still on-line, as an index to a data base or document
repository - but the user has to switch context to get
at that data. And some of the data are not present on
the computer at all, because they are lying in a file
cabinet and the pointer from the U P D M is a reference
to a file folder within a file cabinet - a human must
go and look it up to access it.

5. Process

The process by which the product is developed is not
stored in the UPDM. It is captured as a set of reusable
development processes, stored in a process library,
and categorized by perspective. It is also stored in the
history of the project as fragments of rationale and
annotation of decisions taken. It is optional whether
to consider these as Product Data which must be
linked to the UPDM, or as Project Data, unlinked to
it. The generality of the U P D M described above
would indicate it is better to link the annotations in
a design notebook as an annotation pointer (index)
from the relevant node in the product structure tree
into the Design Notebook data base [4].

The process also has the limited, but often used,
connotation of the manufacturing process. This is
indeed stored in the UPDM, because the UPDM
contains the data required to define the product in the
manufacturing perspective. Therefore the manufactur-
ing perspective will have contributed to fully defining,
after debating if need be with other perspectives, the
final decisions on the manufacturing process. For
example, it will define a tool, a jig, a tool path, a feed

rate, etc., for a metal cutting process. So in the sense
of manufacturing process, the product model does
contain the process; though not in the sense of the
product development process, which is considered in
the previous paragraph.

6. Configuration Management

The product structure tree, for all the convenience it
affords, is also a fairly compact way of holding the
configuration of a product. Consider a product like
an automobile with several thousand parts. Assume
each part has half a dozen perspectives, and the simple
data aggregates for each perspective, such as a length,
a mass, certain elastic constants, etc., can be held in,
say, 20 numbers, and the complex structures occupy
at most half a dozen CAD files to which the product
structure tree will only hold pointers. Including
overhead the whole product structure tree will occupy
just 2.5 Mb of data. Of course, the CAD files
themselves may occupy a thousand times more data,
gigabytes in extent, but that is not unexpected. The
compactness of the product structure tree here
advocated comes through when it is realized that the
next model will need just another 2.5 Mb to hold the
configuration, and an additional 15% or so for the
CAD files of those parts that have actually changed
from the earlier model. Because of the compactness it
is quite possible in a project to hold even a score of
versions at any time that are under investigation by
different groups. However this proliferation is not
expected to multiply geometrically in the nature of the
basic concurrent engineering of product development,
which enforces synchronization and consistency among
various perspectives periodically [5]. This consensus
is the basis of the sign-off through which the different
perspectives agree and make consistent their respective
contributions to product definition, so that for
instance, the maintenance diagnostic provided by the
logistics perspective for a part conforms to the
functional schematic of the part put out by the design
perspective. Hence the entire system of engineering
change notices can be integrated with the product
structure tree as a design annotation perspective with
slots to embed the customary annotation for engineer-
ing changes; the actual engineering-intensive drawings
describing the changed part are automatically pointed
to from the product structure tree.

Once the changes have been made and agreed upon,
those portions of the tree can be made read-only by
the project leader to prevent further inadvertent
change. However, during product development, before
partial consensus is reached, it is likely that the values

170 K.J. Cleetus

of several parameters will be changed by the respon-
sible developers many times. The tree should have the
flexibility of holding lists of alternate values with
identification of the proposers. This many-valuedness
wilt enhance the ability to represent the flux of activity
in product development by providing the temporary
storage needed to hold the input for studies of
trade-off among different perspectives. There is a great
deal of communication and interchange that goes on
among the developers, quite apart from their co-
ordination via the shared data of the product structure
tree. It is the purpose here to advocate the extreme
usefulness of sharing the evolving product data model
as a foundation for coordination among product
developers; but there is even more coordination that
needs to take place via meetings, messages, and
multi-media communication.

It is clear that the UPDM for a finished product
can provide a very essential function of structured
Configuration Management. The tree has all the
information (or pointers to the information), in every
form, that defines the product. An NC program to
machine a component on a machine tool is there,
pointed to from the Manufacturing perspective for
that part. A stress analysis color plot for the part is
also there, pointed to from the analysis perspective.
A service manual for the product is also present,
referenced from the logistics perspective. And so on,
for all other artifacts, documents, computer programs,
jigs, drawings, parts lists, etc., which constitute the
product definition. The files themselves may be on-line
to the user, or off-line managed by other computer
systems, or by humans tending hard copy archives. In
the ideal case all the files would be in an electronic
store, at minimum scanned in from hard copy, and all
of them would be accessible on-line to the authorized
personnel; but it is the UPDM's comprehensive
structure that makes it possible to define a Product
Version uniquely and completely, and the UPDM at
least will be available on-line. Product developers will
be able to know from their workplace the entire
information constituting the product or any com-
ponent of it, no matter where it is resident in the
organization and in what form. This in itself is a vast
improvement over the situation prevailing in industry
today.

Consider the need to sub-contract the manufacture
of a particular part. The UPDM will lead one straight
to the part and reveal the total information available
defining the part, and any required drawings, annota-
tion, documents, materials, jigs, etc., can be marked
for printing with a utility. The precise documents and
drawings needed, organized in a meaningful sequence
for external manufacture, are thereby available in

short order. These so-called technical data packages
(TDPs) are extremely hard to get at and retrieve
in organizations that carry a great variety of
products [6].

7. CITIS and CALS

This aspect of the UPDM parallels the goals of the
Contractor Integrated Technical Information Services
(CITIS). CITIS is meant to be the single entry point
for access to technical data stored at the site of a
contractor, who is obligated by a government contract
to supply electronically the technical data specified in
a contract for acquisition of a product from that
vendor [7]. Some contracts calt for no more than a
list of items to be available on-line to the government,
but they may go so far as to mandate access to the
actual CAD data and its translation into an agreed
neutral format. The UPDM is suited to this purpose
admirably. By browsing the product structure tree, at
its appropriate level of abstraction, the user can
identify the data that are available, what it pertains to,
and in what native form it exists. If the user iS
interested in accessing the data, provision has to
be made for file transfer and translation after per-
forming user access controls. More often than not, the
user wishes to view the data on the screen; one can
safely assume the frequency of the view type of
accesses will far outnumber the file transfer type of
accesses. What can be done to satisfy this critical need
which was identified on p. 90 of the Red Book [2]?

Normally the model and the accompanying data
dictionary are considered as meta-data, i.e. data that
describe the definition, structure, form, purpose, units,
etc., of the data stored about the artifact. We propose
that such meta-data be extended to include access
methods to obtain the artifact data. The UPDM
should hold pointers to the necessary software
routines for accessing the data lying in remote files.
Further, this should also enable a user to execute the
proprietary applications on remote computers using
those files and bring the resulting graphic image to
the workstation from which the user is currently
interrogating the UPDM. The methods may be
recorded explicitly at the time the data are published
on the UPDM by the product developer, or they
could even be generated automatically from the
recta-data. In this way the goal of heterogeneous
distributed access to alt of the data comprising the
product can be achieved in a uniform way. More-
over, such data access will be just as usable and
advantageous during product development (the focus
of CE), as it is after product development is completed

Modeling Evolving Product Data for Concurrent Engineering 171

(the focus of CALS - - Computer-aided Acquisition
and Logistics Support - - and CITIS). Indeed, in the
sense that CE visualizes the development cycle as
continuing until the product's retirement from use, the
CALS requirement of data access may be subsumed
in the CE requirement.

8. Model Itself Changes

The UPDM is meant to support the product develop-
ment process, which goes through several distinct
stages in every industry. At each stage, the type of
decisions that are taken are different, and the UPDM
needs to support the collaboration of persons on those
decisions. The UPDM is a skeleton to hold partial
decisions around which the team's work will be
communicated and coordinated. It is on these decisions
that there must take place the propagation of
influence of one decision on another, in order to
ultimately reach consensus. We posit that not one, but
several UPDMs are needed over the product develop-
ment life-cycle. The one at the concept development
stage will address the requirements issues heavily, as
well as the target performance parameters, the shape,
the base technologies that will be used, and the market
prNections and risk. Further down the road, when
one of several alternatives for the concept has been
chosen, the UPDM should encourage the visualization
of the entire development process that must be
undergone, with possible iterative cycles, in many
perspectives. This will therefore be a different model
that will show up the architectural composition of the
product and key starting points for the design in
various areas. The final product model at the end will
be the fully fleshed out model that was adumbrated
in Fig. 1 above, one in which all the necessary product
design, manufacturing, and logistics characteristics
and support procedures have been identified and
developed. In sum, the UPDM for CE should really
be a family of UPDMs, one for each distinctive stage
of a product's development cycle. Furthermore, the
UPDM is a dynamic, changing, and incrementally
evolving one as the product is developed.

This dynamism is part of the normal IPD (Integrated
Product Development) process. Hence, it is inap-
propriate to define models that are compiled, as
though all programs that access the model thereafter
are going to be working from a constant and
unchanging model. At any point, any perspective has
the latitude to freely add to the product structure tree
- - new part-of nodes, new perspectives, new attributes
- - and without this capability the whole IPD process
would be hobbled, and would not reflect the great flux

and creativity that accompanies team involvement in
product development. It is this fact that makes any
modeling process that compiles some model written
in a computer language into an invariant schema,
wholly unsuitable for the product development process.
The schema should be built up interactively and
graphically with a tool that supports the building of
schema trees depicted above; and the engineering user
should have the ability to import interactively into his
program (by a programmatic interface), or write to a
file in a standard format (by a programmatic or user
interface), any desired portion of the whole tree. A
computer data modeling tool satisfying the above
critical requirements exists in one enabling technology
at the Concurrent Engineering Research Center
(Team Coordination) and will be used consistently
with another enabling technology (the Information
Sharing Server). The interchange between them, as
also the exchange between data held in these CE
services and any CAD tools, will take place through
a single intermediate file format, conforming to an
acceptable standard that other vendors can also be
expected to inter-operate with. This format has not
yet been decided, but is likely to be a STEP physical
file format with its accompanying EXPRESS schema
generated on the fly to reflect the current state of
the product definition. It will be natural to generate
EXPRESS definitions from the internal represen-
tation of the dynamic model, as a way of conveying
the model to any other tool in a standard way,
and this should be possible within the limitations of
defining arbitrary data types and entities in EXPRESS.

9. Dynamic vs Static Data Model

The creation and evolution of such a dynamic data
model are central to the coordination of the team
because the data model has precisely the data
elements around which cooperative decisions are to
be taken at that stage of the product development. It
is held in the memory of the Team Coordination tool
called the PCB (Project Coordination Board) [3],
and constraints, notifications, and ownership links are
attached to the explicitly held data therein (the
simple structures). Whenever a data attribute value
changes it is these links that enable the evaluation of
constraints and cause the notification of the team
members concerned. Therefore, it is a unique feature
of the UPDM for CE that it holds that type of data
too - who is affected by a data attribute value, and
what requirement of the customer or limitation
imposed by the organization must be checked when
the value changes.

172 K.J. Cleetus

The product data model that will be built by
the ISS (Information Sharing Server) [8] at CERC
will serve to model the well-defined and completely
laid out information of past products that is contained
in some commercial data bases. Naturally, this data
model is static; and one may separate the process of
data definition of the class and data population of the
instances. The ISS serves as the uniform gateway to
access past information about numerous products
contained in legacy data bases. The UPDM, by
contrast, is meant to support the inchoate, still
incomplete, and constantly evolving definition of a
new product that is under development. The UPDM
does not separate data definition from instance data
assignment and storage; it is a structure through
which one specifies at once the instance data of a
single new product, as well as its structure.

10. Summary

To summarize: the unified product data model is a
dynamic product structure tree linked by the part-of
and attribute-of relationships, which are amplified for
CE by the essential perspective-of, owned-by and
dependent-on relationships. They allow complex data
in proprietary file formats to be pointed to and
exchanged by translation steps, or simpler data
(aggregates of numeric data) to be held explicitly in a
common representation in computer memory and
exchanged by direct programmatic access or visual
access with a graphical data visualization tool. The
Team Coordination and Information Sharing Systems
will agree on a common format for the physical data
file and corresponding data definition to exchange
data. The UPDM is a virtual unification of all the
data; it is not a common representation of all the data.
The underlying tree of the UPDM is a key to
configuration management also. A family of qualita-
tively different models are necessary at different stages
of product development. Important CE services can
work from this unified data model: the team co-
ordination service, the information sharing service, the
constraint management service, the design annotation
service, and the methods for integration of CAD tools
with CE services. The UPDM is therefore the most
important element in constructing a CE environment,
but its propensity to change necessitates using an
interactive graphical tool to accomplish the modifica-

tions. However, at any time, one may extract the
current data definition (schema) in a standard descrip-
tive modeling language, such as EXPRESS, and the
current data in a standard format, such as the physical
STEP file forrnat.

Acknowledgements

I am grateful for a long conversation with Dr V. Jagannathan,
Dr R. Raman and Dr G. Trapp, which clarified some of the issues.
I also wish to record my appreciation to Mr R. Bryant of the
Raytheon Company for a demonstration of one of their internal
engineering data management systems called RITIS.

This work has been sponsored by the Defense Advanced
Research Projects Agency under Grant MDA-972-91-j-1022 for
the DARPA Initiative in Concurrent Engineering (DICE).

References

1. Carver, G.P.; Bloom, H.M. (May 1991) Concurrent Engineering
Through Product Data Standards, NISTIR 4573, National
Institute of Standards and Technology.

2. 2. Cleetus, K.J.; Uejio, W.H. (Eds) (Feb., 1989) Red Book of
Functional Specifications for the DICE Architecture, Concurrent
Engineering Research Center, West Virginia University,
Morgantown, WV.

3. Londono, F.; Cleetus, K.J.; Nichols, D.M.; Iyer, S., Karandikar,
H.M.; Reddy, S.M.; Potnis, S.M.; Massey, B.; Reddy, A.L.N.;
Ganti, V. (April 1992) Managing Chaos: Coordinating a Virtual
Team. Proceedings of the First Workshop on Enabling Technol-
ogies for Concurrent Engineering. Concurrent Engineering
Research Center, West Virginia University, Morgantown, WV.

4. Uejio, W.H.; Carmody, S.; Ross, B. (June 1991) An Electronic
Project Notebook from the Electronic Design Notebook (EDN),
Proceedings of the Third National Symposium on Concurrent
Engineering, Society for Computer Aided Engineering, Rockford,
IL, and Concurrent Engineering Research Center, West Virginia
University, Morgantown, WV.

5. Cleetus, K.J.; Reddy, R. (June t992) Concurrent Engineering
Transactions, Proceedings of the Fourth Annual National
Symposium on Concurrent Engineering, Society for Computer
Aided Engineering, Rockford, IL, and Concurrent Engineering
Research Center, West Virginia University, Morgantown, WV.

6. Nomura Enterprise Inc. (Feb., 1992) Next Generation Engineer-
ing Data Management Phase II Report, prepared for US Army
Industrial Engineering Activity, Rock Island, IL.

7. Stickman, J.F.; Rosenthal, H.G. (1992) CITIS: Gateway to
Defense Industrial Base Productivity, CALS Journal, 1, 3, Fall.

8. Karinthi, R.; Jagannathan, V.; Montan, V.; Petro, J.; Sobolewski,
M.; Raman, R.; Trapp, G.; Deng, S.; Almasi, G.; Li, X. (Aug.,
t993) Modeling Enterprise Information and Enabling Access
using the Information Sharing Server, Proceedings of the
Seventh Annual Engineering Database Symposium, San
Diego, CA.

