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Summary. The effect of heat and mass transfer on the steady turbulent compressible boundary-layer flow 
with adverse pressure gradient are numerically studied. The Reynolds-averaged boundary-layer equations 
and their boundary conditions are transformed, in a suitable form for numerical solution, by using the 
compressible version of the Falkner-Skan transformation and the resulting coupled and nonlinear system 
of partial differential equations is solved using the Keller's-box method and a modified version of it. For 
the eddy kinematic viscosity the model developed by Cebeci and Smith is employed whereas for the turbu- 
lent Prandtl number model a modification of the extended Kays and Crawford's model is used. Numeri- 
cal calculations are carried out for the case of air, at about free stream temperature of 300 ~ and for a 
linearly retarded flow, known as Howarth's flow when the porous limiting surface is adiabatic, heated or 
cooled. The porous surface is subjected to a continuous or localized suction/injection velocity and the 
influence of this velocity as well as of the free-stream Mach number and of the heat-transfer parameter on 
the turbulent boundary-layer and the separation point is examined. It is hoped that in the absence of 
detailed investigations into this problem, the obtained results, presented in the figures, are very interesting 
and give a clearer insight into the mechanism of controlling a turbulent boundary-layer compressible 
flow. 

1 Introduction 

It is known that most flows, which occur in practical applications, are turbulent, the term 

denoting a motion in which an irregular fluctuation is superimposed on the main stream. This 

irregular fluctuation (mixing, or eddying motion) is responsible for the large resistance experi- 

enced by turbulent flow in pipes, for the drag encountered by ships and aeroplanes and for 

the losses in turbines and turbocompressors. The simplest case of  a turbulent boundary-layer 

occurs on a flat plate at zero incidence. This flow model is, however, of  great practical impor- 

tance and it can be used in the calculation of  the skin-friction drag on ships, on lifting surfaces 
and aeroplane bodies in aeronautical engineering, and on the blades of  turbines and rotary 

compressors [1]. 

Apart  from skin-friction drag we are interested in knowing whether the turbulent bound- 
ary-layer will separate under given circumstances and if so, it would be useful to determine 
the point of  separation. Separation is mostly an undesirable phenomenon because it entails 

large energy losses and for this reason methods have been devised for the artificial prevention 
of  it. As widely known, control of  flow separation is generally associated for engineering 
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applications with an increase in performance, because of the detrimental effect of separation 
on drag and pressure recovery [2], [3]. For a two-dimensional steady flow, separation can be 

prevented or delayed by applying basic active and passive control approaches such as suction, 
blowing, passive devices, surface cooling, etc. Such control techniques have been currently 
employed via vortex generators on the wings of some Boeing aircraft, via blown flaps on 

older generation supersonic fighters or leading edge extensions and strakes on newer genera- 
tions [4]. In two-dimensional flows on the upper side of a wing, vortex generators are set and 
designed to produce a gentle streamwise vortex that re-energizes the mean wall flow in the 
near-wall region, to overcome the adverse pressure gradient. 

The various hypotheses which have been advanced to explain how flow control devices act 
on turbulent boundary-layer and flow separation depend upon considerations of the turbulent 
boundary-layer itself and a complete description of turbulent boundary-layer structure can be 
found in [5]- [8]. Although there is still no accepted theory, which really details the structural 
behavior of turbulent flows, yet, the most acceptable technique for turbulent boundary-layer 

control is the suction/injection technique. Suction has been very often used as an aerodynamic 
flow control technique to prevent laminar to turbulent boundary-layer transition as well as 
turbulent flow separation. Recent experiments with application of suction along the leading 
edge of a wing revealed the possibility, under appropriate conditions, to delay leading edge 

contamination [9]. For turbulent boundary layers, suction has been applied onto aerofoils in 
order to prevent separation. The needed suction rate coefficient Cq, defined as the ratio of the 

suction velocity Iv01 to the free stream velocity uoo (Cq = I vol /u~),  was relatively low, typically 
in the range of 0.002 to 0.004 [10]. Optimally, for high lift configurations, suction should be 
concentrated on the low pressure side of the aerofoil, just a short distance downstream of 

the nose where, at high values of the angle of attack, large adverse pressure gradient was 

occur [2]. 

On the other hand, Sokolov and Antonia [11] studied the response of a turbulent bound- 
ary-layer to intense wall suction through a 40 mm porous strip, at low momentum thickness 

Reynolds number. An extensive number of studies, involving either large discrete holes or 
small uniformly distributed holes, have been used to apply suction through a surface for tur- 
bulent boundary-layer control. Available literature indicates that porous surfaces are capable 
of providing nearly uniform suction, with smaller drag increases at a given suction rate, than 
the more abrupt, discrete holes or slots. Wilkinson et al. [12] developed what is called an 
hybrid suction surface for turbulent flows. It is a slotted suction surface which consists of an 
array of closely spaced slots aligned in the direction of the mean streamwise flow. Gad-el-Hak 
and Blackwelder [13] suggested an approach which is called selective suction, in which small 
amounts of suction were applied below the low-speed streaks in order to reduce the intensity 
of the ejections of low-speed streaks outwards from the wall and to slow or disrupt the burst- 
ing process. Selective suction has also been very recently considered for controlling streamwise 

vortices, generated by GSrtler instability developing on a concave wall and it was found that 
rather low values of suction flow rate were sufficient for delaying significantly the breakdown 
of vortices [14]. 

Another possibility for turbulent boundary-layer control is to use a localized suction that 
is to apply continuous suction in a region confined between x = a, and x = b, 0 < a < b << L, 
where L is the whole length of the boundary surface. Fundamental wind tunnel experiments 
performed by Reynolds and Saric [15] indicated that suction is more effective when applied at 
Reynolds number close to the lower branch of the neutral curve, in qualitative agreement 
with previous theoretical results [16]. Finally, another way of turbulent boundary-layer con- 
trol is by heating or cooling the wall or by blowing air from slots, multiple slots or holes. By 
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blowing air the skin friction in case of turbulent boundary-layers can be reduced. As regards 
skin friction reduction by blowing, several parameters are of prime importance, such as the 
injection rate coefficient, the injection angle, the slot-lip thickness and so forth. Slot efficiency 
is rather well detailed in [17] whereas tangential blowing has been shown to be a correct candi- 
date for improving control of aircraft flying at high angles of attack [18]. Furthermore, a 
Direct Numerical Simulation (DNS) of a fully developed turbulent channel flow with uniform 
injection has been also considered by Sumitani and Kasagi [19]. It has been found that injec- 
tion has an inverse influence compared to uniform suction, that is, it decreases the friction 
coefficient and strengthens the near wall turbulence activity. 

As already mentioned before, the problem of turbulent boundary-layer control is a broad 
one and a great deal of research has been recently done on this subject, numerically or experi- 
mentally [20]- [23]. However, there has been much less work on documentation of adverse 
pressure gradient effects, on the separation of the compressible turbulent boundary-layer, 
in the presence of heat and mass transfer. This is one of the most important problems in aero- 
dynamics because for a reliable study of the compressible turbulent boundary-layer it is neces- 
sary and important to quantify its sensitivity to various control parameters such as Mach 
number, pressure gradient, heat transfer parameter and wall mass transfer parameter. 

Therefore, in this work an attempt is undertaken for the numerical investigation of the 
two-dimensional turbulent boundary-layer compressible flow, over a finite smooth and 
permeable flat surface, with an adverse pressure gradient and heat and mass transfer. The 
mathematical formulation of the problem is presented in Sect. 2, whereas in Sect. 3 the 
adopted eddy-viscosity and turbulent-Prandtl number formulation is presented. In Sect. 4 the 
numerical solution of the problem is obtained by using the Keller's-box method, or a modified 
version of it, for the case of a linearly retarded flow, and for the case of continuous suction/ 
injection applied on the porous surface for three different cases of the dimensionless heat- 
transfer parameter S~. The case of localized suction/injection is also examined. Finally, in 
Sect. 5, a detailed analysis of the obtained results is presented, for different values of the 
dimensionless parameters entering into the problem under consideration, followed by the 
concluding remarks presented in Sect. 6. 

2 Formulation of the problem and mathematical analysis 

We consider the steady two-dimensional compressible turbulent boundary-layer flow over a 
smooth flat permeable surface. The surface is located at 

y = 0 ,  0 < x < L ,  - o o  < z <  +co 

and is parallel to the free-stream of a heat-conducting perfect gas flowing with velocity u~o. 
The equations governing this type of flow are the Reynolds-averaged boundary-layer 
equations which can be written, in orthogonal coordinates (x, y), as follows: 

continuity equation 

0 ( _ ~ +  ~,u,) + 0 ( ~ +  ~,v,) = O" (1) 
O x  ' 

x-momentum equation 

ov u E v -  + ; (2) 
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y-momentum equation 

Oy O; (3) 

total-enthalphy equation 

OH OH O [k OT )] ep~T'v' - cpQ'T'v' + ~ p ~ - ~u'v' - O'u'v' . 

(4) 

In the above equations the symbols presented have their usual meaning in aerodynamics and 

we also have replaced the instantaneous "quantities" f (e.g. u, v, T, 8) by the sum of their 

mean (f) and fluctuating parts (f ') ,  that is f = f + f ' .  
It can be proved, by applying an order-of-magnitude analysis [24], that density fluctua- 

tions are generally small in practice, both in low-speed flows with high heat transfer and in 
high-speed adiabatic-wall flows. Thus, terms containing ff can be dropped from the mass, 
momentum and enthalpy equations for thin shear layers. Also, the term flu' is negligible com- 
pared with ~ g  as long as (7 - 1)M 2 is not an order of magnitude greater than unity, whereas 

the term fly' cannot be neglected, compared with ~V, in the continuity, momentum and total- 
enthalpy equations. 

On the other hand, the y-momentum equation (3) shows that the pressure variation is 
governed by the free-stream and, with the use of Bernoulli's equation, the term O~/Oz in the 
x-momentum equation can be substituted by 

Op @ due 
Ox dx dx (5) 

where the subscript e refers to the conditions at the edge of the boundary-layer. 

Using the abbreviation ~ for ~ ~ + fly' and omitting, for simplicity, the overbars on the basic 
time-average variables u, v, p, 8 and T the equations of the problem can be written now as 

0 0 
(e~) + ~ ( ~ )  = o, 

Oz uy 
(6) 

ou ou d,ue + O P OY _ j ~ . ,  Qu O~z + g~ ~ = ~OeUe d-7 Oy (7) 

04 5 ~ - + ~ v  oy - O y  [ ~ - ~ p ~ T , . , + ~  ~ - ~ W ~ '  . (8) 

The parabolic nature of the above equations requires that boundary conditions must be 
provided on two sides of the solution domain in addition to the initial conditions at x = :c0. 
So, the boundary conditions of the problem under consideration are 

y = 0:  ~ = 0, ~ = ~ ( x ) ,  H = ~ ( . ) ,  
(9) 

y = ~: ~ = ~e(x),  H = He(x) ,  

where 5 is a distance sufficiently far away from the wall where the u velocity and total 
enthalpy H reach their free-stream values and v,~(x) is the mass transfer velocity at the wall. 
In the case of an impermeable wall vw(x) is equal to zero. It is worth mentioning here that the 
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total enthalpy H for a perfect gas is defined by the expression 

1 u2 (10) H = c p T + ~  

and consequently the boundary conditions (9), referring to the total enthalpy H on the wall 
and free-stream, become 

y = O: T = T~o(x), y = 6: H : He(x) = %Te(x) + lu~2(x). (11) 

Before Eqs. (6)-(8) can be solved for a turbulent flow, subjected to the boundary conditions 
(9), it is necessary to incorporate a model for the Reynolds stress terms -Ou'v' and -cp~-T'r 

For the shear stress -~u'r in a two-dimensional thin shear layer, the eddy kinematic vis- 
cosity z,~ can be defined by the expression 

- - U t V  t 

e ~ -  0u ' (12) 

whereas the eddy diffusivity of heat, for the turbulent heat flux rate, can be defined by 

- -  T I  v t 

~h= 0T (13) 

The ratio e,~/eh, of the above quantities, is called turbulent Prandtl number Prt by analogy 
with the molecular Prandtl number Pr -= pCp/h. 

So, with eddy kinematic viscosity e~ and turbulent Prandtl number Prt, defined by the 
expressions 

Ou e,~ OT 
-u'v' = e.~yy , - T ' g  -- Ph Oy ' (14) 

the equations describing the problem under consideration can be written as 

o (o~) + ~ (~) = o, (la) 

o~ o~ d ~ + O  I oy o~ O U ~ x + P ~ y y = O ~ % ~ x  (# + Qe~,) , (16) 

QUOxz+O~ O y - O y  ~ r r + P P r t ] ~ - y +  # 1 - ~ r  r +8e,~ 1 - ~ r t r  t u ~  , 

y=o:  ~=o,  ~=~.(~), H = ~ ( ~ ) ,  
(is) 

y=~:  ~=~dx),  H=Hd~) .  

It is useful to express the governing equations (15)-(17), subjected to the boundary condi- 
tions (18), in transformed variables before they are solved. For this purpose we introduce the 
compressible version of the Falkner-Skan transformation, defined by 

j •  /~(~) Q(~'v)dr, (19) 
0 

r y) = ~ f(x, ~l) (20) 
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and the definition of the stream function ~b, for a compressible flow, that satisfies the continu- 
ity equation (15), by the relations 

o~ 0r 
~u = ~y , 9W-- cgx (21) 

On introducing also the dimensionless total-enthalpy ratio S(x,7)= H/H~, besides the 
dimensionless velocity fr = u/ue, the system of Eqs. (16)- (18) become 

x [ Ox f,r , (22) 

d ' " '  + x f< f 'OS S 'Of} (23) (eS' + f f )  m l fS '=  [ Ox -  Oz ' 

= _ 1 i ~ ( x ,  0 )~ (x )  dx, S : S~(x, 0) 7 = O: f '  = O, fw(X) = f(x,O) (ur  

o (24) 
7 : 7 e :  f ' = l ,  S = l ,  

where primes denote partial differentiation with respect to 7 (()' = 0() /07)  and the quantities 
b, ml, m2, etc. are defined as follows 

b = C(1 + ~+~), C - ~(x, 7) p(x, 7) 
~e(x) ,o(x) 

d -  He(x) 1 - P r r + e m  1 - ~ r t  ' 

Qo(x) 
, c - Q ( x ,  7 ) ,  

(25) 
C ( + Pr'~ x due(x) u~(x) x 

e=Prr ,l +emprt ) '  ra2-ue(x) dx ' R x -  z~e(x) and 

.~1 = ~ 1 + .~2 + a(x )  re(x) dx (a#e) 

It is worth emphasizing here that in the case of compressible laminar flow, the eddy kinematic 
viscosity e,, and the turbulent Prandtl number Prt are zero and the quantities b, d and e are 
then defined as 

Cue2(x) ( - ~-rr ) and e = p r .  b = C, d -  He(x) 1 1 b (26) 

So, the compressible turbulent boundary-layer flow, with heat and mass transfer, is finally 
governed by the system of Eqs. (22) - (25). In this case, as in many cases, the turbulent bound- 
ary-layer flow equations remain parabolic and can be solved in the same manner as the lami- 
nar-flow equations. However, before proceeding to the numerical solution of this system of 
equations we have to adopt a turbulence model. 

3 The turbulence model 

There are several eddy-viscosity and turbulent-Prandtl-number formulations that can be used 
to represent e + and Prt. For the eddy kinematic viscosity e,~ we employ the one developed by 
Cebeci and Smith [25] which is described in detail in [24]. This model is one of the simplest 
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with acceptable generality and it's accuracy has been explored for a wide range of flows for 
which there are experimental data. It has also been found that it gives results sufficiently accu- 
rate for most engineering problems [24], [26]. According to this formulation, the turbulent 
boundary layer in external and nonmerging internal flows is treated as a composite layer con- 
sisting of inner and outer regions with separate expressions for the eddy viscosity in each. On 
the other hand, different expressions have been proposed for the turbulent Prandtl number 
Pr~. Cebeci [27] adopted van Driest's idea of near-wall damping of the mixing length to pro- 
pose a turbulent Prandtl number concept. This model was extended by Chen and Chiou [28] 
for liquid metal flow in pipes in incorporating the enthalpy thickness @ in turbulent Prandtl 
number Prt. Jischa and Rieke [29] developed a model for Prt from the modeled transport 
equations given by the expression 

182.4 
Prt = 0.9 -~ PrRx0.ss s . (27) 

Kays and Crawford [30] developed a prediction model for Prt which can be used for all mole- 
cular Prandtl numbers and which is given by 

= 1  1 - [1 - ex p (  

where 

Pet = Pr g+~, 

CPe, )] }' (2s) 

(29) 

Prtoo is the value of Prt far away from the wall and C = 0.3 is a constant prescribing the spa- 
tial distribution of Prt versus Pet. 

In the model originally proposed by Kays and Crawford [30], Prtoo was fixed to a constant 
value of 0.85. This has the disadvantage that Prt is always smaller than 1.7 and introduces an 
undesired behavior into the model, because for Pr --+ 0 heat will be transferred exclusively by 
molecular conduction and, therefore, Prt should tend to a large value. 

On the other hand, the model for Prt, which is given by Eq. (27), does not consider the 
spatial distribution of Prt and, therefore, the value for Prt given by Eq. (27) can be seen as a 
mean value of Prt across the whole boundary layer. In order to overcome the above-men- 
tioned undesired behaviors of models in [29] and [30], Weigand et al. [31] adopted a combina- 
tion of both models in which they use the functional form of Prt developed by Jischa and 
Rieke [29] as an approximation for Prtoo in Eq. (28). This model for Pr~ is aIso adopted in the 
present analysis ([31]). Moreover, for the approximation of the turbulent Prandtl number 
Prt~, far away of the limiting surface (wall), we used the expressions 

182.4 
Prtoo = 0.9 + ~ ~0.ss~ , (30) 

r r  rtoo,z 

where 

R~,z -- uc~z (31) 
/"q?o 

4 Numerical solution of the problem 

The aim of this work is the study of the two-dimensional compressible turbulent boundary- 
layer flow with adverse pressure gradient and heat and mass transfer. To show the effect of 
heat and mass transfer on the compressible turbulent boundary-layer flow over a porous sur- 
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face, in the presence of  an adverse pressure gradient we consider, as an example, the linearly 

retarded flow, known as Howarth 's  flow. In this flow model the external velocity varies 
linearly with x, that is 

u~(x) = u~(1 - ~),  (32) 

where u~  is the free-stream velocity, 2 = x/L and L is the length of  the boundary permeable 

surface (porous wall). This flow model can be interpreted, for instance, as representing the 

potential flow along a flat wall which starts at 2 = 0 and which abuts on to another infinite 

wall at right angles to it at 2 = l (x  = L) [1]. For  the numerical calculations the length L was 

taken equal to 8 m so that x varies between x = 0 and x = 8 m. 

In such a case and according to its definition, Eq. (25), the dimensionless pressure gradient 

parameter m2 is given by the expression 

X 

m2=m2(x)-- ( 1 - 2 ~ -  ( 8 - x )  (33) 

In most practical boundary-layer calculations, involving pressure gradient, it is necessary to 

predict the boundary-layer over its whole length. That is, for a given external velocity distri- 

bution and wall-temperature or heat-flux distribution and for a given transition point, it is 

necessary to calculate the laminar, transitional and turbulent boundary-layers, starting the 
calculations at the leading edge (x = 0). Starting from the leading edge, there is first a region 

(0 < Rz < Rxtr) in which the flow is laminar. After a certain distance, there is a region 

(Rztr < Rz < R:c~) in which the flow is transitional and in the third and last region (Rx _> Rzt) 
the flow is fully turbulent. 

It is known that the transitional Reynolds number Rxtr, at the start of  transition, depends 

partly upon the turbulence in the free stream and greatly upon the surface conditions such as 

heating or cooling and smoothness or roughness. This number may be as low as 4 x 105 or as 

high as 4 x 106 [24]. For  instance, if the plate is heated, the location of  natural transition in a 

gas flow moves upstream, decreasing the value of  the transitional Reynolds number, whereas 

if the plate is cooled, the location of  transition moves downstream. 

In this work we assume that the fluid is air (perfect gas), at about To~ = 300~ 

(Pr = 0.708) and we consider three different cases for the dimensionless total-enthalpy ratio 

on the wall (heat-transfer parameter S~ = H~/H~), thus covering the cases in which the wall 

is heated (S~ = 2), adiabatic (S~ = 1) and cooled (S~ = 0.5), respectively. It is worth men- 

tioning here that the dimensionless heat-transfer parameter Sw r 1 corresponds to a flow with 

heat transfer, whereas the requirement S~ = 1 corresponds to a flow with no heat transfer 

between the wall and the fluid (adiabatic flow). On the other hand, the value Sw = 2 (S~ > 1) 

corresponds to the case of  heating of  the wall whereas the value Sw = 0.5 (Sw < 1) to the case 

of  cooling of  the wall. 

So, in our study the calculations were started as laminar at x = 0 and transition was speci- 
fied at (i) xtT = 0.066m for the case S~ = 1 (Rxtr = 22 x 105), (ii) xt~ = 0.012 for the case 
S~ = 2 (Rxt~ = 4 x 105) and (iii) x~ -- 0.12 for the case S~ = 0.5 (Rxt~ = 4 x 106) assuming 
that after these points the flow is fully turbulent. However, we could also assume that the flow 

was turbulent from the leading edge (xt~ = 0). 
For  the numerical study of  the problem under consideration we have to solve the system 

of  Eqs. (22) and (23) subjected to the boundary conditions (24). This system of equations is of  
parabolic type and it can be solved by using several numerical methods discussed in Cebeci 
and Smith [25], Cebeci and Bradshaw [24], Schreier [32], and in Minkowycz et al. [26]. The 
numerical scheme used to solve the system of Eqs. (22)-(24) is the well-known Keller's-box 
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numerical scheme [33], described in detail in [25] and [24], and a modified version of this 
scheme described in [34] and [35]. 

One of the requirements of the Keller's-box method is that the governing equations are 
written as first-order system and derivatives of f (x ,  rl) , S(x, rl) with respect to 7/are introduced 
as new functions. The resulting first-order system of equations is solved on an nonuniform 
rectangular net with centered-difference derivatives and averages at the midpoints of the net 
rectangle to get finite-difference equations with a truncation error of order (Arl) 2 + (Ax2). 
The resulting difference equations are implicit and nonlinear and they are linearized and 
solved by a block-elimination method. However, it was found that the usual central difference 
approximation in the x direction give rise to large but bounded oscillations in the numerical 
solutions, especially for large values of the suction/injection velocity v~(x), imposed at the 
wall. The oscillations reduce in magnitude as the x step is reduced, but their entire elimination 
requires an extremely small streamwise steplength. Therefore, it was decided, in such a case, 
to use a backward difference modification to the Keller's-box method and the solutions 
obtained, though now formally only first-order accurate in x, showed no sign of oscillations 
even for large step lengths. The resulting nonlinear algebraic system is solved using a multi- 
dimensional Newton-Raphson iteration scheme where the Jacobian (or iteration) matrix is 
computed numerically rather than being prescribed by the programmer. This technique has 
been used successfully in other recent papers where the explicit specification of the Jacobian is 
extremely lengthy [34], [35]. 

As it was stated earlier numerical calculations were carried out for air, at about 
T~o = 300 ~ (Pr = 0.708), for Sw = Hw/He = 2, 1 and 0.5, thus covering the cases in which 
the wall is heated, adiabatic and cooled, respectively. 

The free-stream values p~,  uoo, 0oo and H~ were calculated from the formulae 

~oo = 1.45 • lO-6T221(Too -}- 110.33) (Sutherland's law), (34) 

u~ = 20.04M~v/~-~, (35) 

Poo (36) 
0oo 287Too ' 

H~ = 1005.7Too + 1 u 2  (cp = 1005.7) (37) 
Z ,  

for different values of the free-stream Mach number Moo, whereas the edge values T~ and Pc 
where calculated by using the formulae 

T~ ~ 1 - M ~ 2 -1  P~ (38) 
2 oo < , oot, ) , 

where "~ = cplc, = 1.4. 
The edge values #~, 0r and H~ were calculated by using formulas identical to those given 

by Eqs. (34), (36) and (37), respectively, except that free stream values (c~) of temperature, 
pressure and velocity were replaced by their edge values (e). It is worth mentioning here that 
Sutherland's law, Eq. (34), is an adequate approximation for the variation of viscosity # with 
temperature T, for air. For viscous fluids, Ling and Dybbs [36] suggested a viscosity depen- 
dence on temperature T of the form: 

#oo (39) 
# = [1 + 7*(T - Too)] ' 
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so that viscosity is an inverse linear function of  temperature T. Eq. (39) can also be written as 

1 
- = - T r ) ,  ( 4 0 )  
/1 

where c~= 7*/#oo and T~ = T o o -  1/7" .  (41) 

In the above relation (41), both c~ and T~ are constants and their values depend on the 

reference state and 7*, a thermal property of  the fluid. For  air, for instance, 

1 
- 123.2(T - 742.6) based on Too = 293~ (20~ (42) 

# 

The data for this correlation were taken from [37]. Although Ling's and Dybb 's  model is 

more accurate, its validity is limited to small temperature differences. For  instance, Eq. (42) is 

good to within 1.2% from 278 ~ to 373 ~ So, in our study we adopted Sutherland's law for 

viscosity variation since in high-speed shear layers temperature differences are not small com- 

pared with the absolute temperature. 

It is known that the best way of  removing a small portion of  the boundary-layer flow is to 

develop a continuous porous surface. This solution is not always easy to apply for both struc- 

tural and aerodynamics difficulties. At  the present time, the best methods to approach a con- 

tinuous suction are to use of  spanwise slots or strips of  perforated material. Suction has been 

very often used as an aerodynamic flow control technique to prevent laminar to turbulent 

boundary-layer transition as well as turbulent flow separation. Application of  suction along 

the leading edge of  a wing stabilize the boundary-layer and prevent transition from laminar to 

turbulent flow over the wing [9]. Small amounts of  suction are very efficient for transition 

control. However, if the suction velocity v~ is too large the boundary-layer could be very thin 

and the roughness effects be enhanced. As a result, negative effects in terms of  drag reduction 

could be recovered [38]. So, the suction/injection velocity at the wall, v~, was taken constant 

and equal to v~ = ~5 x 10 4~oo for the case of  heating of  the wall (Sw = 2), v~ = :F10-4uoo 

for an adiabatic wall (S~ = 1) and v~ = ~:10-4~oo for the case of  cooling of  the wall 

(S~ = 0.5). This is a valid assumption in order to ensure that the flow with suction or injec- 

tion at the wall satisfies the simplifying conditions that form the basis of  the boundary-layer 

theory [1]. Also, v~ represents the velocity of  suction or injection at the wall according to as 

v~ < 0 or v~ > 0, respectively. The case v~ = 0 corresponds to an impermeable wall (no suc- 

tion/injection). 

On the other hand, it is known that a large suction volume is uneconomical because a 
large proport ion of  the saving in power due to the reduction in drag or to remove the separa- 

tion point downstream is then used to drive the suction pump. It is, therefore, important  to 

determine the minimum suction volume or the location of  suction zone, in the case of  loca- 

lized suction, which is required in order to control the boundary-layer turbulent flow. Inter- 
esting information concerning the influence of  the suction location on the stability in bound- 
ary-layers have been obtained using the nonlinear Parabolized Stability Equations (PSE) 

approach [16]. The results obtained were related to a flat plate flow with a free stream velocity 
of  50 m/s. Suction was applied over a streamwise extent of  10 cm with a vertical suction veloc- 

ity v,o equal to - 1  cm/sec. Also, fundamental wind tunnel experiments performed by Rey- 
nolds and Saric [15] indicated that suction is more effective when applied at Reynolds num- 
bers close to the lower branch of  the neutral curve, in qualitative agreement with previous 
theoretical results. Finally, measurements carried out on an 8% thick symmetrical aerofoil 
showed that continuous suction is most  effective when it is confined to the upper side of  the 
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wing and when it extends over a region of  0.15 g approximately [1]. So, in order to examine 

the influence of  localized suction/injection on the turbulent boundary-layer, in our study we 

also applied continuous suction/injection in a region confined between x = a = 0 and 

x = b = 1.2 m (localized suction). In order to avoid difficulties associated with discontinuities 

in the region of  the boundary  surface, simple smoothing functions were introduced for the 

suction/injection velocity Vw (x) at the wall which can be written as 

1 Vo[1 + t a n h / 3 ( x  - a)] 
a+b 

0 < x < , (43) 
2 

and 

1 Vo[1 - t a n h / 3 ( x  - b)] " ~ ( x )  = 7 
a+b 

z > - - ,  (44) 
2 

where a = 0, b = 1.2 m, ~ = 10 and v0 is a constant suction/injection velocity according to as 

v0 < 0 or v0 > 0, respectively. This suction/injection velocity v0 was taken equal to 

q=5 x 10-%oo in the case of  an adiabatic wall (S~ = 1), v0 = qzl0-auoo for the case of  heating 

of  the wall (S~ = 2) and v0 = =F5 x 10-4u~o for the case of  cooling of  the wall (S~ = 0.5). 

5 Results and discussion 

rw 
C f ~ -  1 

&u~ 2 

To show the effect of  heat and mass transfer on the compressible turbulent boundary-layer 

flow, with adverse pressure gradient, numerical calculations carried out for different values of  

the parameters entering into the problem under consideration. The obtained results that are 

shown on figures concern the velocity field, the temperature field (Sw r 1), the local skin-fric- 

tion coefficient C/~ and the local Stanton number St~(S~ • 1). These two last quantities are 

very important  for engineering purposes and can be defined by the following relations: 

O~ (45) and Stz &(H~ - He) u~ ' 

r,~ = # and 0~ = -  (46) 
v=0 / Oy] ~=0 

Using Eqs. (19), (20), (21) and (25) these quantities can be written as 

CI ~ 2Cw . C~5"~ (Sw r 1) (47) 
- ~ fw and St~ = prv / -~(1  _ S~) 

where f~  = f"(x, 0) is the dimensionless wall-shear parameter, b4~ = S'(x, 0) is the dimension- 
less wall heat-transfer parameter and S~ = H~/H~ is the dimensionless total-enthalpy ratio 

on the wall or heat-transfer parameter. The case S~ = 1 corresponds to a flow with no heat 

transfer between the walt and the fluid (adiabatic flow) and in such a case it is worth ex- 

amining only the velocity field as well as the local skin-friction coefficient. 

(i) Adiabatic wall (Sw = 1) 

Figures 1 and 2 show the variations of  the dimensionless mean velocity profiles f'(r/), at a 

typical distance x = 2.0 m from the leading edge of  the plate, for M ~  = Miler = 0.75 and 3.0, 

where 
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respectively. The curves correspond to the case of no suction/injection (impermeable wall) (1), 
to the case of suction (2) and to the case of injection (3). The velocity profiles f'(rl) are 

affected by the suction/injection velocity applied on the wall as well as by the free-stream 
Mach number Moo. It is also observed that the momentum boundary-layer thickness increases 
significantly with the increase in the free-stream Mach number. The variations of the local 

skin-fiction coefficient Cyx(Cyx • 10a), with the distance :c from the leading edge of the plate, 
are presented in Figs. 3 to 6 for different values of Mo~ and for the case of continuous or 
localized suction/injection. The case of an impermeable wall is also presented in these figures. 
It is concluded from Fig. 3 that application of injection helps in reducing the frictional drag 
but the separation point moves downstream only in the case of suction and this is more evi- 
dent for higher values of the free-stream Mach number. Figure 4 shows the variations of the 
local skin-friction coefficient Cyx(xl0 a) with the distance z along the plate, for different 
values of the free-stram Mach number Moo, mainly for the case of an impermeable wall. It is 
evident that an increase in M~ leads to a decrease in the values of Cyx and at the same time 
the separation point moves downwards the limiting surface. To quantify this effect of com- 
pressibility on the separation point it is worth mentioning that when Moo increases from 0.375 
to 0.75 the separation point moves from z* --- 4.289 m to z* = 4.395 m. Also, a further 
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increase of  Mo~ from 0.75 to 1.5 and to 3.0 moves the separation point from x* = 4.395 m to 

x* = 4.579 m and x* = 4.868 m, respectively. On the other hand, when M~ = 3.0 application 

of  suction helps in removing the separation point from x* = 4.868 m to x* = 5.026 m. Finally, 

the effect of  suction/injection, continuous or localized, on Cf~ is shown in Fig. 5 for 

Mo~ = 2.0. F rom this figure it is verified, once more, the effect of  suction/injection on the local 

skin-friction coefficient Cfz and the separation point. By blowing air through the permeable 

wall the skin friction, in case of  turbulent boundary-layers, can be reduced and the effect is 

actually based on thickening the boundary-layer. However, the separation point moves 

towards the leading edge in the case of  injection whereas it moves downwards the plate in the 

case of  suction. What  is more interesting though, is the effect of  localized suction/injection on 

Cfz and the separation point. By applying localized suction, for instance, from the leading 

edge up to the point x = 1.2 m with a velocity of  suction vw(x) given by the expressions (43) 

and (44) the separation point moves downwards the plate and at the same time Cfx is smaller 

than the corresponding one in the case of  continuous suction, at least for x > 1.5 m. This fact 

could be proved very useful for applications in aerodynamics. It must be emphasized, how- 
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ever, that the suction rate coefficient Cq = Ivol/uoo, in the case of  localized suction/injection, 
is five times greater than the corresponding one in the case of  continuous suction/injection all 

over the plate. 

(ii) Heating of  the wall (Sw > 1) 

The variations of  the dimensionless velocity profiles f ' (~) with the dimensionless boundary- 
layer distance 7, at a typical distance x = 2.0 m from the leading edge, are shown in Figs. 6 

and 8 for Moo = 0.75 and Moo = 3.0, respectively. The corresponding variations of  the dimen- 
sionless total-enthalpy ratio S (dimensionless temperature) are shown in Figs. 7 and 9. From 
these figures it is concluded that the dimensionless viscous or thermal boundary-layer thick- 

ness ~r increases as the free-stream Mach number increases. It is worth nothing here though, 
that the effect of  suction/injection in the velocity field is greater in the case of  heating of  the 
wall (S~ = 2.0) than that in the case of  an adiabatic wall (Sw = 1). The main reason for this 

difference is the fact that in this case (Sw = 2.0) the suction/injection rate coefficient 
Cq = Ivo I/uoo is five times greater than the corresponding one in the case of  an adiabatic wall 
(S~ = 1). To quantify this effect we refer that in the case of  an adiabatic wall (S~ = 1) and 
when M~o is equal to 0.75 (Fig. 1) and the dimensionless boundary-layer distance ~ is equal, 
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for instance, to 40, application of  injection helps in decreasing f ' (~)  by 1.8% with respect to 

its value in the case o f  an impermeable wall. The corresponding decrease in the case of  heating 

the wall (5'~0 = 2.0, Fig. 6) is 4%, though. On the other hand, the influence of  suction/injection 
on the dimensionless temperature profiles S(r/) is almost negligible as the free-stream Mach 

number increases. Quantitatively, for r / =  40, Moo = 0.75 and S~ = 2.0 (Fig. 7), application of  

suction, for instance, decreases 5'(2.0,40) by 1.58%, whereas the corresponding decrease 

when Moo = 3.0 (Fig. 9) is only 1.56%. 

Figure 10 shows the variation of  the local skin-friction coefficient, with the distance x 
along the wall, for Moo = 0.75 and Moo = 3.0 for the case of  an impermeable wall as well as 
for the case of  a continuous suction/injection. It is observed that in this case too (S'~ = 2.0), 

application of  injection helps in reducing Cfz but the separation point moves downstream the 
plate in the case of  suction and this is more evident for higher values of  Moo, Quantitatively, 

for M~ = 0.75, the separation point moves from x* = .3.96 m, in the case o f  an impermeable 
wall, to x* = 4.23 m in the case of  suction, whereas the corresponding values of  z* for 
Moo = 3.0, are x* = 4.51 m and x* = 4.95 m, respectively. 

The variation of  the heat transfer coefficient, expressed as a local Stanton number, defined 
by Eq. (47), with the distance x from the leading edge up to separation point, are presented in 
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Fig. 11. It is concluded from this figure that Stx is affected by compressibility as well as by the 

suction/injection velocity imposed at the wall. It is worth emphasizing here however that, 

when M~ = 3.0 and over a large region of the plate, application of suction (curve No 5) helps 

in increasing the heat transfer coefficient whereas the opposite is true for all the other cases. 

Finally, Figs. 12 and 13 show the variations of the local skin-friction coefficient and the local 

Stanton number, respectively, with the distance x along the plate in the case of continuous 

and localized suction/injection for Moo = 2.0. Qualitatively the variation of Cfx with x is simi- 

lar to that in the case of an adiabatic wall (S~ = 1, Fig. 5). However, in this case (heating of 

the wall) at every distance x along the wall, Cfx is always less than the corresponding one in 

the case of an adiabatic wall and consequently the separation point x* moves towards the 

leading edge. It must be emphasized also that when the wall is heating (S~ = 2.0), the displa- 

cement of the separation point, in the case of localized suction or injection, with respect to 

continuous suction/injection, is greater than the corresponding one in the case of an adiabatic 

wall (S~ = 1.0). On the other hand, the local Stanton number decreases as the distance x 
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from the leading edge increases for all cases except for the case of  cont inuous suction where 
Stx is a lmost  constant over a large region over the plate. 

(iii) Cooling of the wall (Sw < 1) 

The variations of  the dimensionless velocity and temperature profiles with the dimensionless 
boundary-layer distance r/, at a typical distance z = 2 m from the leading edge o f  the limiting 
porous surface, are shown in Figs. 14, 16 and in Figs. 15, 17 for Moo = 0.75 and 3.0, respec- 
tively. The variations of  these quantities are similar, qualitatively, to those in the case o f  
heating o f  the wall (S~ = 2.0) and any further discussion seems to be unnecessary. However,  
it is worth emphasizing that, quantitatively, the influence o f  the suction/injection on the veloc- 
ity field and temperature field is greater for S~ = 2.0 and less for S~ = 0.5. This is a conse- 
quence of  the fact that the velocity o f  suction/injection is v~o = q:5 x 10-4u~  for the case of  
heating o f  the wall (S~ = 2.0) whereas v~ = qzl0 4u~ for the case o f  cooling o f  the wall 
(S~ = 0.5). To be more specific, in the case o f  the velocity field for instance, when 
r / =  40, Moo = 0.75 and S~ = 2.0 (Fig. 6) application o f  injection decreases fr(2.0, 40) by 
4.45%, whereas the corresponding decrease when S,~ = 0.5 (Fig. 14) is only 2.55%. 

Figures 18 and 19 show the variations of  the local skin-friction coefficient and the local 
Stanton number, respectively, for M ~  = 0.75 and Moo = 3.0, whereas Figs. 20 and 21 show 
the variations of  the same quantities, for M ~  = 2.0, in the case of  cont inuous or localized suc- 
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tion/injection. The variations of the above mentioned quantities, with the distance z along the 

limiting porous surface, are similar to those in the case of a heating of the wall (S~ = 2.0) pre- 
sented in Figs. 10 13. However, it is worth mentioning that in the present case (S~ = 0.5) the 
distance z* of the separation point from the leading edge of the plate, is always greater than 
the corresponding one in the case of a heating of the wall (S~ = 2.0) although the velocity of 
suction/injection in that case (S~ = 2.0) is five times greater than the corresponding one in 

the present case (S,w = 0.5). For instance, when S~ = 2.0 and M~ = 3.0, z* = 4.96 m in the 
case of suction (curve (5), Fig. 10) whereas the corresponding value of z*, in the case of cool- 
ing of the wall (S~ = 0.5), is z* = 5.36 m (curve (5), Fig. 18). So, it is concluded that the influ- 
ence of suction/injection on the displacement of the separation point is more effective in the 
case of cooling of the wall than that in the case of heating of the wall. 

6 Concluding remarks 

The numerical investigation of the two-dimensional turbulent boundary-layer compressible 
flow, over a finite smooth and permeable limiting surface, with an adverse pressure gradient 
and heat and mass transfer showed that: 

Adiabatic wall ( Sw = 1) 

(i) The velocity field is significantly affected by the suction/injection velocity applied on the 
wall as well as by the free-stream Mach number. 

(ii) Application of injection helps in reducing the frictional drag but the separation point 
moves downstream in the case of suction. 

(iii) By applying localized suction the separation point moves downwards the wall and the 
local skin-friction coefficient is smaller than the corresponding one in the case of continu- 
ous suction. 

Heating of the wall (S,w = 2.0) 

(i) Due to higher values of the suction/injection velocity, imposed at the wall, in the present 
case, the effect of suction/injection on the velocity field is more evident than that in the 
case of an adiabatic wall. 

(ii) The effect of suction/injection on the temperature field becomes less evident as the free- 
stream Mach number increases. 

(iii) The local skin-friction coefficient reduces in the case of injection but the distance z* of 
the separation point from the leading edge increases in the case of suction and this is 
more evident for higher values of the free-stream Mach number. 

(iv) The local Stanton number is affected by compressibility as well as by the suction/injec- 
tion velocity imposed at the wall. 

(v) Due to different values of the suction/injection velocity, imposed at the wall, the displace- 
ment of the separation point, in the case of localized suction/injection, with respect to 
continuous suction/injection, is greater than the corresponding one in the case of an adia- 
batic wall. 

Cooling of the wall (5'~ : 0.5) 

(i) The variations of the fundamental quantities of the flow field are qualitatively similar to 
those in the case of heating of the wall (S~ = 2.0) 
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(ii) 

(iii) 

N. G. Kafoussias and M. A. Xenos 

The influence of  the suction/injection on the velocity and temperature  field is not  so 

effective as in the case of  heating of  the wall. 

The influence of  suction/injection on the displacement of  the separat ion point  is more 

effective than the corresponding one in the case of  heating of  the wall. 
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