
Multimedia Systems (1994) 1:211-219 M u l t i m e d i a Sys tems
�9 Springer-Verlag 1994

Image processing on encoded video sequences
Farshid Arman*, Arding Hsu, and Ming-Yee Chiu

Siemens Corporate Research Inc., College Road East, Princeton, NJ 08540, USA

Abstract. This paper presents a novel approach to processing
encoded video sequences prior to complete decoding. Scene
changes are easily detected using DCT coefficients in JPEG
and MPEG encoded video sequences. In addition, by analyz-
ing the DCT coefficients, regions of interest may be isolated
prior to decompression, increasing the efficiency of any sub-
sequent image processing steps, such as edge detection. The
results are currently used in a video browser and are part of
an ongoing research project in creating large video databases.
The procedure is detailed with several examples presented and
studied in depth.

Key words: Video processing - Scene change detection -
Video browsing

1 Introduction

For systems incorporating encoded video, such as video edit-
ing systems, various multimedia authoring systems, video-
based training systems, and video on demand systems, the
ability to manage video efficiently is critical. Although many
of these systems incorporate many other types of media as
well, management of video is particularly challenging be-
cause of the vast volume of data associated with it - many
megabytes of data per minute. The initial steps taken in solv-
ing the video management problem have either relied on labor
intensive techniques, such as manually entering key words to
describe the video contents, or on simple image-processing
techniques, such as analyzing histograms. These approaches
are neither close to ideal, nor are they efficient in their tasks.
Key words have many drawbacks [3], such as inadequate
choice of terms to use at search time, the context in which
the words are used, and the influence of the operator, while
image processing steps cannot be efficiently applied to the
hundreds of thousands of images that are usually associated
with video. This paper presents techniques aimed at the man-
agement of encoded video, such as MPEG [6], JPEG [21],
and H.261 [10], which overcome the limitations of traditional
image-processing steps, while enhancing key word-based ap-
proaches currently in wide use.

* e-mail number:farshid@scr.siemens.com
Correspondence to: F. Arman

Subtasks of video management include the ability to locate
a particular video sequenc quickly - high-level video man-
agement - and the ability to view particular points of interest
within the video sequence- low-level video management. The
need for management of video exists in many domains from
TV news organizations where these capabilities are critical, to
home video libraries where these capabilities would be very
useful. The focus of this paper is on low-level management
techniques for digital video. Currently, the most widely used
search technique is to fast-forward and rewind to arrive at the
point of interest; this technique is slow and inefficient. More
recently, image-processing techniques have been developed to
operate on digital video in order to facilitate this task. The first
step in solving this problem is to "divide" the video sequence
into meaningful segments much like a book can be divided
up into sentences. In video, the logical point to partition the
video sequence is where the contents of video "change" from
one frame to the next - referred to as a scene change.

Specifically, this paper presents a novel approach to ef-
ficient processing of encoded video for detecting both scene
changes of a video sequence and regions of interest within each
video frame, which can be used in high-level video manage-
ment modules. It is reasonable to assume the input to the sys-
tem is encoded since digital video requirements for storage and
communication are extremely high; hence, many standards for
video encoding have been developed and are currently in use.
Our approach, selective decoding, takes advantage of the in-
formation already encoded in a DCT-based compressed video
data, and performs many processing steps needed on every
frame of a video sequence prior to full decompression. DCT
coefficients are analyzed to detect scene changes systemati-
cally - referred to as frame selection (see Fig. 1). In the past,
expensive operations, such as color histogram analysis, have
been performed on every frame to achieve scene change detec-
tion [12]. Histogram-based procedures require over 105 opera-
tions per video frame and at least an additional 103 operations
for comparing the histograms, unlike our procedure which re-
quires many orders of magnitude fewer operations per pair of
frames. Once a representative frame has been selected, subre-
gions of the frame may be chosen by further analysis of the
DCT coefficients to yield regions of interest which are defined
a priori. Frame selection and region selection steps result in

212

conventional technique: decoding and low
level processing is performed on every frame.

selective decoding technique: encoded frames are pro-
cessed and only areas of interest within certain frames are
decoded for higher level processing resulting in savings in
computational costs and in execution time.

decoding processing

Fig. 1. Conventional technique of using encoded video sequences
compared to selective decoding technique

a significant reduction of pixels that need to be processed in
subsequent steps, translating into faster processing speeds.

The paper is organized as follows: Sect. 2 briefly surveys
previous approaches related to feature management in dig-
ital video; Sect. 3 presents the selective decoding approach
in-depth. Section 4 outlines our approach to browsing video
sequences, and Sect. 5 presents the concluding remarks.

in encoding each frame. This approach works only with JPEG
sequences (the coder for fixed bit rate MPEG sequences, for
example, will maintain a constant number of bits per second).
Our experiments show that the success rate of this approach
is low and must be combined with other approaches for an
effective system.

As mentioned in the introduction, DCT coefficients are
used in our system to perform scene change detection and other
low-level video processing. The use of DCT coefficients prior
to decompression has been attempted in other applications.
Hsu et al. [7] use DCT compressed images in a military target
classification system to discriminate between man-made and
natural objects. The Bhattacharyya distance discriminator [5]
is used to measure and rank numerous statistical calculations
derived from the DCT coefficients, which is in turn used in the
decision-making process.

More recently, Smith and Rowe [16] extended many prop-
erties of the cosine/Fourier transform and used the DCT co-
efficients to perform several algebraic operations on a pair of
images. Scalar addition, scalar multiplication, pixel-wise ad-
dition, and pixel-wise multiplication operations on two images
were defined using the DCT coefficients; these operations may
be used in video editing systems to perform such tasks as dis-
solving and subtitling.

2 Previous approaches

Past research work related to low-level video management has
concentrated on the parsing of video sequences into video
shots. 1 In most cases, the logical parsing point is a change
in the camera viewpoint or a change in the scene. Usually, the
histogram of each scene is generated and a large change in the
histogram from one scene to the next is used as a cutting point
[19] (see also [13]). Ueda et al. [20] suggest the use of the rate

of change of the histogram instead of the absolute change to
increase the reliability of the shot parsing mechanism. Ueda et
al. also consider zooming and the panning of the camera; each
video frame is divided into a number of non-overlapping small
regions, and in each region the optical flow of pixels belonging
to that region is approximated and classified into zooming and
panning of the camera. This information is then stored along
with each shot.

Nagasaka and Tanaka [12] studied various measures to de-
tect scene changes. The best measure, according to their stud-
ies, is a normalized X 2 test to compare the distance between
two histograms. Additionally, to minimize the effects of cam-
era flashes and certain other noises, the frames are each divided
into several subframes. Then, rather than comparing pairs of
frames, every pair of subframes between the two frames is
compared, the largest differences discarded, and the final deci-
sion is based upon the differences of the remaining subframes.

Little and Venkatesh [11] have proposed a method that de-
tects scene changes based on the number of bytes that are used

1 In this paper, we define a video shot as a subset of a video
sequence that begins with a scene change or a video cut and ends
with the frame before the next scene change.

3 Low-level video processing

The principal goal of the low-level video processing is to se-
lect a frame to serve as the representative for each "shot" of
the video sequence. The representative frames are then used in
any higher-level processing that may be necessary. Browsing
video sequences, for example, may be achieved by viewing
the representative frames of a video sequence. Relating video
shots from various video sequences based on shape or color
content, for example, may also be achieved by using only the
representative frames. The computational efficiency of infer-
ring representative frames, or detecting scene changes, is of
critical importance since it is performed on each frame of the
video sequence (usually on the order of tens of thousands).
Therefore, classical image processing measures of similarity,
such as template matching, are not suitable in this case.

In the selective decoding approach, scene-change detec-
tion is performed using the DCT coefficients in the MPEG-
or JPEG-encoded video sequences. Only certain blocks of the
encoded frames are monitored over time. Also, using only a
few of the DCT coefficients of each selected block, a vector
is formed that is used in detecting any changes in the con-
tents of the frames. As mentioned in Sect. 2, most previous
attempts to scene change detection use color histograms. Al-
though this procedure is simple, it is a time-consuming step.
For example, if each frame is 320 x 240, each histogram cal-
culation would take roughly 230,000 additions (256 x 256 x 3
colors) and 76,000 increments (to scan each frame), totalling
over 105 operations per frame and an additional 103 operations
for comparing a pair of histograms. Instead, our approach re-
quires several orders of magnitude fewer oprerations per frame
comparison.

213

3.1 Frame selection in DCT domain

We use the information already encoded in the compression
process prior to decompression to take advantage of several
facts. First, the computational cost of decompressing every
frame would not be necessary and could be saved if only a se-
lected number of frames are chosen for further processing or
browsing prior to decompression. Second, coefficients in the
frequency domain are mathematically related to the spatial do-
main, and they may be directly used in detecting changes in the
video sequence. Third, the knowledge of the block's location
preserves spatial domain information to a certain extent.

The procedure is as follows: for JPEG movie files, entropy
and dequantization steps are performed to arrive at the DCT
coefficients for each frame. Similarly, for MPEG sequences
the frame types are identified, and the entropy and dequanti-
zation steps are performed for / frames. The remaining data
are discarded in B and P type frames. Then, given the series
of 8 x 8 DCT blocks /3i, 0 < i < # (where # is the to-
tal number of blocks), in a single DCT-based encoded video
frame f , a subset of blocks/~j, 0 < j < 6, ~ << #, is chosen
a priori. The subset of blocks is chosen such that they cor-
respond to n connected regions in each frame of the video
sequence. The regions are the same in both frames under ex-
amination. Next, of the 64 coefficients in each block, c~ are
chosen: f~j = {cz, cy, c x , . . . } where cz is the z tu coefficient
and the cardinality of f2j is c~. Again, the members of the set f~
are the same in both frames under examination. The c~ coeffi-
cients may or may not be randomly distributed among the AC
terms of the blocks. Using the coefficients from each frame f
a vector V f = {el, c2, c 3 , . . . , ck} is formed, where k = c~Q.
Only the blocks in the set/~j contribute to V f . This vector then
represents frame f of the video sequence in the DCT space.
The determination on whether two scenes ~ frames apart are
dissimilar is achieved in this space. The representations of each
two consecutive frames V f and Vf+~ are compared using the
inner product:

V f �9 VI+~
r f + qo) - Ivf Hv- . l '

We can assume a change of scene in the video sequence from
frame V I to frame Vy+~o if 1 - Ir > r l , where 0 << 7-1 < 1.

The above procedure introduced several parameters; their
effects on the performance of the scene detection module are
outlined here. First, ~) determines the number of blocks that
are used in the calculations. In general, as O increases more
accurate detections may result since larger areas are moni-
tored; however, the higher accuracy is at the expense of more
computing time.

Second, n determines how the ~9 blocks are connected in
forming the connected regions. It is possible to have n = O
resulting in many regions; however, this approach is very sen-
sitive to minor camera motion and the minor movements of
the subjects. On the other extreme, n could be set to 1, i.e.,
the ~ blocks are selected such that they correspond to one con-
nected region. This approach would not take full advantage of
the encoded information since most areas of each frame will

not be under observation (unless p = # covering the entire
frame). A better choice would be to have the connected re-
gions each cover different parts of the frame. Systems using
this approach may choose to use any a priori knowledge of
the particular domain they may have to place the n regions.
For example, process-control monitoring systems in the man-
ufacturing environment may be interested only in observing
product flow portions of each video frame.

Third, c~ is the number of coefficients from each block; if
c~ = 64, then the entire frequency spectrum would be used,
resulting in high computational expense, but providing an ac-
curate representation of the spatial domain features. More im-
portantly, however, are the choices of coefficients as well as
the number of coefficients. Choosing high-frequency compo-
nents alone assumes such components would exist in the n
regions and in all scenes. Therefore, the best approach is to
distribute the coefficients among the high- and low-frequency
components.

The last factor is ~; it dictates the resolution in the temporal
domain. By letting qo = 1, every frame of the video sequence
is processed or, alternatively, higher and higher values of qo
could be used to cut computational costs in exchange for lesser
resolution in the temporal domain for detecting scene changes.
Note that these parameters are the same for the two frames
under consideration at any time.

The algorithm applied in our experiments adjusts several
of the above parameters dynamically as a function of the input
video. Initially, cp is set to a time interval much greater than
1/30 th of a second (in our case ~ is initialized to 64 frames or
about 2 s). Then, if a scene change is not detected it may be
assumed that in the past 64 frames no change has occurred;
otherwise, qo is divided into two and ~b is re-calculated between
the two new, and now closer in time, frames. The operation is
continued until either no scene changes are detected or ~ = 1,
whichever occurs first. Under ideal conditions, i.e., periods in
video sequence with little or no change, such as still graphics,
this method allows for rapid analysis of the time period. The
worst case scenario, if g) = 2 x, then at most 2x + 1 comparisons
are made - a potential for substantial saving in computational
expense. For example, if (p = 64 (x = 6), then rather than
making 64 comparisons, at most 13 are made. In addition,
the block count parameter, 6, and the number of coefficients
per block, c~, could increase as g) decreases to allow for an
even more accurate representation of the frames. In our system
Q = 100 and c~ = 6 at cp > 1, when g) = 1 we set ~ = # (all the
blocks in the frame are considered) and c~ = 15 to minimize
the effects of motion in the scene. Also, in order to minimize
the effects of T1 on the outcome of the scene change detection,
the threshold is initially set low to over-estimate the number
of shots. Then, each video cut is examined more closely for
the scene changes where 1 - I~b(fi, f j)] < T2, and 0 < TI <
r2 < 1. In other words, if 1 - I~b(f~, fj)] < 71, then there are
no changes between frame fi and f j , if 1 - [~b(fi, fj)l > r2
there is definitely a scene change between frame f i and fa,
and finally if 7-1 < 1 - [~b(fi, fJ)l < 7-2, frames f i and f j are
examined by decompressing the two frames and performing
color histogram analysis (Sect. 3.2, see also [1]).

214

b l ~ cy~a whitel

red[,~,~lblack 1 ~ green blue Tmagenta
/ yellow black

a b e

F i g . 2a-c. a The RGB color space, b the HSI color, c color catego-
rization: each bin is one category

3.2 Frame-selection refinement using color histograms

The goal of color histogram analysis is to detect a scene change
using the color contents of the given frames. The input to this
module is a very small subset of the actual video sequence cho-
sen using the above DCT-based procedure. Noting that similar
frames have similar color contents, the color contents of each
frame may be measured using the color histogram and com-
pared.

Prior to deriving the color histogram for each frame, one
must choose an appropriate color space, which is used to de-
scribe the color in each frame. The color space used in the sys-
tem is the hue, saturation, and intensity (HSI), where only the
hue and saturation information are used (see Fig. 2). The trans-
formation from the input RGB color space into the HSI color
space is "similar" to the cartesian-to-cylindrical coordinate
transformation [17]; however, the transformation is non-linear
and ill-conditioned [8]. For example, black (R = G = B = 0)
must be handled as a special case. Nevertheless, the HSI color
space has less of the artifacts that exist in the RGB color sys-
tem [9]. Furthermore, past studies have shown that the hue of
object surfaces remains the same under various lighting con-
ditions [4], and it is possible to quantize the possible number
of colors in a video frame into a smaller, finite number, a pro-
cess referred to as categorization [4]. In this process, the entire
spectrum of computer recordable colors is quantized into 720
bins - 5 ~ resolution in hue and 10 levels of quantization of sat-
uration (see Fig. 2). Fathima's studies [4] show that about 200
different color categories are sufficient to describe the color
space. Using the HSI color space and the categorization pro-
cess, a color histogram, which may be assumed to be a surface
in the 3D space, is desired for each frame of the video sequence.
To detect scene changes, or changes in the color histograms
from one frame to another, the two given color histograms are
subtracted, forming a color-difference histogram. Assuming
color histogram h is defined as

hf~(H, S) = E pixels (H, S)
framei

the difference histogram is then calculated as

@,,fj (H, S) = h fi(H, S) - hf~(H, S)

Similar to color histogram, h, the difference histogram is
also a surface in the 3D space. To characterize the changes
evident in the difference histogram, the volume under the ab-

solute value of the difference histogram surface is calculated
as follows:

Af,,S, (H, S) = E 16s,,s, (H, S)l-AH. AS

where A H and A S are the resolutions of the hue and sat-
uration values during the categorization process. Then, once
1 - I~b(fi, fJ)l is found to be greater than 7-1 but less than 7-2,
flames f i and f j are decompressed and ~Sy~,yj is calculated.
Only if Af~,f 5 is greater than 7-3, is the transition between
flames f~ and f j flagged as a scene change; otherwise, no
scene changes are detected.

3.3 Experimental results

The above procedure has been fully implemented and tested
on JPEG- and MPEG-encoded video sequences. MPEG se-
quences are treated differently in that the B and P frames are
parsed off and not used; only the I frames are analyzed using
the above procedure.

The video sequence types used in the experiments var-
ied in subject and in settings. They included documentaries
on wildlife (some underwater), graphics, animation, and news
broadcasts, which contained an anchor person, outdoor and
indoor scenes. Various transitions, such as simple cuts, wipes,
fades, and animated graphics, were included as well.

Figure 3 exhibits the results of calculating 1 - I~l for a
few minutes of a JPEG encoded video of a news type broadcast
(see also [2]). In Fig. 3a, the time step, cp, is set to 64. With
relatively few calculations, several of the time periods in which
no transitions occur are identified - most notably from frame
number 1250 to 1750. As mentioned earlier, cp is divided by
2 when 1 - I~1 > 7-1 (set to 0.55), and ~b is re-calculated.
Figure 3b shows the results after several iterations, ~ = 8,
where many of the transitions have been localized. Figure 3c
shows the results when cp = 1 where almost all of the cuts have
been identified. However, as mentioned earlier, the system only
accepts video cuts when 1 - I~bl > 7-2 and rejects the cuts where
1 - I~1 < 7-l. When ~ = 1, 7-a is set to 0.35 and 7-2 is set to
0.65; video cuts that fall in-between the two thresholds are
decoded for a color histogram analysis (Fig. 3d), as described
in Sect. 3.2. Video cuts detected from 1 - I~1 > 7-2 measure
are combined with video cuts detected for frames A > 7-3 - set
to 105 (see Fig. 3e and [1]). In the last step, video shots, which
last less than 1 s (or 15 frames in the example of Fig. 3), are
merged.

In the example of Fig. 3, 32 scene changes actually exist
- counting the graphics transition from frames 160 to 310 as
one (Fig. 4). Thirty-one scene changes are detected, as shown
in Fig. 3e. Of the 31, 28 are correct, 3 came from the graphics
transition of frames 160 to 310, and 1 actual scene change was
missed because the assumption that each shot is 2 s or longer
(r = 64) was violated.

Detecting complex transitions or special effects graphics
remains a problem. The main reason is the fact that detec-
tion is assumed to occur from one frame to the next, and this
assumption is violated. For this reason, the time window for

215

(p=64
1-1~1

(p=8
1-1~'1

~0=1
1-1gtl

1

0 9 -

0 8 -

0 7 -

0 6 -

0 5 -

0 4 -

o 3 -

o 2 -

o i -

o I
o

0 . 9

0 . 8

0 . 7

0 . 6

o . 5

o . 4

o . 3

0 . 2

o . 1

o

1

0 . 9 -

0 . 8 -

0 . 7 -

0 . 6 -

0 . 5 -

0 . 4 -

0 . 3 - I o . 2 -

o . 1 -

0 o

1 3 0 0 0 0

1 2 0 0 0 0 -

1~oooo -

iooooo -

9 0 0 0 0 -

8 0 0 0 0 --

A 70000

5 0 0 O 0 --

4 0 0 0 0 --

3 0 0 0 0 -

2 0 0 0 0
0

I I

:LO00
IiIl.lf , IJ ,I

ISoo ooo mSoo 3000 35oo

3 o'o o
i

500 1000 1500 2000 2SO0 3500

. IHIH II.
5 0 0 1 0 0 0

I ,

. 30100 1500 2000 2500 3500

5 0 0 ~ . O O O ~ . 5 0 0 2 0 0 0 2500
, r t

3000 3 5 0 0

e
frame'r~Omber =~176176

' ' - ' o ' g o ' . , = . . g o . , . , = = ' o . ~

Fig. 3. a - c The plot of 1 - I~b [at three of the seven temporal resolutions in increasing resolution from top-to-bottom, d Use of color histogram
on a subset of frames, e Final video cuts after merging c and d

216

Fig. 4. Five frames of the animation sequence of example of Fig. 3 (frames 160, 165, 170, 175 and 180). Frame 180 reads "Special Report"

I ow/ /
, ~ " - m e d ~

high

a b

Fig. 5. Frequency distribution (a) and block features (b) of DCT
coefficients [14] within a block

detecting complex scene changes must be expanded to include
numerous frames and the rate of change must be considered.
In this case, the scene-change detection algorithm must return
a time span rather than an instance. Modules using the scene
change detection may then use this information as needed.

3.4 Region selection in the DCT domain

Other applications of selective decoding may be found in tasks
such as "matching" video sequences and extracting relevant
"structural" information that correlate strongly with the se-
mantics of the video content. DCT coefficients are used to
select subregions of the frames for decompression and sub-
sequent image processing and image analysis steps. This is
in contrast to conventional approaches where, only after many
computationally expensive image processing steps, a subset of
the resulting features is chosen for further processing [18]. In
such cases, the computational bottleneck has already been per-
formed and choosing a subset of features, although necessary,
is no longer a time-saving step.

In choosing subregions from each representative frame,
we examine the coefficients of each 8 x 8 DCT block of the
frame. By noting the correlation of frequency distribution in
each block and the corresponding spatial features (see Fig. 5a),
we may simply choose to process further only the blocks that
meet certain criteria dictated by the higher-level processes.
For example, to detect edges, only the medium- and high-
frequency components are needed [15]; therefore, only the
blocks containing coefficients in that range are considered for

Fig. 6. Example of selecting subregions containing edges using
the DCT coefficients, a The original frame, b The subregions
found to contain no edges are shown in solid; the remaining
regions may be decompressed for edge detection

decompression. In addition, we may use the feature distribu-
tion patterns of DCT coefficients to choose subregions of a
representative video frame (see Fig. 5b). One specific goal in
our system is to detect straight edges. Therefore, blocks con-
taining high and medium frequencies are selected, and only
the set of blocks that correspond to a "large" region in the
spatial domain is selected for decompression and subsequent
edge detection (see Fig. 6).

The computational savings that result from this simple step
are manifold. First, only a percentage of the pixels is decoded,
resulting in less decompression time. Second, the edge detec-
tion algorithm need not be applied to the entire image, resulting
in additional savings in time.

Third, since a smaller image area has been analyzed for
edge detection, all subsequent steps, such as detecting straight
edges or detecting long edges, can be completed more effi-
ciently.

The example of Fig. 6 presents a 320 x 240 frame. Of
the 1200 blocks that form the frame, 735 were determined
not to contain any edges. This determination was made by
simply counting the number of Coefficients in each block that
belonged to the high frequency region of the frequency dis-
tribution (Fig. 5). The blocks with only a few high-frequency
components were not decompressed. In this example, the pixel
area was cut into more than half; in other examples, an even
higher percentage of regions could be eliminated for further
processing.

217

Fig. 7. Example of a simple video browser. Each icon is the representatiye frame for a video
shot. Users may scroll to see all the icons and may choose one to view the ~orresponding video
shot

4 Browsing video sequences

One possible use of detected scene changes is in browsing
video sequences (Fig. 7). In this case, an icon formed from a
frame early in the shot is used to represent that shot. 2 By scan-
ning all the icons, one can rapidly find the particular segment
of the video sequence for detailed viewing.

The effectiveness of this approach, as compared to the
traditional fast-forward and rewind, must be examined. The
measure is the time it takes to locate a particular shot. First,
we consider the case when the video sequence is viewed by
fast-forward and rewind. Assuming the length of the video
sequence (L) is 2h (L = 216000 frames) and that the se-
quence may be viewed at an average of 20 times the normal
30 frames/s speed (A = 20 x 30 = 600 frames/s), then the time
to view the entire sequence is 360 s or 6 min (L/A). Further, if
we assume that this operation is performed numerous times,
on average the desired shot is found half way through viewing
the sequence; therefore, on average the time to find a particular
scene is ~ = L/2A, or in our example about ~ = 3 min. 3 In
addition, in most cases some additional time may be required
to get to the exact frame on the sequence; we represent that
time by the constant ~. Then, the average required time to lo-
cate the beginning of a desired shot by using fast-forward and
rewind is:

f f)=~ +/.c

Notice that this computation remains the same regardless of
the medium on which the video is stored, i.e., video tape, laser
disc, or digitally on hard disk.

On the other hand, locating a shot using the simple browser
presented above is much more efficient in time. Assuming that

2 Choosing the proper frame is important in some shots, such as the
animated sequence of Fig. 4; the last frame is the most appropriate.
3 This calculation further assumes that the probability of
occurrence of the desired scene is equally distributed within the
sequence.

there are 5 scene changes per second (for example 5 = 0.15,
or one every 7 s), then the total number of scene changes per
video sequence is 6(L/30) or in our example a total of 1080
scene changes, requiring 1080 icons to represent the entire
video sequence. In the simple browser presented above all the
icons are presented in one row that the user may then scroll
through until reaching the desired shot. Assuming that u icons
can be shown across the display screen (in our browser 12
icons are presented at one time4), the number of screenfuls
that are necessary to view all the icons is ~L/30u. Then, the
average time required to locate a particular shot using the
simple browser is:

= _ + ~t
2

where a is the number of seconds required to view the screenful
(set to one second), and ~t is the time it takes to load the icons
into memory. Given the sample figures for our experiments, ~r
is equal to 45 s, which is four times faster than the traditional
approach.

5 Conclusions

The paper presented a novel approach to scene-change detec-
tion using DCT coefficients. Although the DCT coefficients
are accessible only after entropy decoding and dequantiza-
tion steps, the proposed approach avoids the IDCT process,
which is by far the most computationally expensive step, re-
quiring numerous multiplications and summations per block.
The selective-decoding approach takes advantage of the infor-
mation contained in the DCT coefficients of encoded video
sequences, such as MPEG, JPEG, or H.261, and avoids pro-
cessing every frame of the video sequence. The system has

4 Although more icons can be shown, the browser presented here
aims to preserve the temporal continuity of the shots by displaying
the icons in one row. Other approaches are certainly possible.

218

been tested successfully on video sequences of various sub-
jects, including meetings, presentations, personal interviews,
documentaries, and others. Furthermore, the DCT coefficients
are used to detect only necessary regions of interest for sub-
sequent image-processing steps. This results in a significant
reduction of pixels that need to be processed, translating into

more efficient processing of video sequences.

Acknowledgements. Scene-change detection on MPEG sequences in-
corporates the MPEG decoder from The University of California at
Berkeley. The user interface of the video browser was implemented
by R. Depommier. Siemens Stromberg-Carlson provided the video
that was used in the video browser example. The authors would also
like to thank D. Benson and P. Baca for their comments when we
were preparing this manuscript.

References

1. Arman E Hsu A, Chiu M-Y (1993) Feature management for large
video databases. In: Niblack W (ed) Storage and retrieval for
image and video databases, SPIE, San Jose, pp2-12, SPIE 1908

2. Arman F, Hsu A, Chiu M-Y (1993) Image processing on com-
pressed data for large video databases. In: Proceeding of first
ACM International Conference on Multimedia. SPIE, Anaheim,
pp 267-272

3. Chang S-K, Hsu A (1992) Image information systems: where do
we go from here? IEEE Trans Knowl Data Eng 4:431-442

4. Fathima ST (1992) Data and model-driven selection using color
regions. In: Proceedings of the Image Understanding Workshop.
Morgan Kaufmann, San Diego, CA, pp 705-716

5. Fu KS (1968) Sequential methods in pattern recognition and ma-
chine learning. Academic Press, New York

6. Le Gall D, (1991) MPEG: a video compression standard for mul-
timedia applications. Commun ACM 34:46-58

7. Hsu YS, Prum S, Kagel JH, Anrews HC (1983) Pattern recognition
experiments in mandala/cosine domain. IEEE Trans Patt Anal
Mach Intell 5:512-520

8. Kender JR (1977) Instabilities in color transformations. In: Pro-
ceedings of the Conference on Pattern Reognition and Image
Processing. IEEE, RPI, Troy, NY

9. Ledley RS, Bans M, Golab TJ (1980) Fundamentals of true color
image processing. In: Proceedings of the International Confer-
ence on Pattern Reognition. IEEE, Miami Beach, FL, pp 791-795

10. Liou M (1991) Overview of the p x 64 kbits/s video coding stan-
dard. Commun ACM 34:59-63

11. Little TDC, Venkatesh D (1994) Video scene decomposition with
the motion picture parser. SPIE Conf. on Digital Video Com-
pression and Processing on PCs: Algorithms and Technologies.
SPIE, San Jose, CA (to appear)

12. Nagasaka A, Tanaka Y (1991) Automatic video indexing and
full-video search for object appearences. In: Knuth E, Wegner
LM (eds) Proceeding of the IFIP TC2/WG2.6 Second Working
Conference on Visual Database Systems. North-Holland, Ams-
terdam, pp 113-127

13. Otsuji K, Tonomura Y (1993) Projection detecting filter for video
cut detection. In: Proceedings of First ACM International Con-
ference on Multimedia. ACM Press, Anaheim, pp 251-257

14. Ran KR, Yip P (1990) Discrete cosine transform - algorithms,
advantages, applications. Academic Press, New York

15. Rosenfeld A, Kak AC (1987) Digital picture processing. Aca-
demic Press, Orlando

16. Smith BC, Rowe A (1993) Algorithms for manipulating com-
pressed images. IEEE Comput Graphics Applic 13, 34 42

17. Strickland RN, Kim C-S, McDonnell WF (1986) Luminance, hue,
and saturation processing of digital color images. In: SPIE Con-
ference on Applications of Digital Image Processing, vo1697.
SPIE, San Diego, CA, pp 286-292

18. Suetens R Fua R Hanson AJ (1992) Computational strategies for
object recognition. ACM Comput Surv 24:5-61

19. Tonomura Y, Abe S (1990) Content oriented visual interface us-
ing video icons for visual database systems. J Vis Lang Comput
1:183-198

20. Ueda H, Miyatake T, Yoshizawa S (1991) Impact: an interac-
tive natural-motion-picture dedicated multimedia authoring sys-
tem. In: Robertson SP, Olson GM, Olson JS (eds) Proceedings
of Human Factors in Computing Systems (CHI 91). ACM, New
Orleans, LA, pp 343-350

21. Wallace GK (1991) The JPEG still picture compression standard.
Commun ACM 34:30-44

FARSHID ARMAN received a B.E.
degree from the University of New
Mexico, and an M.S and Ph.D. in
Electrical Engineering from The Uni-
versity of Texas at Austin. His re-
search in graduate school was on 2D
and 3D image understanding and seg-
mentation. He has been a member of
the technical staff at Siemens Corpo-
rate Research, in Princeton, N J, since
1992 where his current research fo-
cus is on digital video processing and
video databases. He is a member of
Tau Beta Pi and Eta Kappa Nu.

ARDING HSU received a BS degree
in Computer Science from Tankang
University, Taiwan, an M.S. degree
in Computer Science from the Uni-
versity of Waterloo, and a Ph.D. de-
gree in Computer Science from Rut-
gers University. In 1983, he joined
Siemens Corporate Research, Prince-
ton, NJ, where he is currently man-
ager of the Image and Video Man-
agement group in the imaging de-
partment. His research interests in-
clude image/video information man-
agement, knowledge-based systems,

semantic data modeling, and multimedia systems.

219

MING-YEE CHIU received a BS de-
gree in Physics from National Tai-
wan University and a Ph.D. degree
in Optical Science from the Univer-
sity of Arizona. He joined Siemens
Corporate Research, Inc., Princeton,
NJ, in 1980. Currently, he is the
head of the Imaging Department at
SCR, as well as the manager of Im-
age Processing Core Technology for
the Corporate Research and Develop-
ment Division of Siemens, AG. His
research interests include image pro-
cessing, pattern recognition, digital

video, exploratory data analysis, and multimedia technology.

