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A b s t r a c t .  View an n-vertex, m-edge undirected graph as an electrical 
network with unit resistors as edges. We extend known relations be- 
tween random walks and electrical networks by showing that resistance 
in this network is intimately connected with the lengths of random walks 
on the graph. For example, the commute time between two vertices s 
and t (the expected length of a random walk from s to t and back) 
is precisely characterized by the effective resistance Rst between s and 
t: commute time = 2mRst. As a corollary, the cover time (the ex- 
pected length of a random walk visiting all vertices) is characterized 
by the maximum resistance R in the graph to within a factor of log n: 
mR <_ cover time <_ O(mRlogn). For many graphs, the bounds on 
cover time obtained in this manner are better than those obtained from 
previous techniques such as the eigenvalues of the adjacency matrix. In 
particular, we improve known bounds on cover times for high-degree 
graphs and expanders, and give new proofs of known results for multi- 
dimensional meshes. Moreover, resistance seems to provide an intu- 
itively appealing and tractable approach to these problems. 
K e y  words.  Random walk, resistance, cover time, commute time. 
Sub jec t  classifications. 60315, 68Q99. 

1. M o t i v a t i o n  a n d  s u m m a r y  

A random walk on a graph is the following discrete-time stochastic process: 
from a vertex, the walk proceeds at the next step to an adjacent vertex chosen 
uniformly at random. The s tudy of random walks in graphs has many  appli- 
cations in the design of a lgor i thms-- in  the s tudy of distr ibuted computa t ion  
(Broder & Karlin 1989), space-bounded computat ion (Aleliunas et al. 1979, 
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Borodin et al. 1989), time-space tradeoffs (Barnes & Feige 1996, Broder et al. 
1994, Feige 1993), and in the design of approximation algorithms for some hard 
combinatorial problems (Dyer et al. 1991, Jerrum & Sinclair 1989). 

Doyle & Snell (1984) exposed many interesting connections between random 
walks and electrical network theory, and traced the origins of the topic back 
into the nineteenth century. Building on this work, we extend the known 
connections to include several new properties, with an emphasis on questions 
about cover and commute times. 

Doyle & Snell (1984) view an undirected graph as an electrical network in 
which each edge of the graph is replaced by a unit resistance. As an example 
of the interplay between electrical and probabilistic notions, their work related 
the effective resistance between nodes a and b in the electrical network to the 
probability, in a random walk starting from vertex a, of escaping to vertex b 
before returning to a. In particular, this probability equals 1/(d(a)Rab), where 
Rab is the effective resistance between a and b, and d(a) is the degree of a. 
Their work deals with finite as well as infinite graphs, and highlights many 
tools from electrical network analysis that are useful in the study of random 
walks. However, they do not discuss the number of steps in a random walk, 
which will be our primary focus. 

The main subject of our study will be the cover time of a graph, which is the 
expected number of steps for a random walk to visit all the vertices in a graph 
(the maximum being taken over all starting vertices). To this end we define the 
electrical resistance of a graph to be the maximum effective resistance between 
any pair of vertices. We show that this quantity captures the cover time to 
within a factor of O(logn): for n-vertex, m-edge graphs of resistance R, 

m R  <_ cover time < O ( m R l o g n ) .  (1.1) 

The key to showing this correspondence is a result we prove about the commute 
time of a random walk: for a given pair of vertices s and t, this is the expected 
length of a walk from s to t and back to s. We give an equality for commute 
time in terms of the effective resistance between s and t. This equality (like the 
equalities of Doyle and Snell) reiterates the fact that the electrical properties 
of the network underlying a graph are innately tied to the random walk. 

Prior work in the study of the cover time of graphs has used techniques 
from Markov chain theory (Aleliunas et al. 1979, GSbel & Jagers 1974), from 
combinatorics (Kahn et al. 1989), from linear algebra (Broder & Karlin 1989), 
and from graph theory (Jerrum & Sinclair 1989). The electrical approach used 
here provides an intuitive basis for understanding a variety of phenomena about 
random walks that had hitherto seemed counterintuitive. 
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As an example, a simple and plausible conjecture is that adding more edges 
to a graph can only reduce its cover time since they make it "easier" to reach 
vertices missed so far. This is shown to be false by the following counterex- 
ample: an n-vertex chain has cover time O(n2), but by adding edges it can be 
converted to a "lollipop graph" (an n/2-vertex chain connected at one end to 
an n/2-clique) which has cover time @(ha). This can be easily explained from 
resistance arguments. By examining Equation 1.1 we see that adding edges so 
as to reduce the resistance R can decrease the cover time; but adding edges in 
a region of the graph where R is largely unaffected will increase the cover time. 

In addition to a number of new results, our methods yield alternative proofs 
(and often improvements) of earlier results on cover times. An added advantage 
of our approach is that our results are robust: minor perturbations in the 
graph (such as the deletion or addition of a few edges) usually do not change 
the electrical properties of the graph substantially. Following appearance of 
a preliminary version of this paper (Chandra et al. 1989), Tetali (1991) has 
extended our ideas to establish a number of new relations between hitting 
times and effective resistance. 

The rest of this paper is organized as follows. In Section 2 we relate elec- 
trical resistance to commute and cover times. Section 3 studies the electrical 
resistance and the cover time of dense regular graphs. Section 4 studies the 
relation between the maximum resistance of a graph and the eigenvalues of its 
adjacency matrix. We then obtain a tight upper bound on the cover time of 
expanders in Section 5. We conclude with a study of the resistance and the 
cover time of multidimensional meshes in Section 6. The remainder of this 
section is devoted to a technical summary of our results and a comparison to 
previous work. 

A commute between two vertices s and t is a random walk from s to t 
and back to s; and the commute time between s and t is the expected length 
of a commute between the two vertices. Aleliunas et al. (1979) showed that 
the commute time between s and t is bounded above by 2rndst, where dst is 
the distance between s and t. We refine this, showing that the commute time 
is exactly 2rnRst, where R,t is the effective resistance between s and t. Note 
.Rst <_ dst, with equality if and only if there is a unique simple path from s to 
t. On the other hand, for some graphs R,t may be smaller than dst by almost 
a factor of n. (Ks is a simple example.) Thus, resistance not only gives exact 
values for commute times, these values may be much better than the estimates 
provided by Aleliunas et al. (1979) (Section 2, Theorem 2.1). 

These results also generalize in various ways. For example, we extend the 
results to characterize the expected costs incurred for walking around a di- 
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rected cycle, even when edge costs are arbitrary and transition probabilities 
are nonuniform (Section 2, Theorems 2.2 and 2.3). 

Using commute time, we are able to bound the cover time to within a factor 
of O(logn),  as in (1.1) above. Letting R,p=~ be the minimum resistance of a 
spanning tree of G, we get an alternative upper bound on cover time: 

cover time < 2mR~p=,~. (1.2) 

For many graphs this provides a better bound than (1.1). For example, Rspa~ = 
O(n) for the n-vertex chain and lollipop graphs, hence their cover times are 
O(n 2) and O(na), respectively, which happen to be tight. Since R,pa= _< n - 1 
for any graph, this result refines the 2m(n - 1) upper bound given by Aleliunas 
et al. (1979). Again, R,p~ may be much smaller than n - 1, as small as O(1), 
in fact. The graph consisting of a pair of n/2-cliques connected by a single edge 
provides a simple example: R,p=~ = O(1), hence cover time is O(n2), which is 
better than the bounds given by Aleliunas et al. (1979), or (1.1) (Section 2, 
Theorem 2.4). 

For d-regular graphs, the Aleliunas et al. bound for cover time is O(dn2). 
Kahn et al. (1989) improved this bound for d-regular graphs to O(n2). Reex- 
amination of their proof reveals that  it supports the stronger statement tha t  
R,pa~ = O(n/d) for any d-regular graph, hence cover time is O(n 2) by (1.2). 

Kahn et al. (1989) also give examples, for any d < [n/2J - 1, of n-vertex, d- 
regular graphs with maximum resistance f~(n/d), and hence by (1.1) with cover 
time f~(n2). For d = n - 1 (the clique), the cover time is much smaller, namely 
O(n log n). One might expect a gradual decline in cover time as d increases 
from [n/2J - 1 to n - 1. Much to our surprise, this is not the case--there is a 
sharp threshold at d = ln/2J. We show that  in going from d = [n/2J - 1 to 
[n/2] the maximum resistance drops from f*(1) to O(1/n), hence by (1.1) the 
cover time drops from f~(n 2) to O(n logn) (where it remains for all d > In/2]) .  
This result has a very simple and intuitive proof (Section 3, Theorem 3.3). 

We relate the resistance of a graph to the second smallest eigenvalue a2 
of a matrix closely related to its adjacency matrix, thus obtaining some of the 
results of Broder & Karlin (1989) as corollaries. Again, we show that  (1.1) gives 
tighter bounds on cover time than are possible in terms of ~r2 alone. Specifically, 
we show that  

1 2 
- - < R < - -  
nor2 0-2 

and exhibit graphs where each inequality is tight. Thus, ~e only weakly cap- 
tures resistance, hence is also weak in estimating cover time (whereas resistance 
captures cover time to within an O(logn) factor) (Section 4, Theorem 4.2). 
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One interesting application of our approach is to the cover time for d-regular 
expander graphs. Using the eigenvalue approach, Broder & Karlin (1989) 
showed that such graphs have cover time O((n logn)/(1 - )~2)) = O(dn log n), 
where A2 = 1 - c~2/d. No better bound is possible using their approach, since 
there are d-regular expanders having second eigenvalue A2 = 1 - @(l/d). We 
are able to show that the resistance of an expander is O(1/d), and hence the 
cover time is O(n log n). 

Expanders have potential practical application in the design of efficient, 
fault-tolerant communication networks, where the expansion properties of the 
graph make it likely that many communication paths will remain open even in 
the face of congestion and/or failure of certain links. Larger degree translates 
to greater robustness to failure and/or congestion. The cover time of the graph 
is an appropriate metric for the performance of certain kinds of randomized 
broadcast or routing algorithms. Thus, it is pleasant that increased robustness 
can be had without significantly increasing the cost of these algorithms--cover 
time is essentially independent of degree (Section 5, Theorem 5.2). 

Using resistance, we also derive upper bounds for covering d-dimensional 
meshes. We show that a 2-dimensional mesh of size ~ x V ~ has resistance 
@(logn), whereas d-dimensional meshes for 3 _< d _< log2n have resistance 
@(l/d). Random walks on meshes have been previously considered by many 
authors, including some studies of cover times by Aldous (1983, 1993), Cox 
(1989), and GSbel & Jagers (1974) (the latter only for d = log2 n, i.e., hyper- 
cubes). Although our conclusions about cover times of meshes were previously 
known, our approach is novel and potentially illuminating. For example, the 
resistance of a graph will generally not be changed significantly by the inser- 
tion or removal of a few edges, so our results naturally suggest bounds on cover 
times for "imperfect" meshes, which are more difficult to treat by more classical 
analytical techniques (Section 6). 

Our last application couples resistance-based commute bounds to the proof 
technique of Aleliunas et al. (1979) to derive new upper bounds for universal 
traversal sequences, namely O(mRlog(ng)), where g is the number of labeled 
graphs in the family under consideration. This gives improved upper bounds 
for universal traversal sequences for many classes of graphs, including dense 
graphs and expanders (Section 2, Theorem 2.6). We also find the first known 
family of labeled graphs with a tight bound on UTS length (Section 6). 
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2. Basic relations 

Let G = (V, E) be an undirected connected graph on IVl = n vertices with 
I E I  = m edges. Let Af(G) be the electrical network having a node for each 
vertex in V, and, for every edge E, having a one Ohm resistor between the 
corresponding nodes in Af(G). For two vertices u, v C V, Ru~ denotes the 
effective resistance between the corresponding nodes in iV(G), i.e., the voltage 
induced between u and v by passing a current flow of one ampere between 
them. 

Let H ~  (the hitting-, or first passage time) denote the expected number of 
steps in a random walk that starts at u and ends upon first reaching v. We 
define Cu., the commute time between u and v, by C,~ = H,v + H~.  

THEOREM 2.1. For any two vertices u and v in G, the commute time Cur 
equals 2mP~,. 

PROOF. For any x in V, let d(x) denote the degree of x in G. Let r denote 
the voltage at u in Af(G) with respect to v, if d(x) units of current are injected 
into each node x E V, and 2m are removed from v. Let N(x) denote the set of 
vertices in V that are adjacent to x in G. We will first prove 

H.~ = r V.  e V. (2.3) 

By Kirchhoff's current conservation law, Ohm's law, and the fact that all edges 
have unit resistance, the r satisfy 

d(u)= E (r162 v u e v - { v } .  (2.4) 
weN(u) 

By elementary probability theory, 

1 (1 + Hw.) 
wEN(u) 

v .  e v -  {~}. (2.5) 

Equations (2.4) and (2.5) are both linear systems with unique solutions; fur- 
thermore, they are identical if we identify r in (2.4) with H~v in (2.5). This 
proves (2.3). To complete the proof of the theorem, we note that Hw is the 
voltage r  at v in fir(G) measured with respect to u, when currents are in- 
jected into all nodes and removed from u. Changing signs, r  is also the 
voltage at u relative to v when 2m units of current are injected at u, and d(v) 
units are removed from all nodes v E V. Since resistive networks are linear, we 
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can derive an expression for C~v = Huv + H ~  by superposing the two networks 
on which r and r are measured. Currents injected into and removed from 
all nodes except u and v cancel, resulting in Cu~ being the voltage between u 
and v when 2m units of current are injected into u and removed from v, which 
yields the theorem by Ohm's law. [] 

D. Aldous, A. Z. Broder, P. G. Doyle, A. R. Karlin, and J. L. Snell all have 
derived alternative proofs of Theorem 2.1 using similar methods from renewal 
theory. We sketch this alternate proof below. For any vertex u, let T be a 
random time at which the walk from u returns to u. By standard techniques 
from renewal theory (e.g., Ross 1989, Prop. 7.4.1), for any vertex x (or directed 
edge (x, y)) the expected number of visits to x (traversals of (x, y)) before T is 
exactly g[T] times the steady-state probability of visiting x (traversing (x, y), 
respectively). Choosing T to be the time of first return to u after visiting v, and 
x = u, and noting that the steady-state probability of visiting u is d(u)/(2m), 
we conclude that the expected number of returns to u during a commute to v 
is g[T]d(u)/(2m) = C, vd(u)/(2m). The result mentioned in our introduction 
from Doyle & Snell (1984, Section 3.3) implies that during a random commute 
from u t o  v, the expected number of returns to u is d(u). I~uv. Combining these 
expressions yields the result. 

Although Theorem 2.1 suffices for most of our applications, it is interesting 
to note that it easily generalizes to walks on graphs with self-loops, and with 
non-uniform transition probabilities and costs. With each ordered pair of ver- 
tices (u, v) C V x V we associate a positive real resistance r~  = r~,. Non-edges 
are represented by infinite resistances. Additionally, let each directed edge have 
a real cost f~v. (We do not require that f ,v = f~u, unless, of course, u = v.) 
We now consider a random walk on G defined by the following discrete-time 
process: when at a vertex u E V, step to vertex v with probability inversely 
proportional to r,v (the resistance of edge {u, v}), i.e., with probability 

1/ruv 
Pu~ - E ~ v  llr~o" 

For a T - s t e p  walk traversing the sequence of (not necessarily distinct) directed 
edges (u0, ut), (ua,u2), . . . ,  (uT-l,uy), the cost of the walk is defined to be 
Y~jT1 fuj-lW" Note that the standard random walk on a graph is the special 
case where all costs are 1, all edges have resistance 1, and all non-edges have 
infinite resistance. 

Let Af(G) be the electrical network derived from G as follows: there is a 
node in Af(G) for each vertex in V, and for every pair of vertices {u, v} in V, 
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there is a resistor between the corresponding nodes in A/'(G) whose value is r~v. 
Again, ibr two vertices u, v C V, P~v denotes the effective resistance between 
the corresponding nodes in A:(G). 

Let H ~  denote the expected cost (relative to cost function f )  of a random 
walk that  starts at u and ends upon first reaching v, and let C~. = H ~  + H[u. 

The surprising fact is that  even in this general setting, commute costs are 
still determined by effective resistances, although the constant of proportion- 
ality is no longer simply 2m. 

THEOREM 2.2. Let F = ~(x,y)ev• f~y/r~y. For any two vertices u , v  in G, 

the commute  cost C ~  = F .  R~v. 

PROOF. The proof is identical to that  of Theorem 2.1, except that  the current 
injected into node x is f~ = ~ y e y  f~y/r~y for all x E V. [] 

Theorem 2.1 is obviously a corollary when there are no self-loops and all 
edges have resistance and cost 1 (F  = 2m). 

Aleliunas et al. (1979) showed that  during a commute between u and v, 
every directed edge is traversed the same expected number, T, of times. This 
follows easily from Theorem 2.2 by setting all resistances to one, and all costs 
to zero, except for an arbitrary directed edge, which is given cost one. Further, 
we find that  ~- = Ru~. 

For non-unit resistances, Doyle & Snell (1984) have shown that  the class 
of random processes considered here is exactly the class of "reversible ergodic 
Markov chains". Thus, with general resistances, but unit costs, Theorem 2.2 
determines the number of steps in commutes in such chains. Our results below 
can then be used to bound the cover time for reversible ergodic Markov chains, 
a problem also considered by Broder & Karlin (1989). 

We can generalize Theorem 2.2 to the expected cost of a trip around a 
directed cycle (a commute being the special case where the cycle has length 
two). Let D = (v l ,v2 , . . .  ,vk+l = vl) be a sequence of vertices in G. Let C :  D 
denote the expected cost of a random walk starting at vl and stopping upon 
returning to vl after visiting v2 , . . . ,  Vk in order. 

k 
THEOREM 2.3. Let F be defined as in Theorem 2.2, and let l~D= ~--~.i=l RVl,vi+l. 

Then C~ = F.  Ro/2. 

PROOF. Let D' = (Vl = vk+l,vk,vk-1, . . .  ,Vl). Now 

k 1 

= H / H / C:D+C:D ' ~ ~ , , ~ , + 1 + ~  ~,+l,v~' 
i = 1  i=k  
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The right-hand side can be re-written as 

k k 

i=1  i=1 

Since the Markov chain corresponding to our walk is reversible, the probability 
of walking any cycle is equal to the probability of its reversal (Doyle & Snell 
1984, Exercise 3.1.3), and so the expected lengths of random walks traversing 
D and D' are equal. Applying the renewal theory result cited below the proof 
of Theorem 2.1, we see that edge costs accrue at the equilibrium rate during 
either walk, hence CID = CID,, which yields the result. [] 

Throughout the remainder of the paper, unless otherwise stated, graphs are 
assumed to be unweighted, i.e., we will consider only the basic unit-resistance 
version of the random walk problems. 

We now turn to cover times. Known relationships between cover time and 
hitting time allow us to frame a nearly tight relationship between cover time 
and resistance. 

Let R = max~,~ev Ruv. Let JU"(G) be an edge-weighted complete graph 
having a vertex u' for every vertex u in V, and having an edge {u', v'} of 
weight Ruv for each pair of (not necessarily adjacent) vertices u, v in V. Let 
R* be the weight of a minimum spanning tree in Af'(G). Let C~ denote the 
expected length of a walk that starts at u and ends upon visiting every vertex 
in G at least once. Let Co be the cover time of G, i.e., Ca = maxu Cu. 

THEOREM 2.4. 

m R  < Ca <_ 2m .  rain(R(1 + Inn), R*) 

PROOF. The lower bound follows from Theorem 2.1, the fact that there exist 
vertices u, v such that R = R~., and the fact that max(Hu., H ~ )  >_ C ~ / 2 .  
Matthews (1988) has shown that the cover time is at most Hh,,, where H = 
maxu~ Hu~,, and hn is the n *h harmonic number, hn = ~in=l 1/i  < 1 + in n. The 
first upper bound follows from the observation that H _< max~v C~ = 2mR.  (A 
similar upper bound with a somewhat larger constant can be obtained from a 
simple argument like that used in Theorem 2.6 below.) The proof of the second 
upper bound follows directly from the spanning-tree argument of Aleliunas et 
al. (1979), which is a special case of Theorem 2.3. [] 

Let Rspa, be the minimum, over all spanning trees T of G, of the sum of 
the effective resistances of T's edges. Rspan is often easier to determine than 
R*. However, since R* E R,p~,, we also have the following corollary. 
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COROLLARY 2.5. C G < 2mRspan. 

Note that  the bounds in Theorem 2.4 cannot in general be improved by 
more than constant factors; the upper bounds are tight for the complete graph 
and the chain, respectively, and the lower bound is also tight for the chain. 
There are also graphs for which none of the bounds above is tight. 

Let 6 be a family of labeled d-regular graphs on n vertices. Let U(6) denote 
the length of the shortest universal traversal sequence for all the labeled graphs 
in 6. (See Aleliunas et al. 1979 or Borodin et al. 1992 for definitions.) Let R(6) 
denote the maximum resistance between any pair of vertices in any graph in G. 

THEOREM 2.6. U(6) _< (4 + o(1)) m/~(6)  log2(n[GI). 

PROOF. The proof is by a probabilistic argument similar to that  in Alelinnas 
et al. (1979). Given a labeled graph G E 6, let v be a vertex of G, and 
let t = [4mR(6)] + 1. Consider a random walk of length kt, divided into k 
"epochs" of length t. Let Ai be the event that  the walk fails to visit v during 
the i th epoch, 1 < i < k. Then, for 1 < i < k, the probability of event A~ is less 
than 1/2 by Theorem 2.1 and Markov's inequality, regardless of the vertex of 
G at which the epoch began. If these events were independent, the probability 
that  the full walk would fail to visit v would be less than 2 -k. Unfortunately, 
the events are not independent, since obviously epoch i starts at the vertex 
where epoch i - 1 ends. However, we will show by another method that  the 
2 -k upper bound is still valid. 

Let p(a, b) be the probability that  a walk of length t starting at vertex a 
ends at vertex b and fails to visit v. Note that  for each fixed b # v, given that  
epoch i - 1 ends at vertex b (and consequently epoch i starts at b) the events 
"fails to visit v during epoch i - 1" and "fails to visit v during epoch i" are 
independent, by the Markov property of random walks. So, assuming epoch 
k - 1 starts on vertex a # v, we see that  the walk fails to visit v during the 
last two epochs with probability 

Pr(Ak -1  A Ak [ epoch k - 1 starts at vertex a ~ v) 

b, v 

=  p(a,b) 
bey cr 

< E p ( a , b ) ( 1 / 2 )  
bey 

< (1/2)(1/2) = 1/4. 



322 Chandra et al. cc 6 (1996/1997) 

Proceeding similarly, we can show that  the probability that  v was not visited 
during any of the k epochs is less than 2 -k. Choosing k = [log2(nlGI)], we 
see that  the probability of avoiding v is less than (nl~]) -1. Summing this 
probability tha t  v is not visited over all n choices of the vertex v and all IG] 
choices of the graph G, the probability that  the random walk (sequence) is 
not universal is less than one. Thus there is a sequence of this length tha t  is 
universal for the class. [] 

The techniques of Matthews (1988) can be used to give a different proof of 
Theorem 2.6. 

We study one final random variable associated with a random walk on G: 
let CB denote the expected number of steps to traverse every edge of G at least 
once, taking the maximum of the expectations over all starting vertices. By a 
traversal we mean that  each edge can be traversed in either direction; a simple 
extension of the method applies to the case when we require each edge to be 
traversed in both directions. 

Let G'  be the graph derived from G by inserting a new vertex in the middle 
of each edge of G. More precisely, G' is defined as follows: there is a vertex v 
in G' corresponding to each vertex v in G; call these real vertices.  In addition, 
there is a vertex u v  in G' corresponding to each edge {u, v} in G. Thus G' has 
m + n vertices in all. The edges of G' are as follows: for each edge {u, v} in G 
there is a pair of edges {u, u v }  and { v , u v }  in G'. 

We draw a correspondence between a walk on G traversing all its edges 
and a certain walk on G' visiting all its vertices. Consider a random walk on 
Gq Each time we take a step out of a real vertex, say v, we proceed to a 
vertex v w  tha t  is not real; from there, we proceed to another real vertex w 
with probability 1/2, or return to v with probability 1/2. Call a pair of such 
steps usefu l  if we proceed to a new real vertex such as w, and wasted  if we 
return to v. Thus, each pair of steps is useful with probability 1/2. 

We consider a modified random walk on G, one in which at each step the 
walk may choose to idle in its present vertex with probability 1/2; clearly in this 
modified walk the expected number of steps (including idle steps) to traverse 
all the edges is 2CE. We now draw the obvious correspondence between this 
modified walk and walks on G' starting at the same (real) vertex: each wasted 
pair of steps in the walk on G' corresponds to an idle step in the modified 
walk on G. A useful pair of steps v - v w  - w in the walk on G' corresponds 
to the traversal of edge v w  in G. Conditioned by the probability tha t  a pair 
of steps is useful, the probability distribution on the real vertex w we reach 
is the uniform distribution on the neighbors of v in G. In a walk on G', if 
every non-real vertex is visited during a useful step pair, then every edge of 
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G has been traversed in the corresponding modified walk on G. Thus every 
sequence of idle and edge-traversal steps in the modified walk on G has the 
same probability measure and number of steps as the corresponding sequence 
of wasted and useful step pairs in the walk on G ~. From this we can prove the 
following result. 

THEOREM 2.7. CE is O((m + n)(R + 1)logn). 

PROOF. The proof is very similar to that  of Theorem 2.6. The maximum 
resistance in G' is O(R + 1), and the maximum commute time in it is O((m + 
n)(R+ 1)). For a fixed non-real vertex vw, the probability that  it is not visited 
in an epoch of length O ( ( m + n ) ( R +  1)) is a constant, and so is the probability 
that  it is not visited during a useful pair of steps. Thus, by calculations similar 
to those in the proof of Theorem 2.6, the probability that  a walk of length 
k((m + n)(R + 1)log n) does not cover all edges declines exponentially with s 

[] 

Note that  CE is within a factor of log n of Ca, except perhaps when R = 
o(1). Zuckerman (1991) shows that  CE, like Ca, is O(mn) for all graphs. 

3. Dense graphs 

In this section we demonstrate for d-regular graphs the threshold in resistance, 
and hence cover time, at d = [n/2]. 

A simple fact we will use several times to help bound resistances is the 
following. 

PROPOSITION 3.1. (Rayleigh's "Short~Cut" Principle, Doyle & Snell 1984, 
Maxwell 1918.) Resistance is never raised by lowering the resistance on an 
edge, e.g., by "shorting" two nodes together, and is never lowered by raising 
the resistance on an edge, e.g., by "cutting" it. Similarly, resistance is never 
lowered by "cutting" a node, leaving each incident edge attached to only one 
of the two "halves" of the node. 

As one very simple application, notice that  in a graph with minimum degree 
d, R >_ 1/d: short all nodes except the one of minimum degree. This lower 
bound will prove useful later. 

Another simple application is the following lemma. 

LEMMA 3.2. I f  G contains p edge-disjoint paths of length less than or equal to 
I from s to t, then t~st < liP. 
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PROOF. Extract from G a network H as follows. Cut all edges not on one of 
the p paths. Split nodes if necessary to make the paths vertex-disjoint. Note 
that  the paths are edge-disjoint, so it is possible to do this without duplicating 
edges. Raise the resistance of each edge in a path of length 1 t < l to l/l ~ Ohms. 
Clearly Rst is exactly I/p in H. Hence, by the "short/cut" principle, Rst <_ I/p 
in G. [] 

When n is even and d = [n/2J - 1, there are d-regular graphs having 
maximum resistance t9(1). To see this, take two n/2-vertex cliques, remove 
one edge (ai, bi) from clique i, 0 < i _< 1, and join the two cliques with 
edges (ai, bl-i), 0 < i < 1. By the "short~cut" principle above, the resistance 
between any two vertices not in the same n/2-clique must be at least 1/2 
Ohm--short ing all the nodes in each clique leaves a two-node network with 
two 1 Ohm resistors in parallel. Thus, by Theorem 2.4, the cover time for this 
graph is t2(n2); this bound is tight by the results of Kahn et al. (1989). A 
similar construction works for odd n and d _< [n/2J - 1. 

When d = [n/2J, the situation changes radically. Intuitively, one cannot 
add another Ln/2J edges to the graph above without making it so highly con- 
nected that  the resistance drops sharply. This is proved below. 

THEOREM 3.3. For any n-vertex graph G with minimum degree d >_ [n/2j ,  
R < 4/d  = O(1/n).  Hence Ca = O(nlogn).  

PROOF. The key point is to show that  there are d edge-disjoint paths of 
length at most 4 between any pair of vertices. The result then follows by 
application of Lemma 3.2. Consider any two vertices s and t. Let k be 1 if 
{s, t} C E, else k = 0. Let k' be the number of vertices (5  s, t) mutually 
adjacent to both s and t. Then there are at least j = d - k - k' vertices which 
are adjacent to s but not to t, and vice versa. Choose any j of each, and call 
them s l , . . . ,  s~ and t l , . . .  , t j ,  respectively. Let k" be the size of a maximum 
matching between the si's and the ti's, and without loss of generality assume 
that  { {si, ti} t 1 <_ i < k"} are the matching edges. Because d >_ [n/2J,  
every pair of vertices in G either are neighbors or have a common neighbor. 

kll In particular, si and ti have a common neighbor mi, < i _< j .  Thus, we 
have d paths of length at most 4 from s to t, namely k of length 1, k' of length 
2, k" of length 3 ((s, si, t i , t) ,  1 < i < k"), and d - k - k ' - k ' t o f l e n g t h  4 
((s, s~, m~, h, t}, k" < / < j) .  Note that  the mi's are not necessarily distinct 
from each other or from the other vertices mentioned. Despite this, it is not 
hard to see tha t  the ,1 paths are edge-disjoint. Thus, there are d edge-disjoint 
paths of length at mo~ 4 from s to t, hence R~t <_ 4/d = O(1/n) by Lemma 3.2. 

[] 
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Theorem 3.3, when combined with Theorem 2.4, shows a sharp threshold in 
cover time at minimum degree d = Ln/2J. Specifically, the cover time may be 
f~(n 2) when d = [n/2J - 1, but drops to O(nlogn)  when d = Ln/2]. Applying 
Theorem 2.6 we see that  the length of universal traversal sequences for d-regular 
graphs, for any d > [n/2J, is O(n31ogn). This bound was previously known 
to hold only for cliques (d = n - 1). Interestingly, lower bounds for universal 
traversal sequences (Borodin ct al. 1992) are f~(n 4) for linear d <_ n / 3 - 2 .  Thus, 
the length of universal traversal sequences also declines somewhere between 
d = n /3  - 2 and d = [n/2J; whether there is a sharp threshold at d = [n/2J 
as in the case of cover time is unknown. 

4. Resistance and eigenvalues 

Let G be a connected graph with vertices numbered 1, 2 , . . . ,  n, and a positive 
real resistance rij associated with each edge. The conductance of edge {i, j }  
is defined to be the reciprocal of its resistance: 1/rij. Let Af(G) be the corre- 
sponding electrical network, as defined immediately above Theorem 2.2. Let 
d(i) be the sum of the conductances connected to node i, and let D be the 
diagonal matrix whose i-th diagonal entry is d(i). Let A be the matrix whose 
i j - th  entry is the conductance on the edge from i to j .  Define K = D - A. 
Since K is a real symmetric matrix, all its eigenvalues are real and it has a 
set of n orthonormal eigenvectors. (See, for example, Franklin 1968.) It is 
easy to verify that  zero is an eigenvalue of K,  and that  the vector of all ones 
is a corresponding eigenvector. By Cershgorin's theorem (Franklin 1968) zero 
is also the smallest eigenvalue. Using the same theorem and the fact that  G 
is connected, it can be shown that  zero is an eigenvalue of multiplicity one. 
Define a(G) to be the second smallest eigenvalue of K. 

It is worth pointing out that  if G is a graph with unit resistances, then d(i) 
is the degree of vertex i in G, A is the adjacency matrix of G, and K is the 
Laplacian. 

We will use the following inner product in this section. 

DEFINITION 4.1. Let  x = [xl, x 2 , . . . ,  Xn] and y = [Yl, Y2 , . . . ,  Yn] be vectors of  
n components. The the inner product o f x  and y,  denoted by (x ,y) ,  is given 
by }-~.in=l(xiyi). The length of  x, denoted by Hxll, is given by x / ~ , x ) .  

Let al  < ~2 _< ~ra -< �9 .. - a~ be the eigenvalues of K,  and let ul ,  u2,. �9 u~ 
be the corresponding orthonormal eigenvectors, i.e., 

1 i f i = j ,  and 
(ui, uj) = 0 otherwise. 
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I t  is well known tha t  all components of uj can be chosen to be real. By the 
discussion above a l  = 0, and all components of ul  are equal to 1 / v ~ .  Also, 
note tha t  a (G)  = a2. 

Let U be the n x n unitary matr ix  whose j - t h  column is uj ,  and let E be 
the n x n diagonal matr ix  whose i- th diagonal entry is (ri. Then u T u  = I, and 
K = U E U  T. 

Let u i j  be the i- th component  of uj.  

THEOREM 4.2. I f  G is a c o n n e c t e d  g r a p h  on  n ver t ices ,  t h e n  

1 2 
- - < R < - - . _ .  n~(G) - - 

PROOF. For any distinct pair of vertices s and f, let v = Iv1, v2,. .  �9 vn] T be the 
vector of voltages in Af(G), relative to node t, when a unit current is injected 
into node s and removed from node t. Clearly, vt = 0, and 0 _< vk _< R for all 
k. Let c = es - et, where ek is an n-component  vector whose k-th component  
is 1 and all other components are 0. Then, as in the proof of Theorem 2.1, 

K v  = e, and therefore 

~O!k 
v = 5 u l  + - - u k ,  

k=20"k 
(4.6) 

where g is v ~ times the average voltage in the network, and c~k = (c, Uk) = 

_ Ek=l   l l U % I I  = I lc l l  = 2 .  usk utk.  Notice tha t  cq = 0 and ~ = = = 
For the upper  bound, choose s and t above so tha t  R = Rst .  Note tha t  

R = v8 = vs - vt ,  so by Equation 4.6, we get 

n c~k(u~k--utk) 
R = v s - - v t  = ~ k = 2  �9 ~ 

= ~ k = 2  ~ < 1 

For the lower bound, proceed as above, this t ime choosing s and t so tha t  
(c, u2) _> 1/v/n.  Such a pair exists since some component  of u2 must  have 
magni tude at least l / v @  and not all are of the same sign, since (u~, u2) = 0. 

Note tha t  0 < vi < R, so Ilvll _< Rv% But 

ILvll = 

k=2 

This implies tha t  R > 1 / ( n a ( G ) ) .  

>c~2 > 1 

- -  0 .  2 - -  O - 2 V  ~ "  

[] 
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Theorem 2.4 immediately implies the following corollary. 

C O R O L L A R Y  4.3. If  G is a graph with unit resistances and unit costs, then 
Cc <_ (4 + o(1) )mlnn/a(C) .  

We need the following lemma to compare the preceding theorem to some 
previously known results. Let P be the transition matrix of the Markov chain 
corresponding to the random walk on a graph G. Since P = A D  -1 and 

1 1 I __ 1 

Q = D - ~ A D - ~  = D - ~ A D  1D~ are similar matrices, they have the same 
set of eigenvalues. Moreover, all these eigenvalues are real because Q is a real 
symmetric matrix. Let A1 > A2 _> . . .  _> An be the eigenvalues of P (and Q). 
For an ergodic Markov chain, it is well known that  1 -- A1 > A2. Observe 
that  the Ai's are arranged in descending order whereas the a~'s are arranged in 
ascending order. Since Q is symmetric, it has a set of orthonormal eigenvectors 
wl,  w2, . .  �9 wn, where D - I A D - � 8 9  = Aiwi. 

LEMMA 4.4. Let G be a connected graph with minimum and maximum degrees 
given by drain and dmax, respectively. Then, for all 1 < k < n, 

(1 - Ak)dm,n <_ <- (1 - A )dmax. 

PROOF. Coppersmith devised the following elegant proof of this lemma. 
If B is an n x n symmetric real matr ix with real eigenvalues ~1 ~ o~2 > -. .  

c~n, and corresponding orthonormal eigenvectors vl ,  v2, �9 �9 �9 vn, then Rayleigh's 
principle (Franklin 1968) gives the following expressions for the eigenvalues: 

x T B x  
~ = min , (4.7) 

x-l-{v~+l ,vi+2,...,v,~ } x T x  

x T B x  
= max (4.8) 

x.L{vl,v2,...,v~-i } x T x  " 

Note for later use that  x _1_ {vl,  v 2 , . . . ,  vi-1} if and only if x is in the span of 

With  the ui's as before, consider the set of n + 1 vectors 
1 1 1 

{Uk,  U k + l ,  . . . , Un,  D - ~ w l ,  D - ~ w 2 , . . . ,  D-~wk}. 

Since there are more than n vectors in this set, they are linearly dependent,  
i.e., there exist constants ak, ak+l , . . .  , an, bl ,  b 2 , . . . ,  bk, not all zero, such that  

= D-�89 (4.9) 
i=k i=1 
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Let us denote the left hand side of this equation by z. If z = 0, then ak = 

ak+l . . . . .  a~ = 0, and bl = b2 . . . . .  bk = 0 because each of the two sets of 
vectors {uk, u k + l , . . . ,  un} and {wl, w ~ , . . . , w k }  are independent.  Therefore, 
z 5r 0, and, without  loss of generality, we may assume tha t  z is a unit vector. 
Equation 4.7 implies tha t  

crk < z T ( D - A ) z  and 

~k < (D�89189189189 
- -  zTDz 

The  first of these two inequalities yields an upper bound on zTAz.  Subst i tut ing 
this upper  bound in the second inequality, we arrive at ak _< zTDz(1 -- Ak). 
Finally, observe tha t  zTDz  _< dm~, which establishes the upper  bound on ak 
asserted in the s ta tement  of the theorem. 

The  lower bound can be proved in a similar manner  by star t ing with the set 
of n + 1 vectors {wk, w k + l , . . . ,  w~, D�89 D�89 D�89 and using Equa- 
tion 4.8 instead of Equation 4.7. [] 

The  following example will be useful in showing where the inequalities in 

Theorem 4.2 are tight. 

DEFINITION 4.5. Le t  Zn = {0, 1 , . . . ,  n - 1}. For nl ,  n2 , . . - ,  n d >  2, the nl  x 
n2 x . . .  x nd d-dimensional (toroidM) mesh is an undirected graph G = (V, E )  

where  V = Znl x Zn2 X "'" X Zna, and any ver t ex  ( k l ,  k 2 , . . .  , ]gd) is connected 
to vertices ( k l , . . . ,  Ici_l, ki + 1 mod ni, lci+l, . . . ,  kd), for each i = 1, 2 , . . .  d. 

A k x k x . . .  x k d -d imens iona l  mesh will be called a (k, d) mesh for short. 

THEOREM 4.6. The  mul t i se t  

2 ~ C O S  : ( ] ~ 1 , ] ~ 2 , ' ' '  ]~d) E Zn 1 x Zn2 x . - -  x Znd 

contains all the eigenvatues (with correct mult ipl ici ty)  o f  the adjacency  ma t r i x  

o f  the  n l  • n2 x �9 �9 x nd d-dimensional mesh.  

PROOF. Let a;i be the ni-th root of unity and let n = l~idl ni. Choose any 
(kl, k2 , . . . , k~ )  E Znl • Zn2 •  x Z~ d. Let u be a v e c t o r  o f n  components  

whose component  corresponding to vertex ( j l ,  j2, jd) is given by ]-[d wklji �9 - �9 , 1 1 i = 1  i " 

Check tha t  u is an eigenvector of the adjacency matr ix  of the nl  x n2 x .--  x n d 
., �9 . �9 x-'~d /0 jk l  __ 02-k~,,  mesh, w lm elgenvame 2_,i=1 ( i • i ). [] 
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COROLLARY 4.7. If  G is the nl x n2 x . . .  x nd d-dimensionM mesh, then 
~(G) = 2(1 - cos ~ )  ~ , G ,  , where ni is ~he iargest of the nj 's. 

We now discuss some consequences of Theorem 4.2. The lower bound on 
resistance given by Theorem 4.2 is tight to within a constant factor for the 
n-node cycle (the (n, 1)-mesh). Observe that for this graph R = @(n), and 
from Corollary 4.7 ~(n-cycle) ~ (2~2 , n -  �9 The upper bound on resistance given 
by Theorem 4.2 is exactly tight for the n-node complete graph. Observe that 
for this graph R = 2/n, and ~(Kn) = n. In view of the last two remarks, it 
is not possible to improve the inequalities in Theorem 4.2, except perhaps the 
constant factor in the lower bound, for all graphs. On the other hand, both the 
inequalities in Theorem 4.2 are weak for (n l/d, d)-meshes, for any d > 2. The 
maximum resistance in multidimensional meshes can be determined by other 
techniques. This is the subject of Section 6. 

Theorem 4.2 also improves a bound due to Landau & Odlyzko (1981) (and 
Corollary 17 of Broder & Karlin 1989). Landau & Odlyzko proved that (1 - 
A2) > 1/((dmax -I- 1)An) where dma~ and A are the maximum degree and the 
diameter of G, respectively. Using the resistance bound from Theorem 4.2, and 
Lemma 4.4, we get (1 - A2) > 1/(dma~Rn). This is an improvement because 
A > R, and may be a large improvement. For example, for Kn, A = 1 and 
R - _ 2  

- -  n "  

Some upper bounds on cover times due to Broder & Karlin (1989) are 
implied as a consequence of Theorem 4.2. For example, Corollary 4.3 and 
Lemma 4.4 imply that Co _< ((4+o(1))mln n)/(d,~n(1 -A2)). For most graphs, 
this is stronger than Corollary 8 of Broder & Karlin (1989), which states that 
Co _< (l+o(1))n 2 In n/ (1 -A2) .  For example, note that 4re~drain < n 2 whenever 
dmi~ > 2 or dm~x < n/2. 

Finally, Theorem 4.2 also implies that the resistance between any pair of 
vertices in any family of bounded degree expander graphs (see the next section, 
or Alon 1986) is bounded by O(1). 

In the rest of this paper we study resistance in two graph families: (i) 
families of expanders whose maximum degree may be a function of n; and (ii) 
multidimensional meshes. Neither the results in Broder & Karlin (1989) nor 
Theorem 4.2 yield good bounds on the cover time of these graphs. 
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5. Expanders 

We will use the following definition of expanders, also used by Broder & Karlin 
(1989). 

DEFINITION 5.1. An (n, d, @-expander is a graph G = (V, E) on n vertices, 
of maximal degree d, such that every subset X C_ V satisfying IX[ _~ n/2 has 
IN(X)  - X I > a .  ]X I. Recall N ( X )  = {v I (u,v} C E for some u E X } .  

Note that a < 1, and a > 0 if G is connected. 
There is some inconsistency in the literature concerning the definition of 

"expanders." For instance, Alon (1986) calls graphs with the above property 
"magnifiers," reserving the term "expander" for bipartite graphs with a similar 
property. He shows very close connections between the two notions, so there 
seems to be no essential loss of generality in choosing the above definition, 
which is more convenient for our purposes. Further, Rubinfeld (1990) has 
shown a result analogous to our Theorem 5.2 for graphs which are "expanders" 
according to the definition of Peleg gc Upfal (1989), giving further evidence 
that the basic result of this section is reasonably insensitive to variations in the 

definition. 
Alon (1986) has shown that if G is an (n, d, a)-expander, then or(G) >_ 

a2/(4+2a2) ,  hence by Theorem 4.2, R _~ 4(2+a2) /a  2. The main result of this 
section sharpens this estimate, reducing it by a factor of order d. For large d, 
this considerably improves the bounds of Broder & Karlin (1989) on the cover 
time of these graphs. 

THEOREM 5.2. A connected (n, d', a)-expander G, with minimum degree d, 
has resistance at most + 1)). 

PROOF. Let s, t be two vertices in G such that Rs,t = R. In the electrical net- 
work N'(G), connect a unit voltage source between s and t, with t grounded. We 
will show by contradiction that the current flow from s to t in Af(G) is at least 
a2(d + 1)/(8(1 + a/2)(1 + a)), implying _R <_ (8(1 + a/2)(1 + a))/((~2(d + 1)), 
which is at most 24/(a2(d + 1)), since a < 1. 

The basic idea is that any set T of "low voltage" nodes has a relatively large 
set U of neighbors, since G is an expander. Further, the bulk of the nodes in U 
must be at voltages "near" those in T, for otherwise there would be a "large" 
current flow from U to T. Repeating this argument inductively, we show that, 
unless the current is "large", more than half the nodes have voltage less than 
1/2; a similar argument for sets 29 of "high voltage" nodes shows that more 
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than half have voltage greater than 1/2, a contradiction. Thus the current 
must be "large". These ideas are quantified and made precise below. 

Let 

c = ~ 1 + a / 2 )  -i -- 4 ( 1 + a / 2 ) '  

k 

v~ = ~ ( 1  + ~/2) -i, for all k _> 0, 
i=0 

and define 

T~ = {a I node a of Af(G) has voltage < vk} ,  

S~ = {a I node a of Af(G) has voltage > 1 - vk}, 

tk = ITk[, 

sk = IS~I. 

Note tha t  0 < Vo < vl < .-- < 1/2. 
First we make the following claim. 

CLAIM 5.3.  t o ~ (d ~- 1)(1 + a /2 ) / (1  + c~), and for all k > 1, if tk-1 ~ n/2  
then tk >_ (1 + c~/2)tk-1, and so tk >_ (1 + c~/2)k+l(d + 1)/(1 + c~). 

The claim is proved by induction on k. 
BASIS (]~ : 0): Suppose to < (d + 1)(1+ c~/2)/(1 + a). Then at least 

(d - (to - 1)) of t 's neighbors are at voltage at least v0, hence the current flow 
into t is at least 

( d -  ( t o  - 1))vo + a) 1 4(1 + a /2)  

o 

= ( d + l )  ~-a )  4(1+c~/2) 

~ ( d  + 1) 
8(1 + ~ /2) (1  + ~)' 

contradicting the assumption that  the current is less than the latter quantity. 
INDUCTION (k _> 1, and tk-i < n/2): If tk-1 <_ n/2, then by the fact that  G 

is an expander, U = N(Tk-1) -Tk-1  has size at least atk-1. If Tk is small, then 
more than half of the nodes of U are not in Tk, hence at voltage at least vk. In 
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this case, the current flow from U to Tk_ 1 would be too large. More precisely, 
if tk < (1 + C~/2)tk-1, then the current will be greater than 

c~ c~ ( 1) (l + ~/2)k~ (c(l + c~/2)_k) - tk-l(v  - vk-1) > (d + (1+ ) 

 2(d + 1) 
8(1 + a /2)(1  + a ) '  

again contradicting the assumption that the current is less than the latter 
quantity. Thus, tk >_ (1 + a/2)tk_l .  This completes the proof of the claim. 

As a consequence of the claim, there is a k _> 0 such that tk > n/2, i.e., more 
than half the nodes have voltage strictly less than 1/2 volt. By a similar argu- 
ment about  the high-voltage sets Si, there is a k' such that Sk, > n/2, i.e., more 
than half the nodes also have voltage strictly greater than 1/2, an impossibility. 
Thus, the current from s to t must be at least c~2(d + 1)/(8(1 + a /2) (1  + c~)). 

[] 

It is unknown whether the quadratic dependence on 1 / a  is necessary. 
We will briefly sketch an alternative proof of Theorem 5.2. It is in some ways 

more complex than the foregoing, but still intuitive, and also seems considerably 
more general. In fact, we originally proved both the dense graph result and a 
somewhat weaker version of the expander result (Theorems 3.3 and 5.2) using 
the approach outlined below, before finding the more direct proofs given above. 
The technique is also similar to the one we use in the mesh proofs in Section 6. 
Peter Doyle (1988) contributed an important refinement to the technique. 

Let G = (V, E),  s, t be as above. Build an auxiliary layered graph H, with 
21 + 1 layers (1 defined below), each layer consisting of a copy of V, and with 
an edge between vertices u and v in adjacent layers if and only if {u, v} is an 
edge in G. Delete all vertices not on a shortest path (length 2l) from s', the 
copy of s in the topmost layer, to t I, the copy of t in the bot tommost  layer. 
We will first estimate the resistance between s ~ and t / in an electrical network 
derived from H. 

Intuitively, we hope that when a voltage is applied between s ~ and V the 
layers of H will be good approximations to the equipotential surfaces, and in 
fact we can adjust resistances, using the "cut" principle, so that  this becomes 

true. 
Edges are given capacities, exponentially decreasing towards the middle 

layer. Specifically, all edges between layers k and k + 1, (counting from the 
nearer of s ~ and t'), are given capacity ck = (l+c~) -~. The expansion property of 
G prevents H from having a small s'-t' cut, since edge capacities are decreased 
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at the same rate as expansion increases the number of relevant edges. More 
precisely, let S (T) be the set of vertices connected to s' (t') after the cut is 
made. If the cut is small, then not enough edges have been cut to prevent 
some expansion within S from one layer to the next. Choose l large enough 
so that S contains more than half of the middle layer. By the same argument 
T contains over half of the middle layer, too, a contradiction. Hence by the 
max-fiow/min-cut theorem there is a large (O(d)) s'-t' flow D. 

Next, convert the flow to an electrical current flow by constructing an elec- 
trical network Af(H) from H by assigning each edge of capacity ck carrying 
flow f < ck a resistance (ck/f)" (ck) -1/2. Then the flow in H is exactly the 
electrical current flow in Af(H), and there is a voltage drop of exactly c~/2 be- 
tween layers k and k + 1. Thus, the resistance between s I and t ~ in Af(H) is 

l t /2  
exactly 2(Ek= 0 % )/D = O(1/(ad)). 

Finally, short together all copies of each vertex in G. The result is essentially 
a subgraph of G, except with up to 2I parallel edges for each edge of G. Since 
ck/ f  >__ 1 above, it is easily verified that the effective resistance of any such 

set of parallel edges is at least 1/(2 ~-]~=0 %1/2~)= fl(a) . Thus, by the "short" 
principle, R~t in G is bounded above by t:t~,t,/a in Af(H), which gives the result. 

Rubinfeld's proof (1990) uses yet a third technique: she applies a result of 
Friedman ~z Pippenger (1987) to find large trees in G rooted at s and t, uses 
the max flow/rain cut theorem to find many short paths joining the leaves of 
the two trees, and finally uses the short/cut principle to bound the resistance. 

6. Meshes  

In this section we consider the resistance of regular meshes. Recall, from Sec- 
tion 4, that a (k, d) mesh is a d-dimensional (toroidal) mesh of side k, hence 
n = ]gd vertices. 

Resistance of infinite meshes has been previously considered. In particular, 
it is the focus of a portion of Doyle and Snell's monograph (1984). They show 
that the resistance from the origin to infinity in an infinite two-dimensional 
mesh is infinite, but in a three (or higher) dimensional mesh resistance is 
bounded. Their motivation for this question was to obtain an elementary proof 
of Pdlya's beautiful theorem that random walks in two dimensional meshes are 
recurrent while those in three or higher dimensions are transient. Resistance 
of the infinite mesh settles this question, since, as Doyle and Snell also show, 
the resistance to infinity determines the probability of escape to infinity. 

Resistance of finite meshes seems not to have been considered before. We 
give a direct proof, although the results below largely follow from Theorems 2.1 
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and 2.4 and known results on hitting and cover times for meshes (c.f. Aldous 
1983, 1993, Cox 1989, and Ghbel & Jagers 1974, for example). Our proof 
technique, which is similar to (Doyle & Snell 1984, Section 8.7), is of interest, 
and, unlike the more "classical" analysis of hitting time for meshes, can likely 
be extended to less symmetrical graphs which remain "mesh-like." 

It is easy to see that  a (k, 1) mesh has resistance n /4  - O(1/n) .  For higher 
dimensions we have the following theorem. 

THEOREM 6.1. The (Ic, d) mesh with n = k d nodes has resistance 

19(logn) for d = 2, 
RG = for d > 3 

Before outlining the proof of this theorem, we need to develop some ma- 
chinery from circuit theory. The following triangle inequality for resistances 
proves useful. 

PROPOSITION 6.2. For any three vertices u, v, w in G, 

1 ~  < R~w + Rwv. 

DEFINITION 6.3. Given an electrical network (V, E, r), with resistance r(e) for 
each edge e, a flow c is a function from V x V to the reMs, having the property 
that e(u,v)  = 0 unless {u ,v}  ~ E, and c is antisymmetric, i.e., c(u,v)  = 
- c ( v ,  u). The net flow out of a node will be denoted c(u) = ~ e v  e(u, v), and 
the flow along an edge e = {u,v} is c(e) = Ic(u,~)l. n source (respectively, 
sink) is a node u with c(u) > 0 (respectively, c(u) < 0). Given two flows cl, c2, 
we can obtain a new flow c = cl + c2 given by c(u, v) = cl(u, v) + c2(u, v). The 
power P(c) in a flow is P(c) = ~-~eeE r(e)e2(e) �9 A flow is a current flow if  it 
satisfies Kirchhoff's voItage law, i.e., for any directed cycle u0, u l , . . . ,  uk-z, u0, 

~-~ik'-o 1 C(~ti, Ui+I modk)" 'F('//'i, ~/,i+1 mod k) = 0. 

PROPOSITION 6.4. (The Minimum Power Principle, Synge 1951; also known 
as Thomson's  Principle, Thomson & Tait 1879, Doyle & Snell 1984, Section 
3.5.) For any electrical network (V, E,  r) and flow c with only one source u, 
one sink ~, and c(~) = - 4 ~ )  = 1, we have P~,v <_ P(e) ,  with equality when 
the flow is a current flow. 

Also, for a flow c with one source u and more than one sink, I~,v <_ P(c) 
holds for all sinks v, provided that  c(v) = -1 .  This is easy to see by noting that  
the flow to all sinks except v can be returned to the source without increasing 

the flow through any edge. 
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LEMMA 6.5. For any two flows c~, c2 in an electrical network, 

P(cl + c2) <<_ 2(P(cl)  + P(c2)). 

PROOF. Straightforward. [] 

PROOF (OF THEOREM 6.1). To prove the upper bound, construct a flow 
Co in a (k + 1, d) mesh as follows. For any node u = ( k l , . . . ,  kd), ki < k + 1, 
let its length from the origin be defined as l(u) = ~ ki. For any node v = 
(kl, k2 , . . . , kd) ,  and u = (k~,k2, . . . ,k i  - 1 , . . . , kd ) ,  with kr _> 1, l = l(v) ~_ k, 
we let Co(~,v) -CO(v,~) ~§ = = ki/( l(  d-1 ))" The flow in all other edges is 
zero. The flow Co has the following properties: (a) the only source is the origin 
u0 = (0, 0 , . . . ,  0) with Co(u0) = 1; (b) the sinks are nodes u at length k from 
the origin, each with Co(u) = --1/{k+d-l~ �9 and (c) P(Co) = O(logn), if d = 2, 

l \  d - 1  ] '  

and P(c0) = O(1/d), if d _> 3. To verify the conditions (a), (b), note tha t  
for a node u = (k~, . . .kd) with 1 = l(u) < k, the sum of the flows from u 

l+d to all adjacent nodes at length l + 1 is E~(k~ + 1)/((l  + 1)(d_1)), which is 
l+d l + d - 1  

1 / ( d _ 1 )  i f 0  < = (l + d)/((l  + 1)(d-l))  = . Likewise, l l(u) <_ k, the sum of 

k~l(Z( d-1 ) ) =  , ~ - 1  , .  
flows to u from all adjacent nodes at length l - 1  is ~ i  l+d-1 1/{l+d-l~ 
To verify (c), consider first the case d = 2. There are O(1) edges between nodes 
at length I and 1 + 1, each carrying flow O(1/l), for a cumulative contribution 
of 0(1/I)  to the power, and hence P(co) = O(logn).  For the case d > 3, the 

l + d -  1 d( d-1 ) edges between nodes at length I and l + 1 carry flow no more than 

1/(l+d~ each, for a total power of O(1/d), the dominant contribution being the 
I \ d - l /  

edges where l = 0. 
To prove the upper bound in the theorem, it suffices to prove the resistance 

bound in a (k, d) mesh from the origin u0 to an arbitrary vertex u = (11,... ,  ld). 
We construct three flows cl, c2, c3, each with power O(1/d) (O(logn),  if d = 2), 
such that  the sum of the three flows has a single source u0, C(Uo) = 1, and a 
single sink u. The result then follows from Lemmas 6.4 and 6.5. 

Flow cl is obtained from Co by identifying vertices of the form 

(o, o,...  ,o, k, o,...  ,o) 

in the (k + 1, d) mesh with u0 in the (k, d) mesh: for 0 < k~ < k, 

c l ( (k l , . . . ,kd) ,  (kl, k 2 , . . . , ( k ~ + l )  mod k , . . . , kd ) )  = 

Co((kl,...,k~), (kl ,k2, . . . , (k~+l) , . . . ,k~)) .  

Since Co has nonzero flow only incident on nodes at length no more than k, 
P(Cl) = P(Co). Flow cl has a single source at the origin u0 with cl(uo) = 
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1 -- d / (  k+d-r~ Flow c2 is defined to be the reverse of cl, except the origin is \ d - l ] "  
translated to vertex u: c2(v, w) = cr(w + u, v + u) where + is understood to 
be component-wise addition rood /c. Clearly P(c2) = P(cl) .  Finally, flow ca 
connects up cl and c2 as follows. Let P = (u0 ,u l , . . .  ,u,. = u) be the path 
fi'om the origin u0 to u where ui is at length i, and if (ui,ui+l) is an edge 
along dimension d' then (ui+l, ui+2) is an edge along dimension > d'. The only 
positive flows in Ca are as follows. For any node v at length k there is a flow of 
1/(k+d-l'l along path P + v  = (Uo+V, u r + v ) ,  i.e., c a ( v + u i , v + u i + l )  = I \  d - 1  ] " ' ' '  

k + d - 1  k + d - 1  , d / (  d-1 ) along P + u0 1 / (  d-1 ) and a flow of = P. Note that  all the above 
paths P + v, P + u0 are edge disjoint. Since r < kd and the number of nodes at 

length k is no more than {k+a-l~ k+g-1 +kda/gk+d-lh2 \ d-1 , ,wehaveJ~(c3)<l~d/ (  d-1 ) \ d - l ,  = 
O(1/d) for k, d >_ 3 (and is O(1) for d = 2). Finally, it c a n  b e  checked that  
flow c = Cl + c2 + ca indeed has a single source u0 with C(Uo) = 1 and a single 
sink at u. This completes the proof of the upper bound. 

For the lower bound it is immediate that  the resistance between the origin 
and any other vertex is at least 1/2d (by shorting all other vertices to one 
another). For d = 2, the resistance between the origin and (k/2,/c/2) is seen to 
be f l( logn),  by shorting, for each l > 0, vertices at length 1 from the origin. [] 

Theorem 6.1 implies the following upper bounds on the cover times of 
d-dimensional  meshes: O(nlog2n) for d = 2, and O(nlogn)  for d > 2. 
These upper bounds are tight due to matching lower bounds of Zuckerman 
(1992). The upper bounds on cover time were known previously for some cases: 
e.g., O6bel & Jagers (1974) for d = log 2 n (the hypercube),  and Aldous (1983, 
1993), and Cox (1989) for general d. An advantage of our proofs is tha t  they 
are fairly robust under the insertion or deletion of edges since the resistance 
of a mesh is also robust under these operations. For example, from the proof 
of Theorem 6.1, it can be seen that  the resistance R~0,~ between two arbi t rary 
nodes is not much affected by the deletion of several edges, provided they are 
not too close to u0 or to u--specifically, an edge whose endpoints are at distance 

2 l+d +d ( k + d - l ~  a t l e a s t l f r o m b o t h u o a n d u ,  carr iesaf lowofnomorethan /(d-~) / \  d-1 ,, 
and edges carrying total flow of (1 - c) may be deleted without increasing the 
upper bound by more than a factor of 1/c. 

From Theorems 6.1, 2.4 and 2.6, we have: 

COROLLARY 6.6. Minimal length universal traversal sequences for the family 
of  labeled graphs defined by an n vertex mesh under all labelings are given as 
follows: 

i f  c is a two dimensional mesh, then U(C) = log ). 
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2. I f  G is a d-dimensional mesh, 3 < d < log 2 n, then U(G) O(n2d log d). 

3. I f  G is a hypercube, then U(G) = O(n21ognloglogn). 

Note that we do not have matching lower bounds on universal traversal 
sequence lengths for meshes, so it remains possible that these lengths are the 
same for two- and three-dimensional meshes, even though the resistances differ. 

We close with a class of graphs for which we do have a tight bound on the 
length of universal traversal sequences covering all members of the class under 
all labelings. This is the first known class with this property. In fact, we show 
several such classes. 

Fix d _> 3. Let ~ be any family of d-regular labeled graphs such that (1) 
~/ contains 2 ~ members with n vertices, and (2) each member of 7-/ has a 
set of f~(dn) edges, called switchable edges, whose removal leaves a (connected) 
graph with R = O(1). Let G be the set of all graphs formed in the following 
way from some H E 7-I and some non-empty subset X of H's  switchable edges: 
join two copies H1 and//2 of H via the criss-crossed edges dictated by X, i.e., 
for each edge (u, v) in X, delete the corresponding edges (ui, vl) and (u2, v2) 
from //1 and/-/2, respectively, and replace them with the criss-crossed edges 
(Ul, v2) and (u2, vl). 

Families ~ with the properties required for this construction exist. For 
example, let A be a (k, d~)-mesh, d ~ _> 3, and let B be an arbitrary n ~ = 
k d' vertex f-regular graph. Connect A to B by an arbitrary matching. The 
resulting graph H is an n-vertex, d-regular graph, (n = 2n ~, d = d~+l) with the 
desired properties (Theorem 6.1), when the switchable edges are taken to be 
the edges of B. Alternatively, A could be a d~-regular expander (Theorem 5.2). 

THEOREM 6.7. Let ~ be any family of labeled, d-regular graphs constructed 
as described above. The shortest universal sequences for g have length ~(n2). 

PROOF. By the Short/Cut Principle, each of the 2 ~ n-vertex members of 
has resistance O(1), hence by Theorem 2.6, G has universal traversal sequences 
of length O(n2). From techniques of Borodin et al. (1992), 6 can be shown to 
have UTS length ft(n2). [] 
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