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Abstract. In this paper, we study the relationship between the cofinality c(Sym(w)) 
of  the infinite symmetric group and the minimal cardinality b of  an unbounded family 

F of ~w. 

1 Introduction 

Suppose that G is a group that is not finitely generated. Then G can be expressed as 
the union of  a chain of  proper subgroups. The cofinality of  G, written e(G), is defined 
to be the least cardinal A such that G can be expressed as the union of a chain of  A 
proper subgroups. If  n is an infinite cardinal, then Sym(t~) denotes the group of all 
permutations of  the set t~ = { a [ a  < t~}. In [9], Macpherson and Neumann proved 
that c(Sym(n)) > n. In [10], we studied the possibilities for the value of  c(Sym(w)). 
In particular, we proved that it is consistent that e(Sym(w)) and 2 ~~ can be any two 
prescribed regular uncountable cardinals, subject only to the obvious requirement that 
e(Sym(w)) <_ T ~ In this paper, we shall consider the relationship between c(Sym(w)) 
and two wellknown cardinal invariants of the continuum. 

Definition 1.1. (a) ~w is the set of functions from w to w. 
(b) If  f ,  9 c ~w, then f <* 9 iff there exists n0 E w such that f(n) < 9(n) for all 
Tb~  7Z 0. 

Definition 1.2. (a) A family F C ~w is dominating if for every 9 E ~w, there exists 
f E F such that 9 -<* f .  
(b) d is the minimal cardinality of a dominating family F of ~w. 
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Definition 1.3. (a) A family F C ~w is unbounded if there does not exist 9 E '~ 
such that f <* 9 for all f E F .  
(b) b is the minimal cardinality of  an unbounded family F of ~w. 

Proposi t ion 1.4. e(Sym(w)) _< d. 

Proof Let d = ~ and let _F = {f~li </~}  be a dominating family. We may assume 

that each fi  is strictly increasing. For each 0 < A, define 

Go = <  9lThere exist i , j  < 0 such that 9 <* fi  and 9 -1 <* f j  > .  

Then Sym(w) = U0<~ Go. So it is enough to prove that each Go is a proper subgroup. 
Suppose that there exists 0 < ~ such that Go = Sym(w). Let C be the closure of 
{ f~ [ /<  0} under the taking of compositions. Since ~ > wl, it follows that ICI < ~. 
Notice that each f c C is also strictly increasing. 

Claim 1.5 For each 9 E Go = Sym(w), there exists f E C such that 9 <-* f. 

Proof of Claim 1.5 It suffices to prove that if 9, h E Go satisfy 9 <* fl  and h <* f2 
for some f l , f2  E C, then 9 o h <* f l  o f2. Choose no so that 9(n) <_ f l (n)  and 
h(n) < f2(n) for all n > no. Since h E Sym(w), there exists nl > no such that 
h(n) > no for all n __ nl. Hence n > nl implies that g(h(n)) < fl(h(n)) <_ 
fl(f2(n)). [] 

Expanding C if necessary, we can suppose that d E C where d(n) = 2n. Since 
ICI < d, there exists qo E ~'w such that ~ f *  f for all f E C. We can assume that 

is strictly increasing and that I W - ran qa I = w. Hence there exists 9 E Sym(w) such 
that 9(2n) = qo(n) for all n. By Claim 1.5, there exists f E C such that 9 -<* f-  But 
then ~(n) = 9(2n) <_ f o d(n) for all sufficiently large n, which is a contradiction. [] 

So the order relationships between the cardinals mentioned above are given by 
the following diagram, where ~ ~ A means that t~ < A is provable in ZFC. 

, d , 2  

T T 
~ 1  ) b 

The results in [4] and [10] show that no further theorems are provable in ZFC, except 
possibly for one which relates b and c(Sym(w)). The next two results rule out this 

possibility. 

Theorem 1.6. Wl = c(Sym(w)) < b = d = 2 ~ is consistent with ZFC. 

Proof Let M ~ M A  + -~CH. Then M ~ b = d = 2 ~. Let B be the measure algebra 

corresponding to the product measure space ~1 {0, t}. (See Jech [6].) For each c~ < wl, 
let B~ be the measure algebra of  '~{0, 1}. Let H be an M-genetic ultrafilter on /3 .  It 
is well known that M[H] ~ wl < b = d = 2 ~. For each c~ < wl, let H a  = H N/3~ 

and let G~ = Sym(w) N M[H~]. Then Sym(~) n M[H] = U~<,~ Gc~, and each G~ 
is a proper subgroup of  Sym(w) n M[H]. Thus M[H] ~ c(Sym(w)) = wl. [] 
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Theorem 1.7. W 1 : b < c(Sym(w)) = we = 2 ~ is consistent with ZFC 

In Sect. 4, we will use a countable support iteration of  proper forcings to prove 
Theorem 1.7. The forcing notions, which are the individual steps in our iteration, will 
be discussed in Sects. 2 and 3. 

Our notation follows that of  Kunen [8]. Thus if ~ is a notion of  forcing and 
p, q E P, then q _< p means that q is a strengthening of  p. If  V is the ground model, 
then we often denote the generic extension by V t if we do not want to specify a 
particular generic filter G C ~. If  ~ is a P-name, then (? )c  denotes the element of  
V[G] which "~ names. 

A condition p E ~ is an atom if there do not exist incompatible conditions q and 
r such that q, r < p. P is atomic if for all p E ~, there exists an atom q with q < p. 
In this case, V[G] = V for every generic filter G c_ I?. 

is said to be Ww-bounding if for each 9 E (ww M V ~) there exists f E (~~ fq V) 
such that g <* f .  

If  A and B are sets, then AB = { f l f  : A --~ B}.  We use the convention that if 
9 E Ww, then 9 ( - 1 )  = 0. This is used in expressions such as 
I~n<~o Sym(g(n) \ 9(n - 1)). A subset A of  w is called a moiety if IAI = I w \ A I = w. 

Let U be a nonprincipal ultrafilter on w and let 3"  be the dual ideal. U is a 
p-point if for any partition {Inl n < w} of w satisfying In E 5~ for all n < w, there 
exists X ~ U such that IIn N X[ < w for all n < w. If  there exists X E U such that 
[InnX] < 1 for all n < w, then U is said to be selective for the partition {In[n < w}. 

Let G be a subgroup of  Sym(w), and let {an In < w} be the increasing enumeration 
of  A E [w] ~. G{A} denotes the setwise stabiliser of  A in G, and G(A) denotes 
the subgroup of  Sym(A) which is induced on A by G{A}. If 7r E Sym(w), then 

71" A E Sym(A) is defined by 7rA(an) = a~(n) for all n < w. If  F is a subgroup of  
Sym(w), then F A = {TrAlzr E F}.  If  H and K are subsets of Sym(w), then ( H , K )  
denotes the subgroup generated by the subset H U K.  Similarly, if �9 is a property, 
then (9 E Sym(w)[9 has property ~) denotes the subgroup generated by the subset 
{9 E Sym(w)[9 has property ~}. 

2 A variant of Grigorieff forcing 

In this section, we shall introduce a modified form of Grigorieff forcing, which is 
designed to adjoin a generic permutation 9 : w --+ w rather than a generic subset 
S C_ w. In order to motivate the definition, we shall first point out two unsuccessful 
attempts at making the modification. 

Definition 2.1. Let U be a p-point and let ~ be the dual ideal. Then I?(U) consists 
of  the set 

{p : w ~ wldom(p) E 5 and p E Sym(domp)} 

partially ordered by reverse inclusion. 

Proposition 2.2. ~(U) collapses all cardinals A such that wl < A < 2 ~. 

Proof. Let T = {Tr~]a < 2 ~} be an enumeration of the infinite cycles 7r E Sym(w) 
which act transitively on w. For each a < 2 ~, the set 

= 71"Or } D~ = {p E P(U)[There exists A E [domp] w such that p I A A 
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is dense in P(U).  Let G C_ IP(U) be a generic filter, and let 9 = U G E Sym(w). Then 
for each c~ < 2 ~, there exists A s  E [w] ~ such that g t A s  A~ If  c~ < /3 < 2 ~~ 
then A s  ~ A~ and so A s  N A~ = ~. The result follows. [] 

In order to avoid the above problem, it seems necessary to restrict our partial 
order to those conditions p which are bounded by some fixed function f E wco. 

Definition 2.3. I f  f E woo is strictly increasing, then 

P0(U, f )  = {p E lP(U)lp(n) <_ f (n ) fo r  all n < co}. 

Unfortunately there is now a serious possibility that our notion of forcing has 
become trivial. Define h E ~co recursively by 

h(0) = f (1)  

h ( n + l )  = f(h(n)),  n<co .  

Proposi t ion 2.4. If  U is selective for the partition {h(n) \ h(n - 1)In < co}, then 
]Po(U, f )  is atomic. 

Proof Let p E ]Po(U, f )  be arbitrary. Then there exists B C co \ d o m p  such that 
B E U and IB N (h(n) \ h(n - 1))[ _< 1 for all n < co. Let {bnl n < w} be the 
increasing enumeration of B.  Replacing B by {b2nl n < co} or {b2n+l[n < aJ} if 
necessary, we can suppose that bn+l > f(bn) for all n < co. Extend p to a condition 
q such that d o m q  = co \ B by defining q(m) = m for all m E domq  \ domp.  
Suppose now that r _< q and that {chin < co} is the increasing enumeration of 
C = dom r \ dom q. Then Cn+l > f(en) for all n < w, and so r(m) = m for all 
m C C. Thus q is an atom. [] 

In particular, IPo(U, f )  is always atomic if U is a Ramsey ultrafilter. We are now 
ready to give the correct definition of modified Grigorieff forcing. 

Definition 2.5. Suppose that f E ~oco is strictly increasing, and that U is a p-point 
which is not selective for the partition { f (n )  \ f (n  - 1)in < co}. Then 

P(U, f ) =  {P E P(U)[p(n) << f (n)  for all n < co}. 

T h e o r e m  2.6. ]P(U, f )  is proper and ~co-bounding. 

In the proof of Theorem 2.6, we need the following material from Grigorieff [5]. 

Definition 2.7. Let U be a p-point. 

(a) A is a U-tree if A is a nonempty subset of Seq([co] <~) closed under taking initial 
subsequences. 

(b) If  s E A, then the ramification of A at s, denoted by RA(S), is the set of  all 
a E [ c o ]  <w such t h a t s n  < a >  E A .  

(c) A is a strong U-tree if for each s E A, there exists X c U such that [X] <~ C 
RA(S). 

(d The branch H = (H(n)ln < co) of A is a U-branch if U{H(n) ln  < co} E U. 

T h e o r e m  2.8. [5] If U is a p-point, then every strong U-tree has a U-branch. 

In order to prove that P(U, f )  is proper, it is enough to show that player II has a 
winning strategy in the game ~ .  (See Jech [7].) 
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Definition 2.9. The countable choice game ~ for ]P(U, f )  is defined as follows. 
First player I selects a condition p E P(U, f ) ,  and then player I and II begin to play 
alternatively. At the n th stage of the game for each n < co, player I plays an ordinal 
name 5~n and then player II plays a countable set Bn. Player II wins the game iff 
there exists q _< p such that for all n < co, q lk c~r~ E Bn. 

Proof of  Theorem 2.6 We shall show that player II has a winning strategy in the 
game ~ for F(U, f ) .  Suppose that player I initially selects p E IP(U, f ) .  As the game 
proceeds, player II will construct a U-tree A and a decreasing function Q : A --+ 
]F(U, f )  such that the following conditions are satisfied. 

(2.10) (a) O(r  = p. 

(b) I f  a E [co \ domp]  <w, then (a) c A. 

(c) For every s �9 A, domQ(s)  n ( U R A ( s ) U u s )  = r 

(d) After the (n - 1) st move of player I, player II 

decides which sequences s = ( a 0 , . . . ,  an) 

of  length n + 1 lie in A, and defines the conditions 

Q((ao , . . . ,  a,~-l}) for each sequence 

( a o , . . . ,  a n - l )  �9 A of length n. 

Suppose at the n tu stage that player I plays &n. Then player II proceeds 
as follows. Let s = ( ao , . . . , a ,~ )  E A be arbitrary, and let ms = max(Us ) .  
Since Q((ao , . . .  , a ~ - l ) )  (~ U s = r there exists q' <_ Q((ao, . . .  ,a~_~}) such that 
(co \ dom q ' ) n  ( f ( m s ) +  1) = U s. 

Thus if r <_ q' satisfies U s c d o m r ,  then r r U s �9 Sym (Us) .  Let {Tri]0 < 
i _< t} enumerate those elements 7r �9 Sym (U s) such that ~r E ]P(U, f ) .  Choose 
inductively conditions q' >_ qo >_ �9 �9 �9 >_ qt and ordinals /3o, . . . , /3 t  such that for each 
0 < i < t  

(2.11) (a) dom (q0 n LJ  s = r 

(b) q~ U 7ri l i- Sen =/3/. 

Now define RA(S) = [co \ (U s u dom qt)l <"~, Q(s) = qt and Bs = {/3il0 < i < t}. 
Notice that Q(s) IF- &~ �9 Bs. Also co -, (U s U dom qt) �9 U, and so A will actually 
be a strong U-tree. Finally player II plays 

B,~ = {/31 There exists s = (a0 , . . .  ,an} �9 A such that/3 �9 Bs}. 

We shall now show that player II wins the above play of the game ~ .  By The- 
orem 2.8, A has a branch H = {a,~fn < co} such that U~E~oa~ E U. Let 
q = U,~c~ Q( (ao , . . . ,  an)). Then dom q M Un~o as  = r and it follows easily that 
q E IP(U, f ) .  Also for each n < co, 

q <_ Q( (ao , . . . ,  an))It- 6~ �9 B(,~ o ....... ) c B~. 

This completes the proof that F(U, f )  is proper. 
Finally we prove that ~(U, f )  is ~co-bounding. So suppose that p I~- h �9 ~co. Then 

we can consider a play of the game ~ in which player I plays p and 53 = h(n) for 
n < w. The above argument yields a condition q <_ p and a sequence of finite sets 
B(ao ..... a~) C w for n < co such that q 1~- For each n < w, /~(n) �9 B(a o ......... ). The 
result follows. [] 
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Definition 2.12. If g c ~w is strictly increasing, then 

Pg = H~<~Sym(Fn),  where F~ = g(n) \ g(n - 1). 

P(U, f )  was designed so that the following density condition would hold. 

L e m m a  2.13. Suppose that 9 c ~w is strictly increasing and that p E ~(U, f). Then 
there exists J E [w \ domp] W such that 

(2.14) p U ~r E ]P(U, f )  for all 7r E PJ.  

Proof We shall make use of the following result. 

Claim 2.15. Suppose that {a,~l n < w} is the increasing enumeration of A E U. Then 
for all t, j < w there exists m < w such that j < m and am+~ < f(a,O. 

Proof of  Claim 2.15. Let A E U, and suppose that the result fails for some ~, j < w. 
Then we clearly have that I A n ( f ( n )  \ f ( n  - 1)) I < t for all sufficiently large n < w. 
But this implies that U is selective for the partition {f(n)  \ f ( n  - 1)In < w}, which 
is a contradiction. [] 

Let p E IP(U, f )  and let {anln < co} be the increasing enumeration of A = 
w \ domp. Using Claim 2.15, we can construct a sequence of finite subsets of A by 
induction 

Bo, Co, B 1 , C t , . . . , B n ,  Cn , . . .  n < w 

which satisfies the following conditions. 

(2.16) (a) max(Bn) < min(C~) < max(C~) < min(Bn+l). 

(b) IBn[ = IC~[ = g(n) - g(n - 1). 

(c) max(B~) < f(min(Bn)).  

(d) max(Cn) < f(min(Cn)). 

If  U~<~o Bn ~ U, then we can take J = U~<~o B,~. Otherwise, we can take J = 
U,,<~, on. 

Next we shall explain the manner in which modified Grigorieff forcing will be 
used in the proof of Theorem 1.7. Assume that the continuum hypothesis holds in 
the ground model V. Let So c {~ < wzIef(oO = wl} be a stationary subset of 
w2. Let d E '~ be defined by d(n) = 2n. We shall define by induction a countable 
support iteration of proper forcings (IPa, < w2> such that for each a < w2, 
1Pc~ IF Iq)~l = 2 ~. Then Shelah III 4.1 [11] implies that for each a < wz, ]P~ IF CH.  
Thus, by Booth [2], we see that for each a < w2, I?~ IF There exists a p-point U~ 
which is not selective for the partition {d(n) \ d(n - 1)In E w}. So we can define 
0 ~  = ]P(D-~, d) for each a C So. (We shall specify Qc~ for a E w2 \ So in the next 
section.) Let H C_ ]P~2 be a V-generic filter. 

Theorem 2.17. With the above assumptions, suppose that V[H] ~ c(Sym(w)) = wl. 
Then the following statement is true in V[H]. 

(2.18) It is possible to express Sym(w) = Ui<wl Gi as the union of an increasing 
chain of proper subgroups such that for each strictly increasing 9 E ~w, there exists 
i < w~ with Pg <_ Gi. 
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Proof We shall work inside V[H]. Suppose that c(Sym(w)) = co~. Express Sym(w) = 
[-Ji<~ol/~i as the union of  an increasing chain of proper subgroups. 

C la im 2.19. For each strictly increasing 9 E %a and moiety A, there exists i < wl 
such that p A  < FdA). 

Proof of Claim 2.19. Suppose that the result fails for 9 E ~~ and A. For each i < wl, 
choose rri E Pg such that ;r A ~ FdA).  Let H = (Th[i < wl). 

Then H A ~ F d A  ) for all / < wl. If  B is a second moiety, then there exists 
g) E Sym(w) such that ~ r A is an order-preserving bijection between A and B. It 
follows that for all moieties B and all i < co~, H u f l 'i(B). 

For each a < w2, let H a  = H N P~. Using Lemma 5.10 [1], we see that there 
exists an wl-closed unbounded set C c_ w2 such that for all a E C 

(2.20) (a) 17, (V~ M V[H~]Ii < Wl) E V[H~];  

(b) for each moiety B E V[H~] and i < wl, 

F~(B) o V[H~] = (F~ 0 V[H~])(B). 

Hence there exists a E C M So. Let Us E V[Ha] be the p-point such that (Qa)H~ = 
F(Ua,  d). Since I IB f Fi(B) for all moieties B and all i < wl, Lemma 2.13 implies 
that for all i < wl, the set 

Di = {p E ]F(U,~, d) t There exists a moiety B and an element 7v E H such that 

P I B = re B 6 (Fi 0 V[H~])(B)} 

is dense in P(U~, d). Thus D(U~, d) adjoins a permutation ~ such that for all i < 
wl, there exists a moiety B E V[H~] and a 7r E /7 such that ~ [ B = rr B 
(I'~ 0 V[H~])(B). But this contradicts (2.20)(b). [] 

Fix a moiety A, and consider Sym(A) = Ui<~ol Fi(A). Using Lemma 2.4 [9], we 
see that each F d A )  must be a proper subgroup of Sym(A). So the result follows 
easily from Claim 2.19. [] 

We end this section with a group-theoretic result which is also needed in the proof 
of  Theorem 1.7. 

Definition 2.21. If  g~ E ~~ is strictly increasing, then 

S~ = (Tr E Sym(w)lTr, 7r -1 _<* qo). 

Proposition 2.22. Suppose that Sym(w) = l.Ji<~o~ G~ is an increasing chain of sub- 
groups such that for each strictly increasing g E ~w, there exists i <col such that 
Pg < Gi. Then for each strictly increasing ~o E ~w, there exists i <col such that 

We shall make use of  the following result. 

L e m m a  2.23 (10). Suppose that f E Ww is strictly increasing and that rr E Sym(w) 
satisfies: 
(2.24) for all n < w, if g E f (n)  then re(g), 71"--1(/~) E f ( n  + 1). 

Then rc E (Pho, Ph, ), where ho, hi E Ww are defined by ho(n) = f (2n )  and hi (n) = 
f (2n  + 1). [] 
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Proof of Proposition 2.22. For each t < co, define ~Pt E wco by ~t(r~) = ~(n  + t ) ,  and 
define ft  c ~co recursively by 

ft(0) = 0 

f t (n  + 1) = the least m > f t (n)  such that 

~t(g) E m for all g E f t(n) .  

I f  7r, 7r -1 <* ~, then there exists t < co such that :r(g), 71"--l(g) ~ ~Ot(g ) for all g < co. 
This implies that if n < co and g E ft(n), then 7r(g), 7r-l(g) < cpt(g) E ft(i~ + 1). So 
the result follows from Lemma 2.23. [] 

3 Products of Mathias forcing 

In [3], Canjar proved that if d = 2 ~~ then there exists an ultrafilter U on co such that 

its associated Mathias forcing Qcr does not adjoin a dominating real. We shall use a 
carefully chosen sequence of such Mathias forcings to eliminate chains of length wl 
which satisfy the conclusion of Proposition 2.22. 

Definition 3.1. Let U be an ultrafilter on co. The associated Mathias forcing Q u  
consists of  all conditions p = (s, A) such that 

(i) s : n ~ co is a strictly increasing function for some n < w; 
(ii) A E U. 

We define (t, B)  < (s, A) iff 
(iii) t _ D s a n d B C _ A ;  
(iv) ran t \ ran s C__ A. 

Suppose that G C Q u  is a generic filter, and let 0 = U{sl There exist A E 
U such that (s, A) E G} be the corresponding Mathias real. For each A E [co]w, let 
eA E wco be the function such that {eA(n)[n < co} is the increasing enumeration 
of A. Then it is easily checked that eA <_* O for all A E U. This suggests that we 
consider the following subgroups of Sym(w) in the ground model. 

Definition 3.2. If  ~ "  is a nonprincipal filter on w, then 

S y = (Tr e Sym(co)lTr, 7r -1 <* eAfor some A E .~ 

Example 3.3. 5~  is said to be rapid if for each f C ~oco, there exists A c ~ -  such 
that f <_* eA. Clearly if J is rapid, then S~r = Sym(w). 

Example 3.4. Let V be the ground model. Suppose that Q~r does not adjoin a domi- 
nating real. Thus for all/z E ~ w N V  Qv, there exists f E ~~ such that f f * /~ .  Let 
0 E V Qe = V[G] be the Mathias real which is adjoined by Q o'. For each 1 <_ n < w, 
let 0,~ = 0 o . . .  o 0 be the n-fold composition of g- Choose h so that 9n <-* h for all 
n < co. Arguing as in the proof of  Claim 1.5, we see that if 7r E Su  then 7r _<* 0n for 
some n < co. By assumption, there exists f E ~w n V such that f f *  /~. It follows 
easily that Su 5 t Sym(co) in the ground model V. 

The remainder of this section is devoted to the proof of  the following result. 
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Theorem 3.5. ( C H )  Suppose that F C ~w is an unbounded family. Then there exist 
ultrafilters U0, U1 on co such that the following conditions are satisfied. 

(3.6) (a) For each i E {0, 1}, Qu~ It- F remains unbounded. 

(b) (SUo, Slu~} = Sym(co). 

Our proof will follow that of Canjar [3] quite closely, but with a few extra ingre- 
dients. The following definitions are taken from [3]. 

Definition 3.7. P denotes the set of  finite strictly increasing functions s " n --+ co for 
some n < ~. If  A C co and s, t E P ,  then we will write t < (s, A) to indicate that 
s U_ t and ran t  \ rans  C_ A. 

Throughout this section, a name 7. in the Qu-forcing language will be called a 
term iff 7. is a Qu-name for an element of ~co. 

Definition 3.8. A preterm is a partial map from P x co into co. If  U is an ultrafilter 
and 7. is a term in the Qu-forcing language, then the preterm ? for 7" is the partial 
map given by ?(s,  n) = k iff there exists A E U such that (s, A)IF- 7"(n) = k. 

Definition 3.9. A preterm ~ is said to be complete over a set A C_ a: if whenever 
A = Ui<k Ai is written as a finite union of sets, then there exists an i < k satisfying 
the following condition. 

(3.1o) For all s E P and n < co, there exist t < (s, A 0  

and m < co such that ?(t,  n) = ra. 

A preterm ~ is complete over a family of sets iff it is complete over every set in the 
family. 

Lenlma 3.10 (3). I f  U is an ultrafilter and ? is the preterm for  some term 7. in the 
Qu-forcing language, then ? is complete over U, and hence also over every subfamily 
of U. 

In the rest of  this section, we regard 5~(co) as a topological space by identifying 
~(co)  with the space ~2 equipped with the product topology. The ultrafilters U0 and 
U1 will be constructed simultaneously as the unions of wl-length chains of filters, 
each of which is a-compact.  (A subset E of  a topological space is a-compact  if E 
is a countable union of  compact sets.) Notice that a filter is a-compact  iff it has a 
a-compact  generating set. 

The next result is a slight variation of Lemma 16 [3]. 

Lemma 3.11. Suppose that F c_ ~co is an unbounded family, J is a a-compact filter 
and ? is a preterm which is complete over a-j-. Then there exists a a-compact filter 
.SW r D_ ~ -  and an f C F with the property that if  U D_ 37 rt  is any ultrafilter and 7. is 
any term in the Qu-forcing language whose preterm is r then Qu  I~- f f *  3". 

Proof  Let P = {sill < co} be a fixed enumeration. For each j, n, k < co and s E P,  
define 
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Thick(s, n, k) = {A C w I There exists t < (s, A) and 

i < k such that ~(t, n) = i} 

Thin(s,  n, k) = ~ ( w )  \ Thick(s, n, k) 

Bad(j,  k) = {B C_ w I There exist m _< j and i 0 , . . . ,  ir~-I < j 

such that B = U Be for some 
g<rn 

Be E Thin(si~, j, k)} 

Members of  Thick(s, n, k), Thin(s,  n, k) and Bad(j, k) will be called (s, n, k) - 
Thick, (s, n, k) - Th in  and (j, k) - Bad sets respectively. Notice that Thick(s, n, k) 
is always open, and hence Thin(s ,n ,  k) and Bad(j, k) are always closed. Also 
Thick(s,  n, k) is closed under superset, and so Thin(s, n, k) is closed under sub- 
set. 

By Lemma 18 [3], given j < co and a compact family K C ~(co)  such that 
is complete over K ,  there exists k < co such that no A E K is (j, k) - Bad. Let 
~  = Un<~ Kn,  where each K~ is compact. For each n < co, there exists a function 
hn E wco such that 

(3.12) for all A E Kn  and j < co, A is not (j, h,~(j))-Bad. 

Choose h c ~oco such that h~ _<* h for all n < co. Since F is an unbounded family, 
there exists f E F and S E [co]~o such that h(n) < f(n)  for all n E S. Define 

I[f] = {B C_ col There exists s E P and m < co such that for all 

rn < n E S, B is (s, n, f (n))  - Thin} .  

Then I[f] is a-compact  and is closed under subset. We will let ~ be the a-compact  
filter generated by ~ U {co \ BIB E I [ f ] } .  First we must check that this family 
has the Finite Intersection Property. If  not, then there exists a set A E ~ -  and a 
fin.te subfamily {Bkl k < n} C I[f] such that A = Uk<~Bk. For each k < n, 
there exists sik E P and m k <  co such that Bk is (sik, m, f (m))  - Th in  for all 
m k <  rn E S. Let A E Kr .  Choose j E S such that hr(J) <- h(j) < f ( j )  and 
j > max({n} U {mkl k < n} U {iklk < n}). Then each Bk is (sik,j ,h~(j)) -- Thin,  
and hence A is (j, hr(j)) - Bad. This contradicts (3.12). 

Finally suppose that U __ .~'~ is an ultrafilter and that ~- is a term in the Qu-  
forcing language whose preterm is ~. We check that Q u  IF f f *  ~-. Suppose that 
m < w and that ( s , E )  E Qu.  Then E ~ I[f] and so there exists m < n E S such 
that E is not (s, n, f (n))  - T h i n .  Thus there exists t < (s, E)  and i < f (n)  such 
that ~(t, n) = i. So for some B E U, (t, B) IF- ~-(n) = i. Then (t, B C? E) < (s, E) and 
(t, B n E) IF- T(n) < f(n).  Thus ~ t  and f E F satisfy our requirements. [] 

Notice that if U is an ultrafilter on co and A E U, then Pea <- Su. 

L e m m a  3.13. Let o~ and ~ be a-compact filters, each of which includes the filter 
of cofinite sets. If  g E ww is strictly increasing, then there exist sets A, B c [co]~ such 
that the following conditions are satisfied. 

(3.14) (a) P9 <- {PeA,PeB) ; 

(b) {A} U o ~  and {B} U 

have the Finite Intersection Property. 
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Proof For each j E {0, 1}, let ~ = Ut<~ Kt  j, where each Kt  j is compact. We 
shall inductively define integers an and bn for n < co, so that A = {anin < co} and 
B = {bn ]n < w} satisfy our requirements. At the 0 th stage of the construction, we set 
go = 0 and bo = 0 < ao = 9(1). Suppose that we have just completed the n th stage for 
some n > O. 

Case 1. n = 2t is even. 

Suppose inductively that we have defined ai, bi for i _ gn, and that ben < a t , .  If  
C C K ~ then C is infinite and hence there exists k < co such that (k \ (at~ + 1)) N C :/  
r Since K t  ~ is compact, there is a fixed k < co such that (k \ (at,, + 1)) N C -7 ( r for 
all C E K t  ~ Let k = at~ + r. Then we set gn+l = gn + r - 1, and at..+~ = at ,  + s 
for 1 _< s < r. Let m be the least integer such that 9(m) > ae,.~. Then we set 
bt,~+~ = 9 (m  + s - 1) for 1 _< s < r. Note that ae,.~ < bt~§ 

Case 2. n = 2t + 1 is odd. 

Suppose inductively that we have defined ai, bi for i _< gn, and that at,~ < bt~. 
We proceed as in Case 1 with the roles of  A and B reversed. At this stage, we ensure 
that B n C --/r for each C c Kt  l . 

This completes the construction of A and B. It is clear that both {A} U o ~  and 
{B} U ~ have the Finite Intersection Property. Let ran, n < co, be the strictly 
increasing sequence defined by 9(m2t) = ae~ and 9(m2t+l) = be~+j for t < w. Define 

L = {n I There exists t < co such that m2t _< n < m2t+l} 

and 
R = {n] There exists t < co such that m2t-1 <_ n < mat}. 

(Here we set m_a = 0.) Then we see that 

I - I  Sym(g(n + 1) ,, g(n)) < PeB 
nEL 

and 

l - I  Sym(g(n + 1) \ 9(n)) <_ PeA" 
nER 

Thus P9 <- (PEA, Pr ), as required. [] 

Proof of  Theorem 3.5. (CH)  Let {~ala  < Wl} be the set of  all preterms, and let 
{9aia  < Wl } be the set of  all strictly increasing g C ~w. Using Lemmas 3.11 and 3.13, 
we can construct smooth increasing sequences of  a-compact  filters ( ~ J  ]a < Wl) for 
j E {0, 1} such that the following conditions are satisfied. 

(a) ffoo ~ = o~o 1 is the filter of  cofinite sets. 
(b) There exists A s  c ff~0+l and B~ E ~1+,  such that Pg~ <_ (PeA,~, P~B~ ). 
(c) For each j c {0, 1}, if ~ is complete over o~-j, then there exists f~  E F such 

that if U D ~ + 1  is any ultrafilter and ~- is any term in the Qu-forcing language 
whose preterm is P~, then Q u  IF f J  ;~* ~-. 

Finally for j c {0, 1}, let Uj be any ultrafilter which includes U~<~o, 5wj.  Using 
Lemma  2.23, we see that Uo and U1 satisfy our requirements. [] 
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4 The  p roof  of  T h e o r e m  1.7 

Throughout this section, V denotes the ground model. We shall make use of  the 
following result of  Shelah, which is a special case of  Lemma 1.13 [12]. 

L e m m a  4.1. Suppose that (]Pc,, Qala < )~) is a countable support iteration of proper 
forcings of limit length ;~. If for each a < )~, 

then also 

IP~ Ik ww n V is an unbounded family 

IPA IF ~ w N V is an unbounded family. 

We suppose that the continuum hypothesis holds in V; and that 
{O~ < CO2[cf(oz ) = C01} = S 0 II ~-'~1 is a partition into two stationary subsets of 032 
such that ()~o2($1) holds. We shall define by induction a countable support iteration 
of proper forcings (IP~,0alc~ < w2) such that for each c~ < w2, 1?~ Ik [Q~I = 2% 
Remember  that this implies that for each ce < co2, ]P~ It- CH. We shall also assume 
inductively that 
(4.2) ]?c~ IF ~~ N V is an unbounded family. 

Lemma 4.1 deals with requirement (4.2) at limit stages of  the construction. Suppose 
then that IP,~ has been defined. 

Case 1. c~ ~ $1. 

Then, as described in Sect. 2, we can choose Q~ = P(Cr~, d) for some p-point 
(f~ E V ~ .  By Theorem 2.6, P~ Ik q)~ is %o-bounding. Hence c~ + 1 also satisfies 
(4.2). 

Case 2. a E $1. 

Using ()~2($1), we choose a chain of proper subgroups, Sy_m(w) N V r~ -- 
U~<~o~ G~, inside V ~ .  By Theorem 3.5, there exists an ultrafilter U~ E V ~ such 
that 

(4.3) (a) Qcr~ IF %0 N V remains unbounded; 

(b) for all i < col, SOs n V r~ f G~. 

We define Q~ = Qo~.  Again o~ + 1 satisfies (4.2). 
This completes the construction of our notion of forcing. Let H C_ P~o2 be a 

V-generic filter. By Lemma 4.1, "w O V is an unbounded family in V[H]. Hence 
V[H] ~ b = col. Also a standard argument shows that V[H] N 2 ~ = co2. Thus it only 

N 

remains to prove that V[HI ~ c(Sym(co)) = w2. 
From now on, we shall work inside V[H]. Suppose that c(Sym(w)) = wl. By 

Theorem 2.17 and Proposition 2.22, it is possible to express Sym(co) = U~<w~ G~ 
as the union of an increasing chain of proper subgroups such that for each strictly 
increasing ~ E ~w, there exists an i < wl such that S~o _< Gi. For each c~ < w2, 
let H a  = H n IP~. Using Lemma 5.10 [1], we see that there exists an col-closed 
unbounded set C C_ w2 such that for all c~ E C, (Gi N V[Hc,]li < wl) C V[H~] is a 
chain of  proper subgroups of Sym(w)N V[H~]. By ()~o2 (S~), we can assume that there 
exists a E S 1 n C such that (G~ n V[H~]Ii < o31) -- (G.~li < r Let Us c V[H~] 
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be the ultrafil ter such that (~o~)H,~ = ~Uo~. Then Su~ (1 V[H~] ~ Gi M V[H,~] for 
all i < a~l. H o w e v e r ,  Qcr,  adjoins a strictly increasing ~ E ~~ such that Scr~ _< S~.  

N o w  there exists i < col such that Se <_ Gi, and hence Str~ n V[H,~] <_ Gi N V[H,~]. 
This is a contradict ion,  and so we  must  have  that c(Sym(w))  = a~2. This  comple tes  
the p roo f  o f  T h e o r e m  1.7. 

References 

1. Blass, A., Shelah, S.: There may be simple P~I- and PR2-points and the Rudin-Keisler ordering may 
be downward directed. Ann. Pure Appl. Logic 33, 213-243 (1987) 

2. Booth, D.: Ultrafilters over a countable set. Ann. Math. Logic 2, 1-24 (1970) 
3. Canjar, R.M.: Mathias forcing which does not add dominating reals. Proc. Amer. Math. Soc. 104, 

1239-1248 (1988) 
4. van Douwen, E.: The integers and topology. In: Kunen K., Vaughan J. (eds.) Handbook of Set Theoretic 

Topology. Amsterdam: North-Holland 1984, pp. 111-167 
5. Gregorieff, S.: Combinatorics on ideals and forcing. Ann. Math. Logic 3, 363-394 (1971) 
6. Jech, T.: Set theory. New York London: Academic Press 1978 
7. Jech, T.: Multiple Forcing. Cambridge University Press 1986 
8. Kunen, K.: Set Theory. Amsterdam: North-Holland 1980 
9. MacPherson, H.D., Neumann, P.M.: Subgroups of infinite symmetric groups. J. London Math. Soc. 

42(2), 64-84 (1990) 
10. Sharp, J.D., Thomas, S.: Uniformisation problems and the cofinality of the infinite symmetric group. 

Preprint (1993) 
11. Shelah, S.: Proper forcing, Lecture Notes in Math. 940. Berlin: Springer 1982 
12. Shelah, S.: On cardinal invariants of the continuum. In: Banmgartner, J., Martin, D.A., Shelah, S. (eds.) 

Axiomatic set theory. Contemporary Mathematics, vol. 31. AMS, Providence, RI 1984, pp. I83-207 


