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Summary

The stresses in an orthotropic elastic semi-infinite strip subject to plane strain are
investigated. Symmetrical distributions of surface tractions are preseribed on the sides
of the strip, while along the end the boundary conditions are arbitrary. By using an integral
transform method the problem is reduced to a singular integral equation. The dependence
of the stress singularity and the stress-intensity factors on the orthotropic properties
of the strip is investigated. Stress distributions over the strip end are evaluated numerically.

1. Introduction

Probiems involving isotropic elastic semi-infinite strips have received con-
siderable attention in the literature. Specifically, in [1]—[4] the behavior of
the stresses at the strip corners have been analyzed. On the other hand it appears
that little consideration has been given to the case of an orthotropic half-strip,
a problem of importance in composite material applications. In this paper we
consider the elastic behavior of such a strip, with surface tractions prescribed
along the sides and arbitrary conditions on the end. Particular attention is
given to the case of a fixed end, for which stress singularities occur at the corners.

2. Formulation

Consider the orthotropic elastic semi-infinite strip shown in Fig. 1. Let the
sides z, = -+% be subject to arbitrary symmetrical distributions of stresses
given by

0'12(391’ k) = Pl(xl), 0'12(1131, _k) = —Pl(xl),
(1)
Oao(21, ) = Pay(,), O9a(7y, —h) = Po(z,).

4t
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Fig. 1. Coordinate system

On the end 2; = 0 any one of the following pairs of conditions may be specified:

uy(0,5) =0,  uy(0,3,) =0 2)
011(0, @) = Pl2),  012(0, @) = Qlar) (3)
w(0,3) =0, 01300, ;) = Qxy) (4)
u(0,25) = 0,  0y5(0, x3) = Pla) (5)

where P(z,;) and Q(x,) are symmetrical and antisymmetrical functions of x,,
respectively.
Assuming a state of plane strain, the stress-displacement relations are

ou Ouy
oy = A4y "‘“l + Ay — 2
Lo
4, L4, 25 (6)
Coo ==
2 12 T aml 22 ~ 6%2
3u1 3u2
= A —=
O1z = Lge (8.702 + 8901)
and the corresponding displacement equations of equilibrium become [5]
Puy Py %y
Ay P + Aes 5—2 + (Aye + o) 75— try
o2 o2 8* "
Uy U “Us
A Agg) =——— - — 4+ 4y — = 0.
(As2 + Ago) oz, oz T <lgs P + Az fg?
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Here 4;; denote the stiffness coefficients for the orthotropic material. Results
for the corresponding problem of plane stress can be obtained from the present
formulation by a simple rearrangement of the elastic constants [6].

In order to solve the differential Eq. (7) we introduce the Fourier transforms

o0
Uy (2, p) = ful(xl’ %) sin tx, dz,
0

o0
Wy (L, 25) = f uy(2y, 2,) cO8 ixy dy
0

in which case %,(¢, x,) and %,(t, z;) are governed by the ordinary differential
equations

- d2w du. )
Ly = Ag (‘Z’a‘:-;‘ — (4,5 + Aeo) c_ix_z — P4yt = —t4y,u (0, z,)
2 2
- d2w du
L, = 4,, (E: + #(A4;2 + Aeg) ;I;‘l e ) 9)
2) 2
duq(0, . du.
= (4, + AGG) —1‘(—"&) + A — (0, Z3).
dz, dz,

The solution to the system of equations (9) for boundary conditions {(4)
can easily be obtained, because in this case the functions on the right-hand
sides of Egs. (9) are known. Similarly for the boundary conditions (5) the solution
is readily found if the Fourier sine transform is applied to u, and the cosine
transform is applied to u,. Attention is focused here on the more complicated
situations which arise when boundary conditions (2) or (3) are prescribed.

We introduce the functions

= [ U(p) cos pz, dp

Ulay) = {%(0, %), % = h}

0, [22] > R 0
(10)
- 012(0, 73), |ma| = ~_
(x) = = (p) sin px, d;
dm) =1 o = qup) Py dp
in which case Egs. (9) can be written as ¢
Ly = —t4y, f U(p) cos px, dp
0
(11)

Zz = —f [—A12pﬁ(p) — q(p)] sin px, dp.

0
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It can be verified that a particular solution to (11) may be expressed as

1 — _
P = Do {20, + vy) P? -+ 042} U + (v1/Ags + I/Azz) tpg} cos px, dp
0 v
(12)
o0
Bl = f — [(1p* — x't?) Pﬁ — (p¥/Aas + x:%%[ As) q] sin pz, dp
t
¢ P
where
4 2242 rw — A1
Dy = p* + 20,°p*® - outt, vy = —
Aoy
(13)
2 Apdyy — 24,44 — A3, s Ay
&y = 3 Kg™ == -,
24544 A

The form of the complementary solution to {11) depends upon the values of the
coefficients in the characteristic equation

2t — 200%% - ot = 0. (14)

If D= &% — ax? >0 the roots of (14) are real (say 4»; (¢ =1, 2)) and the
complementary solution is

4,0 = 8,B,(¢) cosh »,tw, -+ 8,8,(2) cosh x,tx,

(15)
uzo = Bl(t) Sinh xltxg + Bg(t) Sinh Mztxz
where
Agg — Agg? .
L= e, = s = oy — =1,2
d; (12 1 Ago) 7% # = &g + &5 ny =0y — o5 (2 }
(16)

Xy = 1/(‘”12 + a?)[2, o= Vl—)/_é

In this case the material will be classified as type I [7].
If o, < o,* the roots of (14) are complex and the complementary solution

is given by

® = [eBy(t) — eiBa(1)] X;(xp, 8) + [61B1(t) + 82Bs(2)] Xolws, €) an

Wo® == B, (8} Xy(zg, £) + By(t) Xy(2s, 0)
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in which
X, (g, §) = cosh (oxy2st) cos (F;2s0)
X, (s, £) = sinh (ayzst) sin (Fz2.f)
Xy(2,, £y = cosh (xs,8) sin (X5258) (18)
X (24, £) = sinh (xy2,8) cos (F5xf)

il oo — (= 1) Audy] /%
& = (7:=1,2, &g = —D2.
og%(A1e + Age) ) ? /
Materials of this type will be classified as type II.
For |x;% > x,? with o2 << O the roots of Eq. (14) are pure imaginary. Since
this case generally does not occur in practice [7] we shall not consider it here.
Application of (8) to the boundary conditions (1) for z, = -k yields

dw =
dz,
(19)
d, =
— - mtw (L, h) = 4,00, k) -+ Pof)
dy
where
_ 1 , _ 1
P(t) = —-—fPl(xl) sin fry doy,  Pu(t) = — | Py(z) cos tz, dx,.  (20)
Age Aqq
0 0

Next substituting the complete solution %; = %;” 4 %;° into (19), and using
the inversion formulas

- 2 - 2 .
Ulp) = o f Ula,) cos pry dze,  gqlp) = p f q(;) sin px, da, 21)
0 0

together with the integral evaluations [8]

P
= h—y)dp = —— vy, ¢
o, sin p(h — y) dp Sl (Y, t)
0
P = 2
D sin p(h — y) dp = ) [o1(y, £) — va(y, 1) x,%/oiy]
pt
¢ (22)
L cosplh — 9y d L [euy, 8)]os + valy, ¢
———— J— —_ e— Y,
D, P y) dp T [e1(y, &)/oxa + volys 1)/os]
1]

o

a 7‘
fﬁ— cos plh — y) dp = yr oy, 8)/ocs — va(y, £)/5]
0

pt
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where
vi(y, t) = e 9% cogh [ (h — ¥) t]

vy(y, 1) = €™M sinh [o;(h — ) 1] (23)
Ky = 2“4065

we obtain the following equation for the determination of B,(t) and B,(¢)

2 ut)y Bty = I;(1) (¢=1,2) (24)
j=1,2
in which '
{s]- sinh (x;th) }
(llj(t) = .
7'5_,}'X3(k, t) —_ (—1)] 7'2+jX4(h, t)
(25)
{82+]‘ cosh (x;th) }
axzj(t) = . .
i X1 (hy &) + (—1) 15 ;X5(h, 8)

In (25) and hereafter the upper and lower expressions within braces {} relate
to material types I and II, respectively; furthermore

§; = (Sj%j - 1, Sopj = %y —I— VICSJ'
1] == 0y V18, Ty = & — 116
T3 = 048 + Xsey — 1, 1y = o8 — Xty

Ly = LUty + It + Pi(t)  (v=1,2)

K
2
LU = Zlf U'(y) [vi(y, 8)]oq — 0a(y, 8)oi5] dy
iyt

. (26)
y)
LY = —3> | Uy uly, ) dy,  U'ly) = 0U"Jy
e
h
1 .
1, = 9(y) [moy(y, ) — meve(y, )] dy
24,
—h
h
LAt = ~51 f g(y) oy, 1) — mavaly, 0] dy
22
—h
Z — A%z - A11A22 ;l — lﬂi ) Z, — A12 - IA11A22
! Apdy  ~ 7 Ay 7 Ag
o Ay + VALAy g —

= y My = —————— .
204 Qo5 A 66 20¢4
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Solving Egs. (24) for B,{f), substituting the results into (17), and then taking
the inverse transforms of (12) and (17) yields expressions for the displacement

components u;(z;, z;). Using these expressions, together with the integration
formulas
o0

A
— 1 U
pr cos Px, dp = ——-f ®
T | Ty —
0 —h

o h
- i
chospx2 dp = —————f av) dy
41 T — Y
0 —h

we arrive at the following equations for strain and stress needed in the sub-
sequent analysis:

0 3
Ouy(0, z U
2éx2 2= ;}—;tfmz *(iq)y Wt 2777:;22 ‘[xj(i)y w
A =i 28)
2 - 1
+ Zfl [wr (e, §) L) + wy(s, ) L(0)] dt
o
and
- B
(0, 25) = 222 f xUE’ Z, y— 2 | (E)y i
- - (29)
24, [ 1
4 — fd_t [wa(we, £) L1(8) + wylws, 2) 1,(8)] d2
0
where
= A o = Ags + m - jﬁ‘i, Yy = —l—l
xgdgy’ 0‘4A66 2004411 2

Wi (%9, 1) = Cois 1 X5(2s, £) — Coiy 0 Xl £)
2i—~1\42) - w‘zﬁ) l(t) Xl(xg, t) w(2) l(t) Xg(x2> )
(1=1,2) (30
( Csi,0 X7 (1) Xog(a, t) — Coi 1 Xg(8) Xy, 8)
Wyil\Zy, 1) =
Ty, 1) = (1)(;) X (xs, ) + (2)(15) Xo(s, 8)

4 8181 X () — 8,83 X,4(2)
© " |18,0 sinh (2x,th) + 8,0 sin (25;th)]/2
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in which

Xiy4lms, €) = cosh (x;tx,)fcosh (x;th),  X;,¢(t) = tanh (x;th)
Wi () = frim1,0i1 X1 (P, £) + faica 2;Xa(h, £)

wi(t) = foygj 1 Xalhs 1) + foy 0 Xalhy 0)

Oy =890, O =839, Uy = o1y, Cag = 8135

Cyy = 8405, O3y = 836y, Oy == 8,63, O = 8,164

Oa4i == 0; + vp2t; (#7=1,2) (31)
fu =& — &gy, fra =~y — &1,  fis= —fes hu=in

for = &gty — &sra,  foo = —ogry — s, fos = faar,  fa= —fu

[ =wfu —&r —an, fe=nhtean—an, fs=—fe, =/
fn=wfa+ears+ears, fo=wnh+ean—ar, fo=Ffe fu=—fa

0,0 = —rry —1ary, O =y —mary, vy = AypfAy.

3. Solution for Fixed-End Condifion

We now consider the case in which the end of the strip is fully constrained,

as defined by (2). According to (10) and (26)

Ulz,) = ﬁ(ZJ) = Il”(t) = I2U(t) =0.

(32)

Using the second of boundary conditions (2) and expression (28) it can then
be shown that the unknown function ¢(y) satisfies the integral equation

3
1
f[ + M (s, y)] q(y) dy = By(x,)
T — Y
Sy
where
Mz, y) = fMl*(xz, y, 8) dit
0
4‘4‘22

By(zy) = —

V2

1 — -
fzr [w1 (2, £) Py(t) + wolas, t) Pa(t)] dt
¢

(34)
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and
Q2 (25, 1), 25(xs, £
M v ) = {2;[11[;@) t)z,(ujz(;], t)]/72} )
Qilen(, £), 2a1a(@a, O] = 20(y, ) €0 L 2, (2, 8) €900 (36)
Orrlwn(s, 1), Wy 122, 6]
= I 0,y 1) — 14, )] o3 [l — 1) 8 37)

t
— [mw0n(wy, £) — Moy (25, )] sin [&5(h — y) t]}  (here = = 1)
and also '

1
z;(aa, ) = Z" {2z — lizxs(t)] X5(x2, 8 — [y — li4X7(t)] Xs(xz, D}
t
(%7=1,2) (38)
li,2j—~1 = [m + (——l)i my] Cij/va, li,zj = —[1 +'(“1)i ms] 027'/3’2-
The kernel M;(z,, y) in (33) is not bounded as y — % and x, — +-h. The singular

points can be extracted, following the procedure given in [9], by expressing
M,(x,, %) in the form

M (xp, y) = M ™(s, y) + Mf(xm ) (39)

where M(x,, y) is bounded in [—#, k], while M,*(x,, y) can be obtained by
using the asymptotic values of M,*(x,, ¥, £) as ¢ — oo in the form

o _ 1 d, d,
dy dy

40

@ T @ “0)

d3 d3
+y—h~(h—w?>/z+y—h—(h+x2>/z}
where
8 = $1S4 — 8283, A = #1[#s

(41)

de == ly — 1l do — lyy — lyg 113 — 1l d. — oy — lys
! 2 ’ ? tal #a ® 1 )

3

Expression (40} is valid in the case of material type I; similar results can be
obtained for material type II. The integral Eq. (33) can now be written as

1
f [ + M7, ?/)} qly) dy = By*(zy) (42)
Ta— Y
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where E;*(z,) is bounded in [—2, k] (the case of loads P,(z,), Py(x;) concentrated
along #, = 0 is not considered here).
According to [10], ¢(y) may be expressed in the form

()

[y “

qly) =

where 0 < Re (&) << 1, and ¢*(y) satisfies the Hélder condition near and at k.
Next we consider the sectionally holomorphic function

h

1
) = — f ;(z)z dy. (44)

~h
According to [10] we have

T*(h)
(2h)* 24k + (—1)¢ 2,]* sin mx

Blh 4 Ak + (—1) m] = — + D:(x,)

as x> (—11h (1=1,2) (45)
o, cobmx | ¢¥(—h) q*(h)
2n) = ey [(xz TR (m—hy e—i"“] TONm), s
where
1D,0(2)] < ———-(Z icih)ao » Reayg < Rewn (46)

in which ¢; (j =1, 2, 3) are real constants. Substituting expressions (40) and
(45) into (42), and taking into account the fact that ¢(y) is an odd function of
y(9(—y) = ~—q(y)) leads to the following characteristic equations for determining
the power of the singularity o

85 COSax + diA™% b dy + dad® =0 wr
’ )
930,%c:% cos mx + ¢y () = 0
where
, . : . &s
Pi(e) = rs Py — 1655 + (Vg + ,%;) cos [2zx tan~! (— ]
Xy
(48)
. . & .
+ (rP%; — r,0%,) sin [206 tan™! (—5)] (here 7==1)
Xq
and
,.sm — 7.9(@) - ,.;22)’ 7.6(1) — ri:]) 4 ,.ﬁ) , ,.7(1) — rﬁ,’ _ 7(111)’ 7’8(” —_ 7'9(“ + 7Yz)
) M _
To ! = Myfy; 1, _fgi,zf "o = —‘mlfzi—l,z - f2i,1 (49)

7’{;’ = Mofpi, ~ Mafei2, 7’;? = —Msfpia,2 + Mafai-
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By applying L’Hopital’s rule it can be shown that in the special case of
material isotropy both of Egs. (47) reduce to

(8 —4v)cosmx + 2(e — 1)2 — 82+ 129 — 5 =0 (50)

where » denotes Poisson’s ratio. This equation is identical to that derived by
Gupta [3] for an isotropic semi-infinite strip.

Of particular interest is the stress component a,(0, 2,). Using (29) and chang-
ing the order of integration gives

;
0. = = [ |2 4 i | ay dy+ Ry 6
where -
Moy, y) = meg*(mz, v, 1) dt
. (52)
Ry = 22 [ L it 0 P(0 + w0 Pt}
and ’
Oy z5(zq, 8), 24(xa, £)]
My*(w, 4, 1) = {“24911[%(% o t)}. (53)

Here Q; and Q57 are given respectively by Eqgs. (36) and (37) with n = 3; #;
(¢ = 3, 4) are given by (38); and furthermore

ligjq = [y — (—1)" my] Csja*/2, lLigi=—[1+ (—1)° my] Cyjois[2

54)
(6=3,4;7=1,2).

Following a procedure similar to that applied earlier to the integral Eq. (33),
it can be shown from (51) that the dominant (unbounded) portion of ¢,;(0, z,)
can be expressed as

*(h 1 1
100, 2,y = — LM N
(0; =) (2h) sin 7o | (b — 23)* | (b + 25)* ¥ (55)
in which
vy €08 o + d A7 4+ dy -F dd®
) =1 ' S (36)
V4 €OS 7o — oxa® ¢y () /(26,°)
where
d . l32 — 31 d» — i l33 - Z34 . l41 - l43 d — l43 - l44 (57)
4 85%2 ’ ® 85 #a Hy ’ 6 85%1

and where ¢,(«) is given by (48) when 7 = 2.
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Finally, we define stress-intensity factors 7', and 7, as

Ty = Im 2h)* (b — 25)* 611(0, 25)

Zo—>h

(58)
Ty = lim (2R)* (h — 23)" 015(0, 23)
2y—>h
and let T'; represent the ratio 75 = —7,/7;. In this case it is found that
q*(h) P(x) sin mx
1= LY g sy, 1, = 2R
1 p— > = q*(h) 3 W) (59)

4. Solution for Prescribed-Stress End Condition

For the case of boundary conditions (3) in which stresses are prescribed
over the end z; = 0, Eq. (10) gives g(x;) = @(z,). From the first of conditions
(3) and expression (29) we obtain, for material type I, the following equation
governing U'(x,) == dU/dx,

R

1
+ Mo, y) | U'y) dy = Ry(a,) (60)
Xy — Y
)
in which
(%, ¥ f [25(a, ¢ =gl 262y, 1) ehnl(h_w] di
aP Y
By(z ) cos Py dp (61
@) = Au?’ﬁ All)’af : )

- ;_féTt {ws(t, @2) [Pr(t) + L%8)] -+ wy(t, 22) [P2() + L)) dt
N .
o

Here 2; (¢ = 5, 6) are given by Eq. (38), and
ligj—y = [mq + (—1)" m;) Cajf4ys, ligj = (—1)f mCly;/4ys
(¢=05,6;7=1,2) (62
my = Zl/(x‘l, My == ;»1/065, My = 2%2/0‘3.

The structure of the kernel My(x,, y) is the same as that of M, (x,, ¥). An analysis
similar to that presented earlier leads to the characteristic equation

55 008 7%y (lsy — Lso) A7 — L5 + sy + lg1 — gy "563 — lgy) A =0 63)
Ho 1
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for determination of the singularity power «,. In arriving at (63) we have taken
U'(y) = U*(y)/(h* — y?)™ where U*(y) is bounded in [—A, h]. Eq. (63) is identical
to the characteristic equation derived in [7] for the case of an edge crack. Based
upon numerical calculations covering a wide range of orthotropic elastic constants,
it can be concluded that Eq. (63) has no roots in the interval [0, 1]. Hence, in
the case of the prescribed-stress boundary conditions (3) stress singularities
do not occur at the corners of the strip. We shall not devote further attention
to this case, but instead will examine numerical results for the fixed-end case.

5. Numerical Results and Diseussion
The functions M *(z,, ¥, £) (k = 1, 2) have ¢ singularities at ¢ — 0. However

since ¢(y) is an odd function we can remove the singularities if, instead of Eq. (33)
and (1), we write the equivalent expressions

To — Y

3
1
f [ + P, y)] 9(@) dy = Ru(a) (33)

h

1
o1 (0, 2) = — f [?/ — (xe’ ?/)] q(y) dy + Es(x,) (61")

where

Pilae, y f{[zzk—l T, 1) — Z:k_l(xg, )] e rth—w
+ [, 1) — 2o, 0] €40} At o+ [ M¥(zo, ), 8) dt
H

2
g {1y —h + (=1)" da) (64)

(sz,lxlj — lyey, ) [y — b+ (1) 2]
— byaly — b+ (1" %A1}/ (2s)) (k= 1,2)
in which
i, 0) = [l cosh (aytay) — lp cosh (mla)]/(ts) (6= 1,2, 3, 4) )

Se = h(8184%t1 — 8a83%3)+

Eq. (64) applies in the case of material type I; a similar expression can be ob-
tained for material type II. For a solution to the integral Eq. (33") we use a
numerical method based upon the Gauss-Jacobi integration formula [9]. Eq. (33")
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must be solved subject to the following equilibrium condition

x
[aly)dy =o. (66)
—h

The corresponding system of algebraic equations is

iiA L + B, (b2, htj)] Q(hr}) = By(em) 5 A,Ghz)) =0  (67)

-7 j=1

=

where z, (m=1,2,...,n —1) and 7; (j= 1,2, ..., %) are the zeros of Jacobi
polynomials P~ 1~ - (z) and P (=%~ (z), respectively. Here

Qb)) = (1 — 72 ¢(hr)) (68)
and the coefficients 4; are found to be

L 21-2 2y 4 1 — )
Tl 4+ 1 — 20) (1 — o) [P/

(69)

Similarly, Eq. (51') leads to the following approximate formula for ay;(0, x,)

a0, ) = — z{ + Wz hm} Ghey) + Rz (70)

._Zm

In order to illustrate the effects of the orthotropy upon the behavior of
the fixed-end strip, numerical results have been calculated for various combi-
nations of the stiffness ratios b, = A;/Age, by = A/ Aes and by = A;5/Age.
Fig. 2 and 3 show that variations of the singularity power « (solid lines) and
the stress-intensity factor ratio 7y (dashed lines) associated with variations
in b, and by, for the cases of b, = 10 and b; = 28, respectively. The circles and
squares on these lines indicate, respectively, the limit points defining materials
types I and II. From these figures it is evident that material orthotropy can
have a significant influence upon both the power of the stress singularity and
the stress-intensity factors. It is seen, for example, that an increase in b, = 4,,/4,,
for fixed values of b, and b, results in a substantial decrease in & and 7. It is
noted also that as the material behavior approaches isotropy (b; = b, = 2 + by),
the present results agree fully with those given in [3].

Figs. 4 and b show the variations of the stresses acting on the fixed end of
a strip of half-width % == 1 caused by a pair of concentrated longitudinal forces
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a,, T3

o | 1 | | [ bs
0 2 4 6 8 10

Fig. 2. Singularity power « and stress-intensity factor ratio 7'; for b, = 10

a, T3

o ! 12 | ! b
0 2 4 6 8 )

Fig. 3. Singularity power & and stress-intensity factor ratio 7' for b, = 28

5 Acta Mech. 55/1—2
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X

{b)

Fig. 4. Distributions of (a) normal stress and (b) shear stress due to longitudinal forces P,°

(Py(zy) = P%(z; — By) with Py{z,) = 0) and transverse forces (Py(z;) =0
and Py(w;) = P,%(x; — Bz)), respectively. The solid lines correspond to a typical
boron-epoxy composite material (b, = 26.9, b, = 3.6, b; = 3.35, « = 0.248),
while the dashed lines relate to a nearly isotropic material (8, = 4.33, b, = 4.35,
by = 2.33, & = 0.315). In accordance with St. Venant’s principle, the distribu-
tion of stress in the case of a pair of longitudinal forces (Fig. 4) acting at
a large distance {8, = 10) from the fixed end are in reasonably good agreement
with the corresponding results for a strip loaded with a statically-equivalent
uniformly-distributed force at »; = oo [3].
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Fig. 5. Distributions of (a) normal stress and (b) shear stress due to transverse forces P,°
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