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Strongly Balanced Cooperative Games 1 

M. Le Breton 2, G. Owen 3, and S. Weber  4 

Abstract: Kaneko/Wooders (1982) derived a list of necessary and sufficient conditions for a 
partitioning game to have a nonempty core regardless of the payoff functions of its effective 
coalitions. The main purpose of our paper is to provide a graph-theoretical characterization of 
this family of games whose associated hypergraphs we call strongly balanced: we show that the 
strong balancedness condition is equivalent to the normality of the hypergraph, which is a type 
of coloring property (Lovasz (1972)). We also study interesting economic examples of commu- 
nication and assignment games and provide direct proofs that their associated hypergraphs are 
strongly balanced. 

1 Introduction 

In many economic situations it may not  be easy or even possible to form every coali- 
t ion. Some of  the games associated with such environments are described by exoge- 
nously given set W of  effective coalitions and the payof f  function defined over the 
set W and where the power of  an "ineffective" coali t ion C is determined by the best 
possible par t i t ion of  C into its effective subcoalitions. Kaneko /Wooder s  (1982) pro-  
vided a list of  necessary and sufficient condit ions for such "part i t ioning" games to 
have a nonempty  core regardless of  a payof f  function of  effective coalitions. (Since 
the games satisfying this proper ty  are balanced for any choice of  payof f  function of  
W, we call the hypergraphs associated with these games strongly balanced.) 

The main purpose of  this paper  is to provide an intuitive graph-theoret ic  inter- 
pretat ion of  strong balancedness. We show that  the strong balancedness proper ty  is 
equivalent to the normality condit ion,  which is a type of  "coloring proper ty"  of  hy- 
pergraphs (see Lovasz (1972)). We believe that one can obtain further results by 
relating issues in the cooperat ive game theory and ideas f rom the hypergraph theory 
presented in Berge (1987). 
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Kaneko/Wooders (1982) motivated their analysis by referring to economic envi- 
ronments where the effective coalitions are relatively small (e.g., "marriage", "as- 
signment", "bridge" games). In this paper we however describe interesting economic 
environments (e.g., "communication" and "consecutive" games) whose associated 
hypergraphs are strongly balanced and where the effective coalitions are not neces- 
sarily small. Furthermore, we offer a direct proof that the well-known assignment 
games are strongly balanced. 

The paper is organized as follows: In the next section we introduce necessary 
notations and definitions. In Sections 3-5 some applications, which give rise to 
strongly balanced hypergraphs, are examined. In Section 6 we prove the equivalence 
of normality and strong balancedness conditions. 

2 Notations and Definit ions 

Let (N, W) be a hypergraph, where N =  {1, 2 . . . . .  n} is a finite set and Wis a (non- 
empty) family of subsets of N with {i} e W for each ieN. The standard interpreta- 
tion is that N is the set of players and W is the set of effective coalitions. That is, if a 
coalition C does not belong to W its power is represented by the power of effective 
subsets of C. 5 To introduce the central notion of this paper, of a strongly balanced 
hypergraph, we first recall that a collection of coalitions ~ = {C1 . . . . .  Cn} is called 
balanced if there exist positive numbers {yl . . . . .  ?H} (called balancing weights) such 
that 

~, Yh = 1 for all i~N, 

where ~ ( i ) =  { C e ~ [ i e C } .  Then 

Definition 2.1: The hypergraph (N, W) is strongly balanced if every balanced collec- 
tion ~ ,  that consists of elements of W, contains a partition of N. 

This notion has been used by Kaneko/Wooders (1982) in order to demonstrate 
that the core of the cooperative game associated with a hypergraph (N, W) is non- 
empty regardless of the payoff function of coalitions in W, if and only if the hyper- 
graph (N, W) is strongly balanced. 

In the next three sections we provide examples of economic models which give 
rise to strongly balanced hypergraphs. 

5 For formal details see Kaneko/Wooders (1982). 
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3 Communication Games 
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Consider a communication structure between players as suggested by Myerson 
(1977) (see also Owen (1986)). Let N be a set of  players and E be an ordinary graph 
defined on N. There is a natural interpretation of  the graph E: if players i and j are 
connected, that is, the link (i, j) belongs to E, then we say that i and j can commu- 
nicate (without cost), whereas if i and j are not connected in E then they cannot 
communicate, which is equivalent to existence of  infinite communication cost be- 
tween these players. 6 The graph E induces a "communication" hypergraph (N, We) 
as follows: a coalition C belongs to We if and only if C is connected in E, i.e., for 
each two players i a n d j  in S there is a path, consisting of  links in E, which goes from 
i to j and stays within E. To state our first result, recall that a graph containing no 
cycles is called a tree and a graph is a forest if each of  its connected components is a 
tree. 

Proposition 3.1." The communication hypergraph (N, WE) is strongly balanced if and 
only if the graph (N, E)  is a forest. 

Proof." Sufficiency. 7 Let (N, E)  be a forest and let N a . . . . .  N M be its connected 
components.  Consider a balanced collection ~ which consists of  elements of  W. 
For each m = 1 . . . . .  M, denote ~ k =  { C ~ [  CCNm}. The definition of  the set We 
implies that for each C ~  there exists m, 1 <_m<<_M such that C e ~  m. Thus, in 
order to show that ~ contains a partition, it suffices to demonstrate that each ~x~m 
contains a partition. Assume, therefore, without loss of  generality, that (N, E)  itself 
is a tree. 

Consider 1 as the root of  the tree and order elements of  N by defining j pre- 
cedes k (denoted j -<k)  if the path from 1 to k passes through j .  We ca l l j  an imme- 
diatepredecessor of  k, denoted byp(k ) ,  i f j < k  and (j, k)eE. Since (N, E)  is a tree, 
it is easy to see that < is a partial order and for all k >  1, p(k) is unique. 

We shall use the following two claims, the proof  of  which is left to the reader: 

Claim 3.2: Let C E ~  with ie  C and j r  for some i, j eN .  Then there exists a coali- 
tion C in 5; ~ such that j e (~  and i r  

Claim 3.3." Let {i,j} ~E and let C and C-be connected subsets of  N with i ~ C \ C a n d  
j ~  C-\C. Then C u  C-is connected and Cc~ C--= 0. 

Let C a s ~  be such that l sCa .  If  Ca=N, the conclusion follows. If  CaCN, 
choose ka to be a minimal element in N\C1 with respect to the order -<, that is, 
Jl =p(kl) ,  the immediate predecessor of  kl, does not belong to N\Ca. By Claim 3.2, 
there exists C z s ~  with j1r and k1~C2. Moreover, Claim3.3 yields C~c~Cz=O 

6 A model of an exchange economy endowed with such a communication structure has been 
studied by Kirman/Oddou/Weber (1986). 

7 After our paper has been submitted for a publication, we found out that Demange (1990) 
has independently proved the strong balancedness of the hypergraph (N, WE) in the case 
where the graph (N, E) is a tree. 
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and C2= C1 w C2 is connected. If  ~ = N  then {Ca, C2} is a desired partition of  N. 
Otherwise, choose k2 to be a minimal element in N\C2 with respect to the order < 
and proceed as before. Thus, we obtain a sequence of  elements of  2~, 
C1, C2 . . . . .  Cr . . . . .  where for each r the set Cr = C1 • C2 u . . .  u Cr is connected and 
has an empty intersection with the set Cr+ 1. Since the sequence C~ is strictly increas- 
ing with respect to inclusion and N is finite, there exists R such that CR = N, yielding 
{C1, C2 . . . . .  CR} as the desired partition of  N. 

Necessity. Let (N, E)  be a graph which contains a cycle. Let the length of  the cycle 
be k>_3. Without loss of  generality, assume that the links {1, 2}, {2, 3} . . . . .  
{ k - l ,  k}, {k, 1} belong to E. Denote T =  {1 . . . . .  k} and consider the following 
family ~ = { T1 . . . .  , Tn } where for each i = 1 . . . . .  n 

T,.: [T \ { i }  i f  i<_k 
(.{i} if  i>k .  

It is easy to see that ~ is a balanced collection of  elements of  We. Indeed, define 
the balancing weights by: 

1 
i 

•i : - -  1 if i < _ k  

if  i>k .  

However, ~ does not contain a partition of  N. [] 

4 Consecutive Games 

In their study of a Tiebout equilibrium in economies with local public goods, Green- 
berg/Weber (1986) introduced what they called consecutive games. To recall, a coa- 
lition C is consecutive if for every two players i , j~C,  i<j,  every "intermediate" 
player k, i<_k<_j, also belongs to C. In our terminology, a game is consecutive if its 
hypergraph is consecutive, or, equivalently, all effective coalitions are consecutive. 
There are several types of  models which naturally give rise to consecutive gamesS: 
local public goods, location, product differentiation 9, hierarchical and political 
games a0. Consecutive games naturally give rise to the notion of  consecutive hyper- 
graphs: the consecutive hypergraph is the communication hypergraph induced by the 
graph E where the link (i, j) ~E  if and only if [ i - j l  = 1. Since such E is, obviously, a 
tree, the following result of  Greenberg/Weber (1986), stated in graph-theoretical 
terms, constitutes a corollary of  Proposition 3.1: 

8 See Greenberg/Weber (1991) for a more detailed discussion. 
9 See the recent paper by Demange/Henriet (1991) on the oligopoly theory. 

lo E.g., Axelrod (1970) examines configurations of multi-party coalitions in parliamentary 
democracies where parties, ranked from the left to the right, choose their location in a 
one-dimensional policy space. 
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Proposition 4.1: Every consecutive hypergraph is strongly balanced.  
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5 Assignment Games 

Gale /Shapley  (1962) introduced a class of  games, called "marriage games",  which 
has been later extended to "assignment games" (Shapley/Shubik  (1972)) which can 
be described as follows: Consider  the set of  players N =  { 1 . . . . .  n} which consists of  
m men, numbered 1 . . . . .  m, and n - r n  women, numbered m + 1 . . . .  , n, and the set 
of  effective coalitions W which consists of  all one-person coalitions and all "man-  
woman"  coalitions, {i, j}  where 1 _< i___ m <j_< n. Then 

Proposition 5.1: The corresponding "assignment" hypergraph (N, W) is strongly 
balanced.  

Proof. "H Let ~ = { Ca . . . . .  CH} be a balanced collection of  effective coalitions with 
balancing weights {?~h}h= a . . . . .  H- Fo rm the n x n matr ix A whose entries are defined 
by: 

aij=aji=y({i,j}) if { i , j } ~  

a i i = 0  for all otherpairs i , j .  

The matr ix A can be represented as: 

where E is the m x m matr ix and F is the (n - m) x (n - m) matrix.  Since both E and 
F have non-zero entries only on the main diagonal ,  the matr ix A is symmetric.  
Moreover,  balancedness of  ~ implies that  the sums of  entries in any one row or 
column are 1. Since all entries are non-negative,  A is a doubly stochastic matrix.  By 
the Birkhoff  Theorem (see, e.g.,  Marsha l l /Olk in  (1979)), any doubly  stochastic 
matr ix  is a convex linear combinat ion of  permuta t ion  matrices.  Thus, 

L 

A = ~, 2e Be 
g = l  

L 

where all numbers )~1 . . . . .  2L are positive, ~. 2e= 1 and each Be is a permuta- 
e = l  

tion matrix. Take one of  Be, say, B=B1 and observe that its entry b 0 equals to 1 

11 An indirect proof of this proposition could be obtained by combining the results of Kaneko 
(1982) and Kaneko/Wooders (1982). 
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only if the corresponding entry of matrix A, a U, is positive. We can represent B by 
using its submatrices: 

where again X and Y occupy the first m rows, whereas X and Z occupy the first m 
columns. (Note that, in general, Z r yr.) 

If we now disregard the submatrix Z, one can observe that the non-zero entries 
in the remaining submatrices, X, Y and U, give rise, as desired, to the set of mar- 
riages (matrix Y), of single men (matrix X) and of single women (matrix U), which 
constitutes a partition of N, consisting only of sets in 9 .  [] 

6 Strong Balaneedness and Hypergraphs 

In previous section we studied several classes of games, arising in different economic 
environments, whose associated hypergraphs are strongly balanced. We shall now 
provide necessary and sufficient conditions for hypergraphs to be strongly balanced. 
Kaneko/Wooders (1982) observed that unimodular hypergraphs are strongly bal- 
anced. We shall demonstrate that in our framework a weaker condition, called nor- 
mality, is equivalent to the strong balancedness property. (The reader is referred to 
Berge (1987) for a proof of the fact that every unimodular hypergraph is normal.) 

Let us introduce some notation and definitions. Let H =  (N, W) be a hyper- 
graph, where N =  {1 . . . . .  n} is a finite set and W= {C1 . . . . .  Cm} is a (nonempty) 
family of subsets of N. For each i~N denote Wi= {Ce WI i~C} and let 

A(n)~max l Wil, 
i ~ N  

where [ IV,-] stands for cardinality of the set IV,.. 
The chromatic index of H, denoted by q(H), is the minimal number of colors 

required to color all the elements of W in such a way every two elements of W with a 
nonempty intersection have different colors. Let j ~ N  be such that A(H)=  ]Wjl. 
Then one would have use [ W~[ colors to color only coalitions in Wj so that any two 
of them have different colors, yielding 

q(H)>_A(H). 

The chromatic index is used in order to introduce a notion of "normal" hyper- 
graph: 

Definition 6.1: Let W' be a subset W. The hypergraph H ' = ( N ' ,  W') is called a 
partial hypergraph (induced by W'), where N ' =  {i~N I 3C~ W' s.t. ieC}. The hy- 
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pergraph H =  (N, W) is called normal if q(H')= A (H')  for each partial hypergraph 
H '  of H. (This is a perfect coloring property (Lovasz (1972)). 

We are now in position to state our next result which provides a graph-theore- 
tical characterization of the strong balancedness property: 

Proposition 6.2: If  {i} �9 W for all ieN then a hypergraph H =  (N, W) is strongly 
balanced if and only if it is normal 12. 

Proof of Proposition 6.2." Let a hypergraph H = ( N ,  W), where {i} �9 Wfor  all ieN, 
be given. Define the matching polyhedron of H, P(H), by 

P(H)=--{q=(q~ . . . . .  qM)e~M[ ~ qm<_l u  
{mlC.,eWi} 

Denote by P(H) the subset of P(H) where all the inequalities are replaced by equal- 
ities, i.e., 

f f (H)~  { q= (q  I . . . . .  qM)e ~M+ [ ~ qm = 1 u  . 
{m[CmeWi} 

Observe now that Proposition 6.2 is a corollary of the following lemmata: 

Lemma 6.3: H is strongly balanced if and only if the set of the extreme points of 
/~(H) consists of integers (i.e., vectors whose coordinates are integer numbers). 

Lemma 6.4: The set of the extreme points of if(H) consists of integers if and only if 
the set of the extreme points of P(H) consists of integers. 

Lemma 6.5: H is normal if and only if the set of the extreme points of P(H) consists 
of integers. 

Lemma 6.3 was proved by Kaneko/Wooders (1982) whereas Lemma 6.5 fol- 
lows from Lovasz (1972). It remains, therefore, to prove Lemma 6.4: 

Proof of Lemma 6.4: We shall show that if the set of the extreme points o f /~ (H)  
consists of integers then the set of the extreme points of P(H) also consists of inte- 
gers. (The other direction is straightforward.) 

Let W= { C1 . . . . .  CM} be the family of the effective coalitions, where, without 
loss of generality, Ci = {i} for i= 1 . . . . .  n. Let q be an extreme point of the polyhe- 
dron P(H) for which there exists i~N such that 

Z q,.< 1. (1) 
{mlCmEW~} 

12 Note that Definition 6.1 implies that all partial hypergraphs of a normal hypergraph are 
also normal. Proposition 6.2 implies, therefore, that if a hypergraph (N, W) is strongly 
balanced then for each subset W' of W the hypergraph (N, W') is also strongly balanced. 
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(If such a point  does not  exist the p roof  of  the lemma is completed.)  Assume, with- 
out loss of  generality, that  (1) holds for i =  1 . . . . .  k. Put  0i--- ~. qm and 
note that  Oi>O for i =  1, . . . ,  k. Denote {mlCm~Wi~ 

~ =  q + c~, (2) 

where o~ ~ ~M is defined by 

oj=I~i i f l<i<_k 
otherwise. 

We claim that  0-is an extreme point  of  P ( H ) .  Otherwise, there exist two different 
vectors q~ and qz in P ( H )  and 0 < 2 < 1 such that  0-= 2 ql + ( 1 - 2 ) q 2 .  Observe that  
since the first k coordinates of  the vector q are equal to 1, so are the first k coordi-  
nates of  the vectors ql and q2. Since q = ;. (ql - c0 + (1 - 21) ( q 2 -  a) ,  it follows that  q 
is a convex combinat ion of  two different vectors in P(H), a contradict ion to q being 
an extreme point  of  P(H). 

Lemma 6.3 implies that  0-, being an extreme point  of  P(H), consists of  integers. 
Since 0 -i-- qi for all i >  k, it remains to show that  each of  the numbers ql . . . . .  qk, is 
an integer. Assume, without loss of  generality, that  the positive numbers 51, . . . ,  0 k, 
are ordered in such a way that  51---0z...>-Ok. By (2), the vector q could be repre- 
sented as a convex combinat ion of  vectors v l , . . . ,  vk, v~+ 1: 

k + l  

q = Z (Oj_a-O~lvj, (3/ 
j = l  

where 5o~1 ,  Ok+l-----O and the vectors vj~P(H), j =  1 . . . . .  k +  1, are given by 

I! if l<i<j 
v(= if j<_i<k 

J 

i if k<i<_M. 

Since 0 1 > 0  and q is an extreme point  of  P ( H ) ,  it follows that  01= 1. As 02>0  the 
same argument yields O2=1. By repeating this argument k - 2  times, if neces- 
sary, we obtain 5 i=1  for i = 1  . . . . .  k. Thus, (3) implies that  q=vk+l, i .e.,  
ql . . . . .  qk=O" [] 
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