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Summary. The Lie symmetries and conserved quantities of constrained mechanical systems are studied. 
Using the invariance of the ordinary differential equations under the infinitesimal transformations, the 
determining equations and the restriction equations of the Lie symmetries of the systems are established. 
The structure equation and the form of conserved quantities are obtained. We find the corresponding 
conserved quantity from a known Lie symmetry, that is a direct problem of the Lie symmetries. And 
then, the inverse problem of the Lie symmetries - finding the corresponding Lie symmetry from a known 
conserved quantity - is studied. Finally, the relation between the Lie symmetry and the Noether symmetry 
is given. 

1 Introduction 

The researches on the conserved quantities of  mechanical systems not  only have important  

mathematical significance, but also have profound physical background. There are two mod- 

ern methods to find the conserved quantities, that is the Noether symmetry method and Lie 

symmetry method. The Noether method is making good progress [1]- [4]. Since the late seven- 

ties, the study on the Lie symmetries of  mechanical systems had some results [5]-[6]. In this 

work, we study the Lie symmetries and conserved quantities o f  constrained mechanical sys- 

tems, including the holonomic systems with remainder coordinates, the non-holonomic sys- 

tems of  Chetaev type and non-Chetaev type. 

2 Holonomic systems with remainder coordinates 

2.1 Direct problem 

Let the position of  a mechanical system be determined by n generalized coordinates 

q~(s : 1 , . . . ,  n). For  some needs, we introduce m remainder coordinates qn+~(,,/ = 1 , . . . ,  m) 

and have m ideal holonomic constraints 

f~(t,q ~) = 0 (~=  1 , . . . , ~ ; u  = 1,...,,~ +,~).  (2.1) 

The restriction o f  constraints (2.1) on the virtual displacements is 

Of~ (Sq u = 0. (2.2) 
Oq ~ 
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From the d'Alembert-Lagrange principle and the formula (2.2), using 
Lagrange multiplier, we can obtain the equations of motion of the system, 

d OT OT Of  9 
Oq~, -- Q~ + A 9 0 q ~  dt 00 ~ 

o r  

d OL 
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the method of 

(2.3) 

OL _ Q~,,, + Aft Of  a (2.4) 
dt Oq ~ Oq ~ Oq ~ ' 

where T is the kinetic energy, L is Lagrangian, Q~ the generalized forces, Q~" the generalized 
non-potential forces, A 9 the constraint multipliers. From Eqs. (2.1) and (2.4) we can determine 
A 9 as the functions oft ,  q, q, 

A9 = :~9( t, q, r (2.5) 

Substituting this into Eqs. (2.4) we obtain 

d OL OL 
- Q~" + A~, 

dt O(fl Oq ~ 

A~ = A~(t,  q, il) : kZ Of~ (2.6) 
Oq ~ 

Let 

det \ ~ j  r 0. (2.7) 

Expanding Eqs. (2.6), we can determine all accelerations as 

/:)~ = c~( t, q, 8). (2.8) 

Equations (2.8) are called the equations of the holonomic system corresponding to the system 
(2.1), (2.4) with remainder coordinates. When the initial conditions satisfy Eqs. (2.1), the solu- 
tion of Eqs. (2.8) gives the motion of the system. 

Introducing the infinitesimal transformations 

t* = t + At ,  @*(t + A t )  = @(t)  + Aq  ~ (2.9) 

or their expanded form 

t* = t + e~~  q~* = q~ + e ~ ( t , q , o )  , (2.10) 

taking the infinitesimal generator 

0 o ~ o (2 .11)  x(O~ = ~ ~ + ~ oq~ 

and its first extended vector 

0 (2.12) 

by using the invariance of the ordinary differential equations under the infinitesimal transfor- 
mations [7], the invariance of Eqs. (2.8) under the infinitesimal transformations (2.10) leads to 
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the satisfaction of the following determining equations: 

~~ - 0~ o - 2~o~ ~ : x(~) (~), (2.13) 

and the invariance of the constraint equations (2.1) under the infinitesimal transformations 
(2.10) leads to the satisfaction of the following restriction equations: 

X (~ (H(t, q)) = 0. (2.14) 

If the generator (0, ~., of the infinitesimal transformations satisfies the determining equations 
(2.13) and the restriction equations (2.14), then the corresponding transformations are called 
the Lie symmetrical transformations of the system (2.1), (2.4) with remainder coordinates; if 
the determining equations (2.13) are only satisfied, then the transformations are calIed the Lie 
symmetrical transformations of the corresponding holonomic system (2.8). 

The Lie symmetry can lead to a conserved quantity under certain conditions. We have: 
Proposition 1. For the infinitesimal generator ~0, ~, satisfying the determining equations 
(2.13) and the restriction equations (2.14), if there exists a gauge function G = G(t, q, i~) satis- 
fying the structure equation 

LE o + X(1)(L) + ( Q J  + A~) (~" - 0~  ~ + O = 0, (2.15) 

then the holonomic system with remainder coordinates has the following conserved quantity: 

OL 
1 : g~ ~ + ~ (O - 0~  ~ + O = const. (2.16) 

Proof. 

- - =  L- 0 OL /~o  ~ o- d OL dI s  (4 ~ -  - O ~  ~  ~)~cOo~ 
dt { + ~  

-- LEo - x<l)(L) - (Quit 4- Au) (~u _ ou(o) 

d OL 

= ( C  - 0 ~  ~ d~ O0 ~ 
OL Q~"-A~ = 0. 
Oq ~ / 

If there are no remainder coordinates, Proposition 1 becomes a result in [6]; and then, if 
there are no generalized non-potential forces, Proposition 1 becomes a result in [5]. 

The method of solution of the direct problem of the Lie symmetries is the following: 
firstly, establish the determining equations (2.13) and restriction equations (2.14) of the Lie 
symmetries for a given holonomic system with remainder coordinates and seek the generator 
~0, ~ from these equations; secondly, substitute the generator obtained into the structure 
equation (2.15) to determine G; finally, substitute ~0, ~ and G into the formula (2.16) to 
obtain the conserved quantities of the Lie symmetries. 

2.2 Inverse problem 

Suppose that the system has an integral 

I = [(t, q, q) = const. (2.17) 

Let us seek the corresponding Lie symmetry. Differentiating this with respect to t, we have 

dI  OI OI q" OI O~ ' (2.18) 
dr-at ~Oq-; + ~  =0. 
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Multiplying Eqs. (2.6) by 

= ~ -- c)~ ~ (2.19) 

and taking the summation for u, we obtain 

-(ddto@OL Oq ~OL Q ~ " - A ~ ) = 0 .  (2.20) 

Adding the formulae (2.18) and (2.20), separating the terms containing/~ and taking their 
coefficients as zeros, we obtain 

OI 02L 
00 ~ + ~  ~ = 0 (v : 1 , . . . , n + m ) .  (2.21) 

From this we can determine ~ as 

~,~ = ~ O~ (2.22) 

where 

02L 
~ v ~  = < ,  ~ = 00~00 . (2.23) 

Let the integral (2.17) be equal to the conserved quantity (2.16), i.e., 

OL 
L~ ~ + ~ ~ + G : [ .  (2.24) 

Thus we can obtain the infinitesimal generator ~0, ~ from Eqs. (2.22) and (2.24) when the 
gauge function G is given. We have: 

Proposition 2. If the generator ~0, ~ obtained from Eqs. (2.22) and (2.24) satisfies the deter- 
mining equations (2.13) and the restriction equations (2.14), then the transformations (2.10) 
are Lie symmetrical transformations of the system (2.1), (2.4). If Eqs. (2.13) are only satisfied, 
then the transformations are Lie symmetrical transformations of the system (2.8). 

2.3 Lie symmetry and Noether symmetry 

If the transformations (2.9) satisfy Noether's identity 

0L 0L ~ 0L ZX "~ d d (a  G) (2.25) o~At+~q~q Aq + ~  q +L (At )+(Q~"+A~)(Aq~-4uAt)=-~t  

and the restriction conditions 

Of__~ ~ (~u _ 0~0) = 0, (2.26) 
Oq u 

then the transformations (2.9) are called the Noether symmetrical transformations of the 
holonomic system with remainder coordinates (2.1), (2.4). We have: 

Proposition 3. The structure equation (2.15) of the Lie symmetry is equivalent to Noether's 
identity (2.25). 
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Proposition 4. The restriction equations (2.14) of the Lie symmetry are equivalent to the 

restriction conditions (2.26). 

Proposition 5. For the holonomic system (2.1), (2.4) with remainder coordinates, when the 
transformations (2.10) are Lie symmetrical, if and only if G is zero or the exact derivation of a 
function, then the transformations are Noether symmetrical. 

Proposition 6. For the holonomic system (2.1), (2.4) with remainder coordinates, when the 
transformations (2.10) are Noether symmetrical, if and only if the generator satisfies the 
determining equations (2.13), then the transformations are Lie symmetrical. 

2.4 Illustrative example 

Let us consider a system whose Lagrangian is 

L = ~ {(ql)  2 ~- (02) 2 - -w2(q l )2}  _ TTbgq2 ~ 

the generalized non-potential forces are 

QI" = -mc) 2 , Q2" = rnq 1 

and the constraint equation is 

f = q2 _ a(q,)2.  

Equations (2.8) give 

~ 1  _ ql 
1 + 4a2(q1) 2 [~2 _ 4a2(01)2 _ 2ag] = o~ 1 , 

/~2 _ 2a 
1 + 4a2(ql)2 [~2(ql)~ + (01)~ _ 2ag(ql)~l = ~2.  

Equations (2.13) and (2.14) give 

_ o1 o _ = 

~2 - -  2aql~l = O. 

(2.27) 

(2.28) 

(2.29) 

(2.30) 

~'2 _ 02~0 _ 2~0OL2 : X(1)((y2) , (2.31) 

(2.32) 

Equations (2.31) and (2.32) have the following solution: 

~0 = - 1 ,  ~1 _ 01, ~2 = 02. (2.33) 

Substituting the generator (2.33) into the structure equation (2.15), we obtain the gauge func- 
tion 

- + ( 0 2 )  2] _ + . gq2. ( 2 . 3 4 )  G =  

Substituting (2.33) and (2.34) into the formula (2.16), we obtain the conserved quantity 

I = m[@) 2 + (02) 2 -w2(q1)2] + 2mgq2 = const. (2.35) 

From the Proposition 5, we know that the transformations are also Noether symmetrical. 
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3 Nonholonomic systems of Chetaev type 

3.1 Direct problern 

Let the position of a mechanical system be determined by n generalized coordinates 
q~(s = 1 , . . . ,  n). Its motion is subjected to the ideal non-holonomic constraints of Chetaev 
type 

f g ( t , q ,  il) = 0 (/3 = 1 , . . .  ,9) .  (3.1) 

The restriction of condition (3.1) on the virtual displacements is 

O f g c  s 
~qS oq = 0. (3.2) 

The equations of motion can be written in the form: 

d OL OL _ • ,, + A9 Of  ~ (3.3) 
dt Oil ~ Oq ~ ~ Oifl " 

Before integrating the equations of motion, we can determine X~ as functions of t, q, 0 [9] 

A9 = Ag(t, q, q). (3.4) 

Substituting this into Eqs. (3.3), we obtain 

d OL OL 
- Q / '  + As ' ,  

dt O0 ~ Oq ~ 

A , '  = A , ' ( t ,  q, (t) = AZ Of  9 (3.5) 
003 

Let 

/ 02L ",, dot/ ) 0. 

Expanding Eqs. (3.4), we can obtain all accelerations as 

~ =/3~(~,  q, 0 ) .  (3.7) 

Equations (3.7) are called the equations of motion of holonomic system corresponding to the 
non-holonomic system (3.1), (3.3). If the initial conditions satisfy Eqs. (3.1), the solution of 
Eqs. (3.7) gives the motion of non-holonomic system. 

The invariance of Eqs. (3.7) and (3.1) under the infinitesimal transformations (2.10) 
(u = 1 , . . . ,  n) leads to the satisfaction of the following determining equations: 

~ _ r _ 2~0/3, = x (~ ) (9~)  (3 .s )  

and the restriction equations 

X (1) ( f ( t ,  q, q)) = 0. (3.9) 

If the generator G ~ ~ satisfies Eqs. (3.8) and (3.9), then the corresponding transformations 
are called the Lie symmetrical transformations of the non-holonomic system (3.1), (3.3); if the 
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determining equations (3.8) are only satisfied, then the transformations are called the Lie sym- 
metrical transformations of the corresponding holonomic system (3.7). 

The Lie symmetry can lead to a conserved quantity under certain conditions. We have: 

Proposition 7. For the generator ~0, ~8 satisfying the determining equations (3.8) and the 
restriction equations (3.9), if there exists a gauge function G = G(t, q, (7) satisfying the struc- 
ture equation 

LC + X 0) (L) + (QJ' + A'8) (r _ 08~0) + G = 0, (3.10) 

then the non-holonomic system of Chetaev type has the following conserved quantity: 

OL 
I = L[ ~ + ~ (~ - c)8~ ~ + G = const. (3.11) 

The proof of Proposition 7 is similar to that of Proposition 1. 
If there are no non-holonomic constraints, Proposition 7 gives a result in [6]. 
The method of solution of the direct problem of the Lie symmetries is the following: 

Firstly, establish the determining equations (3.8) and restriction equations (3.9) of the Lie 
symmetries for a given non-holonomic system and determine the generator ~0, ~s from these 
equations; Secondly, substitute the generator into the structure equation (3.10) to determine 
G; Finally, substitute ~0, ~s and G into the formula (3.11) to obtain the conserved quantities 
of the Lie symmetries. 

3.2 Inverse problem 

Using a similar method in 2.2, we have 

#s = g}sk OI 
00k ,  (3.12) 

OL 
L( ~ + ~ ~~ + G = I.  (3.13) 

Proposition 8. If the generator (0, (~ obtained from Eqs. (3.12) and (3.13) satisfies the deter- 
mining equations (3.8) and the restriction equations (3.9), then the transformations are Lie 
symmetrical transformations of the non-holonomic system (3.1), (3.3). If Eqs. (3.8) are only 
satisfied, then the transformations are Lie symmetrical transformations of the corresponding 
holonomic system (3.7). 

3.3 Lie symmetry and Noether symmetry 

If the transformations satisfy Noether's identity 

d (AG) (3.14) OLo~(At+~q AqS+~qlq A OL .8+L~d (At)+(Q~, +A~,)(Aq 8-OsAt)= 

and the restriction conditions 

Off 
008 (~8 _ 08~0) = o, (3.15) 

then the transformations are called the generalized Noether quasi-symmetrical transforma- 
tions of the non-holonomic system (3.1), (3.3) [4]. We have: 
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Proposition 9. The structure equation (3.10) is equivalent to Noether's identity (3.14). 

Proposition 10. For the non-holonomic system (3.1), (3.3), when the transformations are 
symmetrical, if and only if G is zero or the exact derivation of a function, and the transfor- 
mations satisfy the restriction conditions (3.15), then the transformations are generalized 
Noether quasi-symmetrical. 

Proposition 11. For the non-holonomic system (3.1), (3.3), when the transformations are 
generalized Noether quasi-symmetrical, if and only if the generator ~0, ~s satisfies the deter- 
mining equations (3.8) and the restriction equations (3.9), then the transformations are Lie 
symmetrical. 

3.4 Illustrative example 

In the Appell-Hamel's example [8], 
respectively, 

= ~ ~ [ (01)  2 + (02) 2 + (03) 2] - mgq  3 , L 

f = (01) + (02) 2 - (03) 2 = O. 

[9], the Lagrangian and the constraint equation are, 

(3.16) 

(3.17) 

Firstly, we study the direct problem. Eqs. (3.7) give 

1 m9(11 1 mg~l 2 1 (3.18) 
mi~l-- 2 03 ' toO2-- 2 03 ' mi~3 + m g =  ~mg.  

Equations (3.8) and Eqs. (3.9) give, respectively, 

P - 0 ' i ~ 1 7 6  - - r 1 7 6 1 7 6  +(43-r176 ' ( ~  ' (3.19) 

~ - ~176 - 2~~ ( 2 " ~ )  = (42 1 02 

i 3 --03i 0 -  2~0(--~ g) =0, (~1 __01~0) 01_t_ (~2 02~0) 02 (~3  03~0) 03 _0. (3.20) 

We can obtain the following solutions of Eqs. (3.19) and Eqs. (3.20): 

~o = - 1 ,  ~s = 0 (s = 1, 2, 3) ,  (3.21) 

~0 = 0, ~1 = 0, ~2 = 0, ~3 = 1. (3.22) 

Substituting these generators into the structure equation (3.10), we obtain, respectively, 

a = 0, (3.23) 

1 
G = ~ mgt. (3.24) 

Substituting the generators (3.21), (3.22) and the gauge functions (3.23), (3.24) into the for- 
mula (3.11), we obtain the following conserved quantities: 

i =  1 2 rn[(~)l)2 + (02)2 + (03)2] + rngq3 = const., (3.25) 

I = rn(13 + 1 mgt = const. (3.26) Z 
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And then we study the inverse problem. Suppose that the system possesses an integral 
(3.26), let us seek the corresponding Lie symmetry. Eqs. (3.12) and (3.13) give 

~1 : 0 ,  ?~ : 0 ,  ~3 : 1, 

(3.27) 
1 

Z~ ~ + G = ~ at. 

It is easy to verify that the generator determined by (3.27) satisfies Eqs. (3.19) and (3.20), 
therefore, the transformations are the Lie symmetry of the system (3.16), (3.17). 

Finally, we study the relation between the Lie symmetry and the Noether symmetry. 
The generator (3.21) satisfies the restriction (3.15); in view of Proposition 10, we know 

that the transformations are generalized Noether quasi-symmetrical transformations. The 
generator (3.22) does not satisfy the restriction (3.15); in view of Proposition 10, we know 
that the transformations are not generalized Noether quasi-symmetrical transformations. For 
the generator 

G 0 ~--- 0 ,  E1 _ ]- ~2 _ 01 ~3 = 0, (3.28) 
0~'  (02) 5 ,  

the identity (3.14) gives 

ql (3 .29)  G = - m  ~22 ' 

and the restriction conditions (3.15) are satisfied. Therefore, the transformations correspond- 
ing to the generator (3.28) are generalized Noether quasi-symmetrical transformations. It is 
easy to verify that the generator (3.28) does not satisfy the determining equations (3.19). 
From Proposition 11, we know that the transformations are not Lie symmetrical. 

4 Non-holonomie systems of non-Chetaev type 

4.1 Direct problem 

Let the position of a mechanical system be determined by n generalized coordinates 
q~(s= 1, . . . ,n ) .  Its motion is subjected to the ideal non-holonomic constraints of non- 
Cheataev type 

F~(t, q, q') = 0 (fl = 1 , . . . ,  g). (4.1) 

Suppose that the restriction of constraints (4.1) on the virtual displacements is 

r J ( t ,  q, O) 6q ~ = O. (4.2) 

In the general case 

OF ~ 
F~ 5k 0c)~ S- (4.3) 

The equations of motion can be written in the form [10] 

d OL OL 
- Q~" + ~F~. (4 .4)  

dt 00 s Oq* 
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Let 

02L 

Before integrating the equations of motion, we can determine A 9 as function of t, q, q, 

A/~ = Ag(t, q, 4). (4.6) 

Substituting this into Eqs. (4.4), we obtain 

d OL OL 
-- QJ '+ As", As" = As"(t, q, q) = A~Fs ~. (4.7) 

dt O0 s Oq ~ 

Expanding Eqs. (4.7), we can seek all accelerations as 

Os = 7s(t, q, 4). (4.8) 

Equations (4.8) are called the equations of motion of the holonomic system corresponding to 
the non-holonomic system (4.1), (4.4). If the initial conditions satisfy Eqs. (4.1), the solu- 
tion of Eqs. (4.8) gives the motion of the non-holonomic system. 

Introducing the infinitesimal transformations (2.10) (u = 1 , . . . ,  n), the infinitesimal gen- 
erator (2.11) and its first extended vector (2.12), the invariance of Eqs. (4.8) and Eqs. (4.1) 
under the infinitesimal transformations leads to the satisfaction of the following determining 
equations: 

~'s __ qa~'O __ 2~O.ys = X ( 1 ) ( ~ s )  (4 .9 )  

and the restriction equations 

X(*) (F~( t, q, 4)) = O. (4.10) 

If the generator {0, {s satisfies Eqs. (4.9) and (4.10), corresponding transformations are called 
the Lie symmetrical transformations of a non-holonomic system of non-Chetaev type (4.1), 
(4.4); if the determining equations (4.9) are only satisfied, then the transformations are called 
the Lie symmetrical transformations of the corresponding holonomic systems (4.8). 

The Lie symmetry can lead to a conserved quantity under certain conditions. We have: 

Proposition 12. For the generator {0, {s satisfying the determining equations (4.9) and the 
restriction equations (4.10), if there exists a gauge function G = G (t, q, 4) satisfying the struc- 
ture equation 

L~ ~ + XO)(L) + (QJ' + As")({ s - Os{ ~ + O : O, (4.11) 

the non-holonomic system of non-Chetaev type has the following conserved quantity: 

OL s 
I = L~ ~ + 0~- (( - 0's(~ + G = eonst. (4.12) 

The proof of Proposition 12 is similar to that of Proposition 1. If the constraints are Chetaev 
type, Proposition 12 becomes Proposition 7. 

The method of solution of the direct problem of the Lie symmetries for the non-holonomic 
system of non-Chetaev type is the following: firstly, establish the determining equations (4.9) 
and the restriction equations (4.10) of the Lie symmetries for a given non-holonomic system 
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and determine the generator ~0, ~ from these equations; secondly, substitute the generator 
into the structure equation (4.11) to determine G; finally, substitute ~0, ~s and G into the for- 
mula (4.12) to obtain the conserved quantities of the Lie symmetries. 

4.2 Inverse problem 

Using a similar method in 2.2, we have 

~ = s OI (4.13) 
00k ' 

L~ 0 I .  (4.14) a, "oq 

Proposition 13. If the generator ~0, ~s obtained from Eqs. (4.13) and (4.14) satisfies the deter- 
mining equations (4.9) and the restriction equations (4.10), then the transformations are Lie 
symmetrical transformations of the non-holonomic system (4.1), (4.4) of non-Chetaev type. If 
Eqs. (4.9) are only satisfied, then the transformations are Lie symmetrical transformations of 
the corresponding holonomic system (4.8). 

4.3 Lie symmetry and Noether symmetry 

If the transformations satisfy Noether's identity 

OLo~ At  + ~q z S q S + o o ; A q S + L  OL d (At) + (Qs" + As")(Aq" - 08At) = - d (AG) (4.15) 

and the restriction conditions 

F~(~ s - 0s~ ~ ~ 0, (4.16) 

then the transformations are called the generalized Noether quasi-symmetrical transforma- 
tions of the non-holonomic system (4.1), (4.4). 

Proposition 14. The structure equation (4.11) is equivalent to Noether's identity (4.15). 

Proposition 15. For the non-holonomic system (4.1), (4.4), when the transformations are Lie 
symmetrical, if and only if G is zero or the exact derivation of a function, and the transforma- 
tions satisfy the restriction condition (4.16), then the transformations are generalized Noether 

quasi-symmetrical. 

Proposition 16. For the non-holonomic system (4.1), (4.4), when the transformations are gen- 
eralized Noether symmetrical, if and only if the generator ~0, ~ satisfies the determining equa- 
tions (4.9) and the restriction equations (4.10), then the transformations are Lie symmetrical. 

4.4 Illustrative example 

Suppose that the Lagrangian of a system is 

1 q2 L = ff[(ql)2-~- (02)2] _ , 

the constraint equation is 

F = 0 2 --  t01 = 0 ,  

(4.17) 

(4.18) 
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and the equation of virtual displacements is 

5q 1 - 6q 2 = 0. (4.19) 

Firstly, we study the direct problem of the Lie symmetries of the system. The equations of 
motion of the corresponding holonomic system are 

01_ 01+1 0 2 _ 0 1 - t  
t + l  ' t + l  (4.20) 

The determining equations (4.9) and the restriction equations (4.10) give, respectively, 

~., _ 01~.0 _ 2~0 (o'S;i) + 1) = x(') ,( ~ + f j,1) 
(4.21) 

~TTi-I  \ t -TTI  ' 

42 - 0240 - ~(4'  - 0 '4  ~ = 0 ( 4 . 2 2 )  

We can get the following solutions of Eqs. (4.21) and (4.22): 

~0 = 0 ,  r = 1,  r = 0 ,  (4 .2a )  

{o = 0~ {1 = 0, {2 = 1, (4.24) 

~o = 0, {, = ~2 = 1, (4.25) 

{0 : 0, {t : ln(1 + t), {2 = t - ln(1 + t). (4.26) 

Substituting the generator (4.25) into the structure equation (4.11), we obtain 

G = t. (4.27) 

Substituting the formulae (4.25), (4.27) into the formula (4.12), we obtain the corresponding 
conserved quantity 

I = 01 -t- 0 2 -t- t =: c o n s , .  (4.28) 

For the generator (4.23), (4.24), (4.26), there are no corresponding gauge functions G, there- 
fore, there are no corresponding conserved quantities. 

Secondly, we study the inverse problem of the Lie symmetries of the system. Suppose that 
the system possesses an integral (4.28) we now, seek for the corresponding Lie symmetries. 
Equations (4.13) and (4.14) give, respectively, 

= 1,  (2 = 1,  (4 .29 )  

L~0 + a = t .  (4.80) 

It is easy to verify that the determining equations (4.21) are satisfied for any G. Substituting 
the formulae (4.29), (4.30) into the restriction equations (4. [0), we get 

x ( ' )  ( f )  = 0 '~  ~ . (4.31) 

Therefore, if and only if {0 = 0, the restriction equations (4.10) are verified, and we obtain the 
generator of the Lie symmetrical transformations corresponding to the integral (4.28), 

~0 = 0 {~ = ~2 = 1. (4.32) 

Finally, we study the relation between the Lie symmetry and the Noether symmetry. The 
generators (4.23), (4.24), (4.26) correspond to the Lie symmetrical transformations. But they 
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do not satisfy the restriction conditions (4.16). According to Proposition 15, we know that 
they are not generalized Noether quasi-symmetrical. Choosing the generator 

~0 = o ,  ~1 = ~2 = t ,  (4.33) 

it satisfies the restriction conditions (4.16). From the identity (4.15), we can obtain 

G : ~ I  t2 _ ql _ q2. (4.34) 

Therefore, the generator (4.33) corresponds to the generalized Noether quasi-symmetrical 

transformations. For the generator (4.33), the determining equations (4.21) and the restriction 
equations (4.22) are not satisfied. According to Proposition 16, we know that the transforma- 

tions are not Lie symmetrical. 

5 Conclusions 

The Lie symmetry is an invariance of the ordinary differential equations under the infinite- 
simal transformations. It is different from the Noether symmetry. In this work we have stu- 
died the Lie symmetry of constrained mechanical systems, including the holonomic systems 
with remainder coordinates, the non-holonomic systems of Chetaev type and non-Chetaev 

type. For these systems, the invariance of the equations of motion leads to the satisfaction 
of the determining equations, and the invariance of the constraint equations leads to the 

satisfaction of the restriction equations. 
We have studied two problems of the Lie symmetry, i.e., the direct problem: find the cor- 

responding conserved quantity from a known Lie symmetry, and the inverse problem: find 
the corresponding Lie symmetry from a known integral. 

A Lie symmetry does not always imply a conserved quantity. We have obtained the condi- 
tion under which a Lie symmetry can lead to a conserved quantity. The condition is the satis- 
faction of the structure equation. A conserved quantity does not always correspond to a Lie 

symmetry. 
We have given the relation between the Lie symmetry and the Noether symmetry of the 

systems. 
In this work, we have given some examples to illustrate the application of the theoretical 

results. 
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