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Abstract. This paper presents a novel approach to processing 
encoded video sequences prior to complete decoding. Scene 
changes are easily detected using DCT coefficients in JPEG 
and MPEG encoded video sequences. In addition, by analyz- 
ing the DCT coefficients, regions of interest may be isolated 
prior to decompression, increasing the efficiency of any sub- 
sequent image processing steps, such as edge detection. The 
results are currently used in a video browser and are part of 
an ongoing research project in creating large video databases. 
The procedure is detailed with several examples presented and 
studied in depth. 
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1 Introduction 

For systems incorporating encoded video, such as video edit- 
ing systems, various multimedia authoring systems, video- 
based training systems, and video on demand systems, the 
ability to manage video efficiently is critical. Although many 
of these systems incorporate many other types of media as 
well, management of video is particularly challenging be- 
cause of the vast volume of data associated with it - many 
megabytes of data per minute. The initial steps taken in solv- 
ing the video management problem have either relied on labor 
intensive techniques, such as manually entering key words to 
describe the video contents, or on simple image-processing 
techniques, such as analyzing histograms. These approaches 
are neither close to ideal, nor are they efficient in their tasks. 
Key words have many drawbacks [3], such as inadequate 
choice of terms to use at search time, the context in which 
the words are used, and the influence of the operator, while 
image processing steps cannot be efficiently applied to the 
hundreds of thousands of images that are usually associated 
with video. This paper presents techniques aimed at the man- 
agement of encoded video, such as MPEG [6], JPEG [21], 
and H.261 [10], which overcome the limitations of traditional 
image-processing steps, while enhancing key word-based ap- 
proaches currently in wide use. 
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Subtasks of video management include the ability to locate 
a particular video sequenc quickly - high-level video man- 
agement - and the ability to view particular points of interest 
within the video sequence- low-level video management. The 
need for management of video exists in many domains from 
TV news organizations where these capabilities are critical, to 
home video libraries where these capabilities would be very 
useful. The focus of this paper is on low-level management 
techniques for digital video. Currently, the most widely used 
search technique is to fast-forward and rewind to arrive at the 
point of interest; this technique is slow and inefficient. More 
recently, image-processing techniques have been developed to 
operate on digital video in order to facilitate this task. The first 
step in solving this problem is to "divide" the video sequence 
into meaningful segments much like a book can be divided 
up into sentences. In video, the logical point to partition the 
video sequence is where the contents of video "change" from 
one frame to the next - referred to as a scene change. 

Specifically, this paper presents a novel approach to ef- 
ficient processing of encoded video for detecting both scene 
changes of a video sequence and regions of interest within each 
video frame, which can be used in high-level video manage- 
ment modules. It is reasonable to assume the input to the sys- 
tem is encoded since digital video requirements for storage and 
communication are extremely high; hence, many standards for 
video encoding have been developed and are currently in use. 
Our approach, selective decoding, takes advantage of the in- 
formation already encoded in a DCT-based compressed video 
data, and performs many processing steps needed on every 
frame of a video sequence prior to full decompression. DCT 
coefficients are analyzed to detect scene changes systemati- 
cally - referred to as frame selection (see Fig. 1). In the past, 
expensive operations, such as color histogram analysis, have 
been performed on every frame to achieve scene change detec- 
tion [ 12]. Histogram-based procedures require over 105 opera- 
tions per video frame and at least an additional 103 operations 
for comparing the histograms, unlike our procedure which re- 
quires many orders of magnitude fewer operations per pair of 
frames. Once a representative frame has been selected, subre- 
gions of the frame may be chosen by further analysis of the 
DCT coefficients to yield regions of interest which are defined 
a priori. Frame selection and region selection steps result in 
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conventional technique: decoding and low 
level processing is performed on every frame. 

selective decoding technique: encoded frames are pro- 
cessed and only areas of  interest within certain frames are 
decoded for higher level  processing resulting in savings in 
computational costs and in execution time. 

decoding processing 

Fig. 1. Conventional technique of using encoded video sequences 
compared to selective decoding technique 

a significant reduction of pixels that need to be processed in 
subsequent steps, translating into faster processing speeds. 

The paper is organized as follows: Sect. 2 briefly surveys 
previous approaches related to feature management in dig- 
ital video; Sect. 3 presents the selective decoding approach 
in-depth. Section 4 outlines our approach to browsing video 
sequences, and Sect. 5 presents the concluding remarks. 

in encoding each frame. This approach works only with JPEG 
sequences (the coder for fixed bit rate MPEG sequences, for 
example, will maintain a constant number of bits per second). 
Our experiments show that the success rate of this approach 
is low and must be combined with other approaches for an 
effective system. 

As mentioned in the introduction, DCT coefficients are 
used in our system to perform scene change detection and other 
low-level video processing. The use of DCT coefficients prior 
to decompression has been attempted in other applications. 
Hsu et al. [7] use DCT compressed images in a military target 
classification system to discriminate between man-made and 
natural objects. The Bhattacharyya distance discriminator [5] 
is used to measure and rank numerous statistical calculations 
derived from the DCT coefficients, which is in turn used in the 
decision-making process. 

More recently, Smith and Rowe [ 16] extended many prop- 
erties of the cosine/Fourier transform and used the DCT co- 
efficients to perform several algebraic operations on a pair of 
images. Scalar addition, scalar multiplication, pixel-wise ad- 
dition, and pixel-wise multiplication operations on two images 
were defined using the DCT coefficients; these operations may 
be used in video editing systems to perform such tasks as dis- 
solving and subtitling. 

2 Previous approaches 

Past research work related to low-level video management has 
concentrated on the parsing of video sequences into video 
shots. 1 In most cases, the logical parsing point is a change 
in the camera viewpoint or a change in the scene. Usually, the 
histogram of each scene is generated and a large change in the 
histogram from one scene to the next is used as a cutting point 
[19] (see also [13]). Ueda et al. [20] suggest the use of the rate 

of change of the histogram instead of the absolute change to 
increase the reliability of the shot parsing mechanism. Ueda et 
al. also consider zooming and the panning of the camera; each 
video frame is divided into a number of non-overlapping small 
regions, and in each region the optical flow of pixels belonging 
to that region is approximated and classified into zooming and 
panning of the camera. This information is then stored along 
with each shot. 

Nagasaka and Tanaka [ 12] studied various measures to de- 
tect scene changes. The best measure, according to their stud- 
ies, is a normalized X 2 test to compare the distance between 
two histograms. Additionally, to minimize the effects of cam- 
era flashes and certain other noises, the frames are each divided 
into several subframes. Then, rather than comparing pairs of 
frames, every pair of subframes between the two frames is 
compared, the largest differences discarded, and the final deci- 
sion is based upon the differences of the remaining subframes. 

Little and Venkatesh [11] have proposed a method that de- 
tects scene changes based on the number of bytes that are used 

1 In this paper, we define a video shot as a subset of a video 
sequence that begins with a scene change or a video cut and ends 
with the frame before the next scene change. 

3 Low-level video processing 

The principal goal of the low-level video processing is to se- 
lect a frame to serve as the representative for each "shot" of 
the video sequence. The representative frames are then used in 
any higher-level processing that may be necessary. Browsing 
video sequences, for example, may be achieved by viewing 
the representative frames of a video sequence. Relating video 
shots from various video sequences based on shape or color 
content, for example, may also be achieved by using only the 
representative frames. The computational efficiency of infer- 
ring representative frames, or detecting scene changes, is of 
critical importance since it is performed on each frame of the 
video sequence (usually on the order of tens of thousands). 
Therefore, classical image processing measures of similarity, 
such as template matching, are not suitable in this case. 

In the selective decoding approach, scene-change detec- 
tion is performed using the DCT coefficients in the MPEG- 
or JPEG-encoded video sequences. Only certain blocks of the 
encoded frames are monitored over time. Also, using only a 
few of the DCT coefficients of each selected block, a vector 
is formed that is used in detecting any changes in the con- 
tents of the frames. As mentioned in Sect. 2, most previous 
attempts to scene change detection use color histograms. Al- 
though this procedure is simple, it is a time-consuming step. 
For example, if each frame is 320 x 240, each histogram cal- 
culation would take roughly 230,000 additions (256 x 256 x 3 
colors) and 76,000 increments (to scan each frame), totalling 
over 105 operations per frame and an additional 103 operations 
for comparing a pair of histograms. Instead, our approach re- 
quires several orders of magnitude fewer oprerations per frame 
comparison. 
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3.1 Frame selection in DCT domain 

We use the information already encoded in the compression 
process prior to decompression to take advantage of several 
facts. First, the computational cost of  decompressing every 
frame would not be necessary and could be saved if only a se- 
lected number of  frames are chosen for further processing or 
browsing prior to decompression. Second, coefficients in the 
frequency domain are mathematically related to the spatial do- 
main, and they may be directly used in detecting changes in the 
video sequence. Third, the knowledge of the block's location 
preserves spatial domain information to a certain extent. 

The procedure is as follows: for JPEG movie files, entropy 
and dequantization steps are performed to arrive at the DCT 
coefficients for each frame. Similarly, for MPEG sequences 
the frame types are identified, and the entropy and dequanti- 
zation steps are performed for / frames. The remaining data 
are discarded in B and P type frames. Then, given the series 
of 8 x 8 DCT blocks /3i, 0 < i < # (where # is the to- 
tal number of blocks), in a single DCT-based encoded video 
frame f ,  a subset of  blocks/~j, 0 < j < 6, ~ << #, is chosen 
a priori. The subset of  blocks is chosen such that they cor- 
respond to n connected regions in each frame of the video 
sequence. The regions are the same in both frames under ex- 
amination. Next, of  the 64 coefficients in each block, c~ are 
chosen: f~j = {cz, cy, c x , . . . }  where cz is the z tu coefficient 
and the cardinality of f2j is c~. Again, the members of the set f~ 
are the same in both frames under examination. The c~ coeffi- 
cients may or may not be randomly distributed among the AC 
terms of the blocks. Using the coefficients from each frame f 
a vector V f = {el, c2, c 3 , . . . ,  ck} is formed, where k = c~Q. 
Only the blocks in the set/~j contribute to V f .  This vector then 
represents frame f of  the video sequence in the DCT space. 
The determination on whether two scenes ~ frames apart are 
dissimilar is achieved in this space. The representations of  each 
two consecutive frames V f  and Vf+~ are compared using the 
inner product: 

V f  �9 VI+~ 
r  f + qo) - Ivf Hv- . l ' 

We can assume a change of  scene in the video sequence from 
frame V I  to frame Vy+~o if 1 - Ir > r l ,  where 0 << 7-1 < 1. 

The above procedure introduced several parameters; their 
effects on the performance of  the scene detection module are 
outlined here. First, ~) determines the number of  blocks that 
are used in the calculations. In general, as O increases more 
accurate detections may result since larger areas are moni- 
tored; however, the higher accuracy is at the expense of more 
computing time. 

Second, n determines how the ~9 blocks are connected in 
forming the connected regions. It is possible to have n = O 
resulting in many regions; however, this approach is very sen- 
sitive to minor camera motion and the minor movements of  
the subjects. On the other extreme, n could be set to 1, i.e., 
the ~ blocks are selected such that they correspond to one con- 
nected region. This approach would not take full advantage of  
the encoded information since most areas of  each frame will 

not be under observation (unless p = # covering the entire 
frame). A better choice would be to have the connected re- 
gions each cover different parts of  the frame. Systems using 
this approach may choose to use any a priori knowledge of  
the particular domain they may have to place the n regions. 
For example, process-control monitoring systems in the man- 
ufacturing environment may be interested only in observing 
product flow portions of  each video frame. 

Third, c~ is the number of coefficients from each block; if 
c~ = 64, then the entire frequency spectrum would be used, 
resulting in high computational expense, but providing an ac- 
curate representation of the spatial domain features. More im- 
portantly, however, are the choices of coefficients as well as 
the number of coefficients. Choosing high-frequency compo- 
nents alone assumes such components would exist in the n 
regions and in all scenes. Therefore, the best approach is to 
distribute the coefficients among the high- and low-frequency 
components. 

The last factor is ~; it dictates the resolution in the temporal 
domain. By letting qo = 1, every frame of the video sequence 
is processed or, alternatively, higher and higher values of  qo 
could be used to cut computational costs in exchange for lesser 
resolution in the temporal domain for detecting scene changes. 
Note that these parameters are the same for the two frames 
under consideration at any time. 

The algorithm applied in our experiments adjusts several 
of  the above parameters dynamically as a function of  the input 
video. Initially, cp is set to a time interval much greater than 
1/30 th of  a second (in our case ~ is initialized to 64 frames or 
about 2 s). Then, if a scene change is not detected it may be 
assumed that in the past 64 frames no change has occurred; 
otherwise, qo is divided into two and ~b is re-calculated between 
the two new, and now closer in time, frames. The operation is 
continued until either no scene changes are detected or ~ = 1, 
whichever occurs first. Under ideal conditions, i.e., periods in 
video sequence with little or no change, such as still graphics, 
this method allows for rapid analysis of  the time period. The 
worst case scenario, if g) = 2 x, then at most 2x + 1 comparisons 
are made - a potential for substantial saving in computational 
expense. For example, if (p = 64 (x = 6), then rather than 
making 64 comparisons, at most 13 are made. In addition, 
the block count parameter, 6, and the number of  coefficients 
per block, c~, could increase as g) decreases to allow for an 
even more accurate representation of  the frames. In our system 
Q = 100 and c~ = 6 at cp > 1, when g) = 1 we set ~ = # (all the 
blocks in the frame are considered) and c~ = 15 to minimize 
the effects of  motion in the scene. Also, in order to minimize 
the effects of T1 on the outcome of  the scene change detection, 
the threshold is initially set low to over-estimate the number 
of  shots. Then, each video cut is examined more closely for 
the scene changes where 1 - I~b(fi, f j)] < T2, and 0 < TI < 
r2 < 1. In other words, if 1 - I~b(f~, fj)] < 71, then there are 
no changes between frame fi  and f j ,  if 1 - [~b(fi, fj)l  > r2 
there is definitely a scene change between frame f i  and fa, 
and finally if 7-1 < 1 - [~b(fi, fJ)l < 7-2, frames f i  and f j  are 
examined by decompressing the two frames and performing 
color histogram analysis (Sect. 3.2, see also [1]). 
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F i g .  2a-c. a The RGB color space, b the HSI color, c color catego- 
rization: each bin is one category 

3.2 Frame-selection refinement using color histograms 

The goal of color histogram analysis is to detect a scene change 
using the color contents of  the given frames. The input to this 
module is a very small subset of  the actual video sequence cho- 
sen using the above DCT-based procedure. Noting that similar 
frames have similar color contents, the color contents of each 
frame may be measured using the color histogram and com- 
pared. 

Prior to deriving the color histogram for each frame, one 
must choose an appropriate color space, which is used to de- 
scribe the color in each frame. The color space used in the sys- 
tem is the hue, saturation, and intensity (HSI), where only the 
hue and saturation information are used (see Fig. 2). The trans- 
formation from the input RGB color space into the HSI color 
space is "similar" to the cartesian-to-cylindrical coordinate 
transformation [ 17]; however, the transformation is non-linear 
and ill-conditioned [8]. For example, black (R = G = B = 0) 
must be handled as a special case. Nevertheless, the HSI color 
space has less of the artifacts that exist in the RGB color sys- 
tem [9]. Furthermore, past studies have shown that the hue of 
object surfaces remains the same under various lighting con- 
ditions [4], and it is possible to quantize the possible number 
of colors in a video frame into a smaller, finite number, a pro- 
cess referred to as categorization [4]. In this process, the entire 
spectrum of computer recordable colors is quantized into 720 
bins - 5  ~ resolution in hue and 10 levels of quantization of sat- 
uration (see Fig. 2). Fathima's studies [4] show that about 200 
different color categories are sufficient to describe the color 
space. Using the HSI color space and the categorization pro- 
cess, a color histogram, which may be assumed to be a surface 
in the 3D space, is desired for each frame of the video sequence. 
To detect scene changes, or changes in the color histograms 
from one frame to another, the two given color histograms are 
subtracted, forming a color-difference histogram. Assuming 
color histogram h is defined as 

hf~(H, S) = E pixels (H, S) 
framei 

the difference histogram is then calculated as 

@,,fj (H, S) = h fi(H, S) - hf~(H, S) 

Similar to color histogram, h, the difference histogram is 
also a surface in the 3D space. To characterize the changes 
evident in the difference histogram, the volume under the ab- 

solute value of the difference histogram surface is calculated 
as follows: 

Af,,S, (H, S) = E 16s,,s, (H, S)l-AH. AS 

where A H  and A S  are the resolutions of the hue and sat- 
uration values during the categorization process. Then, once 
1 - I~b(fi, fJ)l is found to be greater than 7-1 but less than 7-2, 
flames f i  and f j  are decompressed and ~Sy~,yj is calculated. 
Only if Af~,f 5 is greater than 7-3, is the transition between 
flames f~ and f j  flagged as a scene change; otherwise, no 
scene changes are detected. 

3.3 Experimental results 

The above procedure has been fully implemented and tested 
on JPEG- and MPEG-encoded video sequences. MPEG se- 
quences are treated differently in that the B and P frames are 
parsed off and not used; only the I frames are analyzed using 
the above procedure. 

The video sequence types used in the experiments var- 
ied in subject and in settings. They included documentaries 
on wildlife (some underwater), graphics, animation, and news 
broadcasts, which contained an anchor person, outdoor and 
indoor scenes. Various transitions, such as simple cuts, wipes, 
fades, and animated graphics, were included as well. 

Figure 3 exhibits the results of  calculating 1 - I~l for a 
few minutes of a JPEG encoded video of  a news type broadcast 
(see also [2]). In Fig. 3a, the time step, cp, is set to 64. With 
relatively few calculations, several of  the time periods in which 
no transitions occur are identified - most notably from frame 
number 1250 to 1750. As mentioned earlier, cp is divided by 
2 when 1 - I~1 > 7-1 (set to 0.55), and ~b is re-calculated. 
Figure 3b shows the results after several iterations, ~ = 8, 
where many of the transitions have been localized. Figure 3c 
shows the results when cp = 1 where almost all of  the cuts have 
been identified. However, as mentioned earlier, the system only 
accepts video cuts when 1 - I~bl > 7-2 and rejects the cuts where 
1 - I~1 < 7-l. When ~ = 1, 7-a is set to 0.35 and 7-2 is set to 
0.65; video cuts that fall in-between the two thresholds are 
decoded for a color histogram analysis (Fig. 3d), as described 
in Sect. 3.2. Video cuts detected from 1 - I~1 > 7-2 measure 
are combined with video cuts detected for frames A > 7-3 - set 
to 105 (see Fig. 3e and [1]). In the last step, video shots, which 
last less than 1 s (or 15 frames in the example of Fig. 3), are 
merged. 

In the example of  Fig. 3, 32 scene changes actually exist 
- counting the graphics transition from frames 160 to 310 as 
one (Fig. 4). Thirty-one scene changes are detected, as shown 
in Fig. 3e. Of the 31, 28 are correct, 3 came from the graphics 
transition of  frames 160 to 310, and 1 actual scene change was 
missed because the assumption that each shot is 2 s or longer 
(r = 64) was violated. 

Detecting complex transitions or special effects graphics 
remains a problem. The main reason is the fact that detec- 
tion is assumed to occur from one frame to the next, and this 
assumption is violated. For this reason, the time window for 
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Fig. 4. Five frames of the animation sequence of example of Fig. 3 (frames 160, 165, 170, 175 and 180). Frame 180 reads "Special Report" 

I ow/ / 
, ~ " - m e d ~  

high 

a b 

Fig. 5. Frequency distribution (a) and block features (b) of DCT 
coefficients [14] within a block 

detecting complex scene changes must be expanded to include 
numerous frames and the rate of change must be considered. 
In this case, the scene-change detection algorithm must return 
a time span rather than an instance. Modules using the scene 
change detection may then use this information as needed. 

3.4 Region selection in the DCT domain 

Other applications of selective decoding may be found in tasks 
such as "matching" video sequences and extracting relevant 
"structural" information that correlate strongly with the se- 
mantics of the video content. DCT coefficients are used to 
select subregions of the frames for decompression and sub- 
sequent image processing and image analysis steps. This is 
in contrast to conventional approaches where, only after many 
computationally expensive image processing steps, a subset of 
the resulting features is chosen for further processing [18]. In 
such cases, the computational bottleneck has already been per- 
formed and choosing a subset of features, although necessary, 
is no longer a time-saving step. 

In choosing subregions from each representative frame, 
we examine the coefficients of each 8 x 8 DCT block of the 
frame. By noting the correlation of frequency distribution in 
each block and the corresponding spatial features (see Fig. 5a), 
we may simply choose to process further only the blocks that 
meet certain criteria dictated by the higher-level processes. 
For example, to detect edges, only the medium- and high- 
frequency components are needed [15]; therefore, only the 
blocks containing coefficients in that range are considered for 

Fig. 6. Example of selecting subregions containing edges using 
the DCT coefficients, a The original frame, b The subregions 
found to contain no edges are shown in solid; the remaining 
regions may be decompressed for edge detection 

decompression. In addition, we may use the feature distribu- 
tion patterns of DCT coefficients to choose subregions of a 
representative video frame (see Fig. 5b). One specific goal in 
our system is to detect straight edges. Therefore, blocks con- 
taining high and medium frequencies are selected, and only 
the set of blocks that correspond to a "large" region in the 
spatial domain is selected for decompression and subsequent 
edge detection (see Fig. 6). 

The computational savings that result from this simple step 
are manifold. First, only a percentage of the pixels is decoded, 
resulting in less decompression time. Second, the edge detec- 
tion algorithm need not be applied to the entire image, resulting 
in additional savings in time. 

Third, since a smaller image area has been analyzed for 
edge detection, all subsequent steps, such as detecting straight 
edges or detecting long edges, can be completed more effi- 
ciently. 

The example of Fig. 6 presents a 320 x 240 frame. Of 
the 1200 blocks that form the frame, 735 were determined 
not to contain any edges. This determination was made by 
simply counting the number of Coefficients in each block that 
belonged to the high frequency region of the frequency dis- 
tribution (Fig. 5). The blocks with only a few high-frequency 
components were not decompressed. In this example, the pixel 
area was cut into more than half; in other examples, an even 
higher percentage of regions could be eliminated for further 
processing. 
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Fig. 7. Example of a simple video browser. Each icon is the representatiye frame for a video 
shot. Users may scroll to see all the icons and may choose one to view the ~orresponding video 
shot 

4 Browsing video sequences 

One possible use of  detected scene changes is in browsing 
video sequences (Fig. 7). In this case, an icon formed from a 
frame early in the shot is used to represent that shot. 2 By scan- 
ning all the icons, one can rapidly find the particular segment 
of the video sequence for detailed viewing. 

The effectiveness of this approach, as compared to the 
traditional fast-forward and rewind, must be examined. The 
measure is the time it takes to locate a particular shot. First, 
we consider the case when the video sequence is viewed by 
fast-forward and rewind. Assuming the length of the video 
sequence (L) is 2h  (L = 216000 frames) and that the se- 
quence may be viewed at an average of 20 times the normal 
30 frames/s speed (A = 20 x 30 = 600 frames/s), then the time 
to view the entire sequence is 360 s or 6 min (L/A). Further, if 
we assume that this operation is performed numerous times, 
on average the desired shot is found half way through viewing 
the sequence; therefore, on average the time to find a particular 
scene is ~ = L/2A, or in our example about ~ = 3 min. 3 In 
addition, in most cases some additional time may be required 
to get to the exact frame on the sequence; we represent that 
time by the constant ~. Then, the average required time to lo- 
cate the beginning of  a desired shot by using fast-forward and 
rewind is: 

f f )=~  +/.c 

Notice that this computation remains the same regardless of  
the medium on which the video is stored, i.e., video tape, laser 
disc, or digitally on hard disk. 

On the other hand, locating a shot using the simple browser 
presented above is much more efficient in time. Assuming that 

2 Choosing the proper frame is important in some shots, such as the 
animated sequence of Fig. 4; the last frame is the most appropriate. 
3 This calculation further assumes that the probability of 
occurrence of the desired scene is equally distributed within the 
sequence. 

there are 5 scene changes per second (for example 5 = 0.15, 
or one every 7 s), then the total number of  scene changes per 
video sequence is 6(L/30)  or in our example a total of  1080 
scene changes, requiring 1080 icons to represent the entire 
video sequence. In the simple browser presented above all the 
icons are presented in one row that the user may then scroll 
through until reaching the desired shot. Assuming that u icons 
can be shown across the display screen (in our browser 12 
icons are presented at one time4), the number of  screenfuls 
that are necessary to view all the icons is ~L/30u. Then, the 
average time required to locate a particular shot using the 
simple browser is: 

= _ + ~t 
2 

where a is the number of  seconds required to view the screenful 
(set to one second), and ~t is the time it takes to load the icons 
into memory. Given the sample figures for our experiments, ~r 
is equal to 45 s, which is four times faster than the traditional 
approach. 

5 Conclusions 

The paper presented a novel approach to scene-change detec- 
tion using DCT coefficients. Although the DCT coefficients 
are accessible only after entropy decoding and dequantiza- 
tion steps, the proposed approach avoids the IDCT process, 
which is by far the most computationally expensive step, re- 
quiring numerous multiplications and summations per block. 
The selective-decoding approach takes advantage of  the infor- 
mation contained in the DCT coefficients of  encoded video 
sequences, such as MPEG, JPEG, or H.261, and avoids pro- 
cessing every frame of  the video sequence. The system has 

4 Although more icons can be shown, the browser presented here 
aims to preserve the temporal continuity of the shots by displaying 
the icons in one row. Other approaches are certainly possible. 
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been tested successfully on video sequences of various sub- 
jects, including meetings, presentations, personal interviews, 
documentaries, and others. Furthermore, the DCT coefficients 
are used to detect only necessary regions of interest for sub- 
sequent image-processing steps. This results in a significant 
reduction of pixels that need to be processed, translating into 

more efficient processing of video sequences. 
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