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Abstract 

Comparisons of the protein sequences and gene structures of the known creatine kinase isoenzymes and other guanidi- 
no kinases revealed high homology and were used to determine the evolutionary relationships of the various guanidino 
kinases. A 'CK framework' is defined, consisting of the most conserved sequence blocks, and 'diagnostic boxes' are 
identified which are characteristic for anyone creatine kinase isoenzyme (e.g. for vertebrate B-CK) and which may 
serve to distinguish this isoenzyme from all others (e.g. from M-CKs and Mi-CKs). Comparison of the guanidino 
kinases by near-UV and far-UV circular dichroism further indicates pronounced conservation of secondary structure 
as well as of aromatic amino acids that are involved in catalysis. (Mol Cell Biochem 133/134: 245-262, 1994). 

Key words: creatine kinase, arginine kinase, protein sequence comparison, evolution, CK framework, 'diagnostic box- 
es', secondary structure prediction 

Abbreviations: GuaK - guanidino kinase; CK - creatine kinase; B- and M-CK - brain and muscle cytosolic CK isoen- 
zyme; Mi-CK - mitochondrial CK isoenzyme; ArgK - arginine kinase; Cr - creatine; PCr - phosphorylcreatine; PArg-  
phosphorylarginine 

Introduction 

Guanidino kinases (GuaKs) 1 in general and creatine ki- 
nases (CKs) in particular are found throughout the ani- 
mal kingdom [1-4]. Vertebrate tissues contain exclusive- 
ly CK isoenzymes, while tissues of invertebrates mostly 
display arginine kinase (ArgK) activity. Spermatozoa of 
many invertebrates, however, comprise CK as the main 
or even sole guanidino kinase. Annelida are also an ex- 
ception to the general picture, in as far as a variety of 
different guanidino compounds and guanidino kinases 
were found in this phylum, including arginine (Arg), 
creatine (Cr), glycocyamine (= guanidinoacetate), tau- 
rocyamine, hypotaurocyamine and lombricine, always 

together with the corresponding kinases. Of this whole 
class of guanidino kinases, the (mostly) complete pri- 
mary structures of 26 different CK isoenzymes, of lob- 
ster tail muscle ArgK, and of a Schistosoma mansoni 
(trematode) guanidino kinase with unknown substrate 
specificity have been reported until the end of October 
1993, together with amino acid sequences of some short 
protein fragments. The goals of the present article are (i) 
to align and compare the known guanidino kinase se- 
quences, (ii) to define a 'CK framework', based on the 
evolutionarily most conserved parts of the molecules, 
(iii) to identify isoenzyme-specific residues or sequence 
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blocks, and (iv) to correlate particular residues or se- 
quence stretches with physiological functions of the gua- 
nidino kinases. These interpretations are complement- 
ed by secondary structure predictions and by the identi- 
fication by CD spectroscopy of evolutionarily conserved 
Trp and Tyr residues which are important for catalysis 
and for the structural integrity of the molecules. 

Characterization of the 
guanidino kinases 

In birds and mammals, four different nuclearly encoded 

CK isoforms are found, all displaying a protomer M r of 
approximately 40'000. These isoforms are expressed tis- 
sue-specifically and differ in subcellular localization as 
well. The two cytosolic isoforms B- (for brain) and M- 
CK (for muscle) form dimeric molecules (MM-, MB- 
and BB-CK; [5]). In contrast, the two mitochondrial iso- 
forms Mi a- and Mib-CK ('a' for the more acidic and 'b' 
for the more basic Mi-CK isoform; also called ubiqui- 
tous and sarcomeric Mi-CK, respectively) form dimeric 
and octameric molecules which, depending on the ex- 
perimental conditions, are readily interconvertible (see 
[6]). Although heterodimeric and heterooctameric mol- 
ecules between Mi a- and Mib-CK can be generated in vit- 

) 

Fig. 1. Alignment and comparison of the known CK protein sequences. The primary structures of 26 CK isoenzymes are compared, with each repeat 
of the triplicated sea urchin tail CK sequence being analyzed separately. The sequences used in this study were from: 
Humbck human B-CK [47, 49, 81] 
Dogbck dog B-CK [82] 
Rabbck rabbit B-CK [83] 
Ratbck rat B-CK [84] 
Moubck mouse B-CK [52] 
Chibbck chicken Bb-CK [85, 86] 
Chiback chicken Ba-CK [8] 
Hummck human M-CK [51, 63] 
Dogmck dog M-CK [87] 
Rabmck rabbit M-CK [88] 
Ratmck rat M-CK [89] 
Moumck mouse M-CK [65] 
Chimck chicken M-CK [90, 91] 
Troutck CK isoenzyme from rainbow trout displaying enhanced testicular expression [21] 
Tormarck CK from the electrocytes of Torpedo marmorata (marbeled electric ray; [23]) 
Torcalck CK from the electrocytes of Torpedo californica (pacific electric ray; [92]) 
Xenlaeck3 Xenopus laevis CK-III [38] 
Xenlaeck4 Xenopus laevis CK-IV [37] 
Humubimick human ubiquitous Mi-CK [53] 
Ratubimick rat ubiquitous Mi-CK [93] 
Mouubimick mouse ubiquitous Mi-CK [55] 
Chimiack chicken Mia-CK (a = more acidic pI; ubiquitous; [39, 40]) 
Humsarmick human sarcomeric Mi-CK [94] 
Ratsarmick rat sarcomeric Mi-CK [93] 
Chimibck chicken Miu-CK (b = more basic pI; sarcomeric; [62]) 
Spfckdl,2,3 flagellar CK from the sea urchin Strongylocentrotus purpuratus, with part 1 including amino acids 60M33, part 2 including 

residues 434-807, and part 3 encompassing residues 808-1174 [31] 
Dots in the listed sequences stand for inserted gaps, introduced in order to allow an optimal alignment of the different CKs, or for unknown parts of 
the primary structures (N-termini of X. laevis CK-III and CK-IV). Hyphens stand for amino acids which are identical in 24 (residues 1-81) or 25 
(residues 82-395) out of the 28 sequences, with the corresponding amino acid being listed in the consensus sequence at the bottom. If at a particular 
position only two different amino acids are found in all sequences, both of them are listed in the consensus sequence, one above the other. If there is 
no consensus, or if an amino acid in a given sequence differs from that in the consensus sequence, it is listed in the respective sequence itself. The 
N-terminal methionine residue in the cytosolic CK sequences is cleaved off after synthesis. 

The filled bars (numbered 1 to 6) below the consensus sequence mark the regions with the most pronounced sequence conservation. The open 
diamonds mark the so-called 'reactive cysteine' Cys-283, the two residues (Cys-74 and Lysq96) which in crossqinking experiments of rabbit MM-CK 
were shown to be structurally close to Cys-283, as well as Asp-340 which, as suggested by affinity labelling experiments with an alkylating ATP 
analogue, may be involved in Mg 2+ binding. Boxed amino acid residues either are isoform-specific or allow a clear-cut distinction between mitochon- 
drial and cytosolic CK isoenzymes. Extended stretches (_> 5 residues) with isoenzyme-specific sequence patterns are termed 'diagnostic boxes' (see 
the text) and are designated by A, B, C . . . .  I. If a box comprises two (or more) different isoenzymes, and if, within this particular box, residues are 
conserved in an isoenzyme-specific pattern, they are represented by bold letters. Finally, filled diamonds mark putative phosphorylation sites. 
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ro [7], they have not been detected so far in vivo. Like- 
wise, heterodimer formation between a mitochondrial 
and a cytosolic CK isoenzyme is also excluded in vivo. 
Among the cytosolic CK isoenzymes of mammals and 
birds, chicken B-CK seems to be unique, in as far as al- 
ternative splicing of the single B-CK gene produces two 
isoforms, B a- and Bb-CK (see Fig. 1), differing in approx- 
imately 20 of the first 50 N-terminal amino acids [8]. Fur- 
ther heterogeneity of B-CK, as evidenced, for example, 
by 2D-electrophoresis experiments [9], was shown to be 
due to alternative ribosomal initiation at internal tran- 
scriptional start sites (at Met-12, Met-30, Leu-36 and 
Met-70 of chicken Bb-CK; [10]) or to post-translational 
phosphorylation (as demonstrated for chicken, mouse 
and rat B-CK; [10-14]). 

Lower vertebrates like fish and frogs also contain sev- 
eral CK isoenzyme loci, all giving rise to dimeric mole- 
cules with an M r of approximately 80'000. While some 
frogs were suggested to display a CK isoenzyme system 
similar to mammals and birds [15-19], the CK isoen- 
zymes of Xenopus and other pipid frogs do not fit into 
the M-/B-/Mia-/Mib-CK classification. The five CK iso- 
forms observed in pipid frogs are therefore termed CK-I 
to CK-V and give rise to up to nine different bands on 
zymograms [20]. CK-I and possibly also CK-V (see [6]) 
are located within the mitochondria, while CK-II, CK- 
III and CK-IV are dearly cytosolic. 

The four CK isoforms of teleost fish are termed CK-A 
to CK-D and are all of cytoplasmic origin. CK-A, CK-C 
and CK-D are expressed predominantly in striated mus- 
cle, stomach, and testis, respectively, while CK-B is ex- 
pressed ubiquitously or is confined to neural tissues [16]. 
The trout CK listed in Fig. 1, showing enhanced testic- 
ular expression [21], thus most probably represents a 
CK-D isoform. In primitive fish species, only two CK 
isoforms are found which obviously correspond to 
CK-A and CK-C of teleost fish. While CK-A is again 
restricted to striated muscle, CK-C in primitive fish is 
expressed ubiquitously [16]. Since Torpedo electrocytes 
were shown by isoenzyme and 2D-electrophoresis to 
contain the same major CK isoenzyme as muscle [22- 
25], the two Torpedo CKs listed in Fig. 1 very likely rep- 
resent CK-A isoforms. 

Based on a comparison of the tissue-specificity of ex- 
pression of the various isoenzymes, it has been hypothe- 
sized that CK-II of frogs and CK-A of fish correspond to 
M-CK of mammals and birds, while CK-IV and CK-C 
would correspond to B-CK [20]. The other CK isoen- 
zymes of frogs and fish seem to be the result of (addi- 
tional) gene duplications. Clearly, more biochemical 
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and molecular genetic work is needed to unequivocally 
prove the phylogenetic relationships of the various CK 
isoenzymes. 

Sea urchin spermatozoa contain two different CK 
isoenzymes. The mitochondrial CK is confined to the 
midpiece of the sperm and is, like the vertebrate Mi- 
CKs, an octameric molecule composed of subunits with 
an M r of 44'000-50'000 [26-29]. The tail CK isoenzyme, 
however, is located along the sperm tail and is a mono- 
meric protein with an M r of 140'000-155'000 [26-28, 30] 
which most likely originates from triplication of an an- 
cestral CK gene ([31]; see Fig. 1). These findings suggest 
that the separation into mitochondrial and cytosolic CK 
isoenzymes occurred before the start of divergence be- 
tween echinoderms and vertebrates. 

Relatively little is known about the invertebrate gua- 
nidino kinases. While for the lobster tail muscle ArgK 
shown in Fig. 1 [32], substrate specificity and biochem- 
ical properties have been investigated intensively (see 
[33]), the physiological substrate of the duplicated gua- 
nidino kinase from the trematode Schistosoma mansoni 
is not known [34]. Analysis of homogenates simply in- 
dicated that this guanidino kinase displays low CK, but 
no ArgK activity. 

Table/.Amino acid sequence comparisons of the guanidino kinases 
known so far 

B-CKs among  each other  88-98 

M-CKs among  each other 89-99 

B-CKs versus M-CKs 7%82 

Ubiqui tous  Mi-CKs among each other 91-98 

Sarcomeric Mi-CKs among  each other  89-96 

Sarcomeric versus ubiquitous Mi-CKs 82-84 

Mi-CKs versus B- and M-CKs 60-65 

X. laevis CK-III versus B-CKs 79-83 

X. laevis CK-III versus M-CKs 87-91 

Torpedo CKs versus B-CKs 76-80 

Torpedo CKs versus M-CKs 83-86 

X. laevis CK-IV versus B- and M-CKs 84-89 

Trout CK versus B- and M-CKs 78-87 

Trout/Torpedo/X. laevis CKs versus vertebrate Mi-CKs 61-67 
Sea urchin CK repeats  among each other 66-70 

Sea urchin CK repeats versus vertebrate CKs 60-69 

Lobster  ArgK versus all CKs 38M4 

Lobster  ArgK versus Flukeckpl  45 

Lobster  ArgK versus Flukeckp2 40 

Flukeckpl  versus all CKs 33-38 
Flukeckp2 versus all CKs 32-35 

The degree of identity (in %) in primary structure between any two 

guanidino kinases was determined using the program 'Distances '  of 
the G C G  software package, with the threshold for a match set at 1.5. 
For discussion of the results see the text. 
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Programs and databases 

All protein sequences compared in this study are de- 
rived from nucleic acid sequences. They were extracted 
from the GenBank and EMBL nucleotide sequence li- 
braries using the programs of the GCG software pack- 
age [35, 36], with the exception of the two Xenopus lae- 
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Fig. 2. Compar ison  of the invertebrate guanidino kinases with the CK 

consensus sequence. The primary structures of lobster ArgK  [32], of  a 

guanidino kinase from the t rematode  Schistosoma mansoni (Flu- 

keckpl  represents  residues 1-352 and Flukeckp2 represents  residues 

353-675 of this 'duplicated'  guanidino kinase; [34]), and of two guani- 

dino kinase sequence fragments f rom Caenorhabditis elegans (which 
were derived from single reads of expressed sequence tags; [95, 96]) 

were aligned and compared to the CK consensus sequence from Fig. 1. 

The dots stand either for gaps that were introduced in order to allow 
an optimal sequence al ignment or for parts of the primary structure 

that have not  been sequenced so far (N- and C-termini of the C. ele- 
gans fragments).  The hyphens in the invertebrate guanidino kinase 

sequences s tand for amino acids that are identical in three out  of  the 
five sequences,  with the corresponding amino acid being written in the 
guanidino kinase (GuaK)  consensus sequence below. If no consensus 

is observed, or if an amino acid differs from the consensus sequence, it 

is written in the respective sequence itself. 

Stars represent  gaps that were introduced for an optimal alignment 
of the invertebrate guanidino kinases to the CK consensus sequence. 

Identical amino acids between the guanidino kinase and CK consensus 

sequences are indicated by vertical lines, while boxed residues repre- 

sent additional amino acids in the individual guanidino kinase sequen-  

ces that  are identical to the CK consensus sequence. 

vis [37, 38] and the chicken Mia-CK sequences [39, 40]. 
The alignment was done using the programs 'Bestfit', 
'Pileup', 'Lineup' and 'Pretty' available in the GCG soft- 
ware package. The degree of identity between any two 
protein sequences (Table 1) was calculated using the 
program 'Distances', with the threshold for a match be- 
ing set at 1.5 based on the default amino acid comparison 
table of the GCG software package [41, 42]. The phylo- 
genetic tree of the guanidino kinases (Fig. 3) was con- 
structed using the T.NJM26 program of the MacT (Ma- 
cintosh's Trees) program package [43]. Tree construc- 
tion is based on a distance matrix method commonly 
known as neighbor joining method [44]. Sequences were 
aligned in the manner shown in Fig. 2, i.e. gaps were al- 
lowed, but were not taken into account for the distance 
calculations. The distance between any two sequences 
was calculated by summing the minimal number of base 
substitutions required to convert one amino acid in an- 
other at each site compared, and by dividing this sum by 
the total number of amino acids compared ('Fitch' op- 
tion; see [45]). Therefore, the distance represents the av- 
erage number of mutations per site needed to get from 
one sequence to the other. 
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Fig.  3. Evolutionary tree of the guanidino kinases. The phylogenetic tree of the guanidino kinase sequences shown in Figs, 1 and 2 was constructed as 

described under  'Programs and Databases ' .  The  distance between any two sequences approximates  the  a v e r a g e  number  of (base) muta t ions  per site 

needed to convert  one sequence into the other. The bar at the bo t tom represents  an 'evolutionary distance'  of 0.02 mutat ions  per site. The three dots 
mark the three principal gene duplication events discussed in the text. 

Comparison of the known guanidino 
kinase protein sequences - 
evolutionary relationships 

Figure 1 shows an alignment of the 28 CK protein se- 
quences or sequence repeats known so far, and Fig. 2 
shows an alignment of the invertebrate guanidino kinas- 
es to the CK consensus sequence. The three repeats of 
the triplicated sea urchin tail CK (Spfckdl-3; Fig. 1) and 
the two repeats of the duplicated guanidino kinase from 
Schistosoma mansoni (Flukeckpl,2; Fig. 2) are analysed 
separately. Some 20-80 amino acids at the N-termini of 
the Xenopus CKs (Fig. 1) escaped sequencing so far, and 
for the guanidino kinase(s) of Caenorhabditis elegans 
(Fig, 2), only the listed fragments can be aligned reason- 
ably. The amino acid identity scores between different 

guanidino kinases are summarized in Table 1, and a ten- 
tative evolutionary tree for the guanidino kinases is 
shown in Fig. 3. 

In mammals and birds, the known CK sequences can 
easily be grouped into the four isoenzyme classes (B-, 
M-, Mi,- and Mib-CK) that have been postulated earlier 
on the basis of tissue distribution, electrophoretic beha- 
viour and biochemical characterization. The amino acid 
identities within each single class range from 88 to 99%. 
Evidently, a higher degree of homology is observed be- 
tween the B- and the M-CKs (77-82%) on one hand and 
between the Mi a- and the Mib-CKs (82-84%) on the 
other hand than between the cytosolic and the mito- 
chondriaI CK isoforms (60-65 %), indicating that during 
evolution, a first gene duplication event resulted in a pri- 
mordial cytosolic and a primordial mitochondrial CK 
isoenzyme (Fig. 3). Gene duplications giving rise to the 
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Fig. 4. Schematic representation of the gene structures of the vertebrate CK isoenzymes investigated so far. The lengths of the exons are drawn in 
scale, while those of the introns are not. The protein coding regions within the exons of cytosolic and mitochondrial CK isoenzymes are cross-hatched 
and hatched, respectively, while the single exon which is conserved in all mammalian and avian CK isoenzymes (exon 8 of sarcomeric Mi-CK, exon 6 
of the other CKs) is represented by a filled box. The coding region for the Mi-CK transit peptide (which is responsible for the import into the 
mitochondrial intermembrane space) is shaded. Numbers above and below the respective exons refer to the corresponding nucleotide positions 
within the protein coding (cDNA) sequences. In the case of the cytosolic CK isoenzymes, the first nucleotide of the start codon is given number 1, 
while for the Mi-CKs, 1 represents the first nucleotide of the codon for the very N-terminal amino acid of the mature protein (i.e. lacking the transit 
peptide). Below the numbers for the Mi-CK isoenzymes, the respective positions within the cDNA sequences of the cytosolic CKs are listed in 

brackets. 
The respective gene structures are from: human B-CK [47~49]; mouse B-CK [52]; rat B-CK [50]; chicken Bb-CK [8]; human M-CK [51]; rat M-CK 

[50]; mouse M-CK [46]; human ubiquitous Mi-CK [53]; mouse ubiquitous Mi-CK [55]; and human sarcomeric Mi-CK [54]. For simplicity, the 
additional exon coding for the amino terminus of chicken Ba-CK [8] has not been considered in this diagram. 

multiple cytosolic and mitochondrial CK isoenzymes 
observed in vertebrates must have occurred at a later 
stage during evolution. This interpretation is favoured 
by the likely presence of a single cytosolic and a single 
mitochondrial CK isoenzyme in echinoderm species 
[27] and by the gene structures of the mammalian and 
avian CK isoenzymes investigated so far (Fig. 4). The 
lengths of the exons as well as the location of the splice 
sites within the coding region are identical for all M- and 
B-CKs on one hand [8, 46-52] and for all Mi-CKs on the 

other hand [53-55]. If, however, the gene structure of the 
Mi-CKs is compared to that of the cytosolic CKs, pro- 
nounced differences are observed, with only the loca- 
tion of a single exon (exon 8 of human M%-CK, exon 6 of 
the Mi,- and the cytosolic CKs; coding for amino acids 
219-259 in Fig. 1) being conserved. 

The X. laevis isoenzymes CK-III and CK-IV, the two 
Torpedo CKs as well as the trout CK can be assigned to 
the branch of the cytosolic vertebrate CK isoenzymes 
(Table 1; Fig. 3), since the amino acid identities to the B- 
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and M-CKs of mammals and birds (76-91%) are much 
higher than to the Mi-CKs (60-67%). X. laevis CK-III 
and the Torpedo CKs clearly correspond to mammalian 
and avian M-CKs, while X. laevis CK-IV and the trout 
CK seem to be related somewhat more closely to B-CK 
than to M-CK (Table 1; Fig. 3). The trout CK is peculiar 
in as far as the first 17 amino acids at the N-terminus (see 
Fig. 1) differ completely from those of the other verte- 
brate cytosolic CK isoenzymes, perhaps with the excep- 
tion of chicken Ba-CK. 

The homologies of the repeats of the triplicated sea 
urchin CK with each other (66-70% identity) are only 
slightly higher than those of the sea urchin CK repeats to 
the vertebrate CKs (60-69%) and of the vertebrate cy- 
tosolic CKs to the Mi-CKs (60-67%), implicating that 
branching into a mitochondrial and a cytosolic CK 
isoenzyme as well as the triplication of the cytosolic sea 
urchin CK occurred approximately at the time when 
echinoderms and vertebrates started to diverge. The 
two repeats of the guanidino kinase from the parasitic 
trematode Schistosoma mansoni are more homologous 
to lobster tail muscle ArgK (40-45 % identity) than to all 
CKs known (32-38%). Since extracts of Schistosoma 
cercaria, however, display low CK, but no ArgK activity 
[34], a different guanidino substrate specificity has to be 
postulated for this guanidino kinase [32]. The two se- 
quence fragments from Caenorhabditis elegans display 
more pronounced homology to lobster ArgK (63 % for 
the Ce14a3 fragment, 68% for the Ce00136 fragment) 
than to CK (32-42%, 44-50%) or to the Schistosoma 
guanidino kinase (26 and 33%, 40 and 51%), suggesting 
that they represent ArgK isoenzymes. Finally, amino 
acid sequencing of tryptic fragments of a guanidinoace- 
tate (glycocyamine) kinase from the polychaete 
Neanthes diversicolor revealed higher homology to the 
corresponding parts of the CKs than of the other guani- 
dino kinases [56]. As a matter of fact, guanidinoacetate, 
among the natural guanidino compounds, also displays 
the most pronounced structural homology to Cr. 

In summary, the evolutionary tree of the guanidino 
kinases shown in Fig. 3 'visualizes' the homologies ob- 
served between the sequences of the various guanidino 
kinases and, in addition, agrees with most biochemical 
findings. Nevertheless, it should be regarded as tenta- 
tive. Clearly, a much larger number of guanidino kinas- 
es, especially in the invertebrate phyla, have to be 
cloned and/or sequenced before a correct tracking of the 
evolutionary relationships as well as a reliable estima- 
tion of the time points in evolution when gene duplica- 
tion events occurred will be possible. However, one 

clear-cut postulate of the analyses presented here is that 
all vertebrates, including fish, amphibia, and reptiles, 
contain mitochondrial CK isoenzymes. 

It has been hypothesized earlier that phosphorylargi- 
nine (PArg) and ArgK are phylogenetically older than 
the other phosphagens and guanidino kinases (see [2, 
3]). The facts that (i) ArgK is by far the most wide- 
spread guanidino kinase in invertebrate phyla, that (ii) 
Arg is a key component of basic metabolism, while the 
other guanidino compounds necessitated the evolution 
of additional enzymes for their biosynthesis, and that 
(iii) most ArgKs are monomeric proteins in fact support 
the notion that a primordial monomeric ArgK repre- 
sents the common ancestor of all guanidino kinases [2]. 
However, the postulate that phosphorylcreatine (PCr) 
represents a functional improvement over PArg, this ex- 
plaining the apparent switch from ArgK to CK at the 
transition from invertebrates to vertebrates [3], is un- 
tenable since PCr and CK are found in a large variety of 
invertebrate spermatozoa [2]. In these invertebrates, 
PCr is often the sole phosphagen in the sperm cells, 
while other tissues contain PArg or other phosphagens. 
Due to the different thermodynamic properties of the 
various phosphagens, it is more reasonable to assume 
that PCr is better suited for some species and cell types, 
while PArg and the other phosphagens are advantagous 
for others [4, 6]. 

Recently, it has been postulated, on the basis of prote- 
olysis and small-angle X-ray scattering experiments as 
well as of sequence comparisons [57-61] that guanidino 
kinases are structurally similar to 3-phosphoglycerate 
kinase. Accordingly, each guanidino kinase protomer 
would consist of two domains with Mr's of 20'000-25'000 
which are separated by a deep cleft. The two substrates 
are bound on either side of the cleft, and binding of the 
second substrate is likely to result in a closure of the 
cleft, thus allowing a direct in-line transfer of a phos- 
phate group during catalysis, in an environment exclud- 
ing water. Whether and how closely the guanidino ki- 
nases and 3-phosphoglycerate kinase are also related 
evolutionarily remains to be established. 

CK framework 

The amino acid sequences of the CK isoenzymes display 
six blocks with extensive homologies, flanked by seven 
regions that are more variable (Fig. 1). Among the latter 
are the N-terminus and the C-terminus. It has been sug- 
gested previously that the highly conserved parts form 



the 'framework' of the molecule, being involved in basic 
functions like substrate binding and catalysis, while the 
variable segments may be responsible for isoenzyme- or 
species-specific functions like oligomer formation or in- 
teraction of the CK isoenzymes with subcellular struc- 
tures (either with membranes or with other proteins; 
[62]). The six highly conserved blocks are indicated by 
bars below the CK consensus sequence in Fig. i and are 
numbered 1 to 6. Compared to blocks 1-5, block 6 is 
somewhat less well defined, but still 19 out of 24 amino 
acids are conserved. 

As can be seen in Fig. 1, several residues in blocks 1-6 
are only imperfectly conserved. While some of the 'de- 
viations' may be real, others are certainly due to se- 
quencing artifacts. This has, for instance, been demon- 
strated already [51] for six amino acids (5 of which are in 
the conserved blocks 2, 3 and 5) of the human M-CK 
sequence published by Perryman et al. [63]. 

Block 4 contains the highly reactive and absolutely 
conserved Cys-283, alkylation of which is always paral- 
leled by a very pronounced or even complete loss of en- 
zymatic activity (for references see [64]). In earlier pub- 
lications, it has therefore often been suggested that this 
residue is 'essential' for and possibly directly involved in 
catalysis. Recently, however, site-directed mutagenesis 
of Cys-283 of chicken Mib-CK demonstrated that this re- 
sidue is not involved in catalysis itself, but that it is neces- 
sary for synergism in substrate binding and that it may 
also provide a negative charge for maximum enzymatic 
activity [64]. Block 4 also comprises a putative adenine 
nucleotide binding motif (glycine-rich loop) 
LGXGXXGXV [65, 66], but it is not yet clear whether it 
is functional or not. The importance of block 4 for CK 
and guanidino kinase function in general is further sup- 
ported by the fact that short peptide sequences around 
Cys- 283 of taurocyamine kinase, lombricine kinase and 
glycocyamine kinase also show high sequence conserva- 
tion [56, 67, 68]. 

Blocks 1 and 3 contain the two residues Cys-74 and 
Lys-196 which, on the basis of cross-linking experiments 
with rabbit MM-CK, have been implicated to be struc- 
turally close to the highly reactive Cys-283 [69, 70]. 
While Lys-196 is absolutely conserved in all CK se- 
quences (Fig. 1), Cys-74 is replaced by an Ala in rat and 
mouse B-CK, and by a Met or Leu in all Mi-CK and sea 
urchin CK sequences. This suggests that at least the lat- 
ter residue is not essential for CK function. 

Asp-340 in block 6 of chicken Mib-CK has been la- 
belled by an alkylating ATP analogue, and it has been 
suggested that this residue is involved in the binding of 
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Fig. 5. Far-UV CD spectra of guanidino kinases. Spectra of octameric 
chicken heart Mib-CK ( ), chicken brain BB-CK (--.-), rabbit 
muscle MM-CK (...) and lobster tail muscle ArgK (-'-) were recorded 
on a Jasco J-710 dichrograph at a protein concentration of 0.5 mg/ml in 
50 mM potassium phosphate buffer, pH 7.0. Cylindrical quartz cells 
with 0.02 cm path length were used. Residual molar ellipticities ([| 
are given in deg cm 2 dmole ~. 

the Mg 2+ ion [71]. Again, this residue is absolutely con- 
served in all CK sequences. Finally, no functions have 
yet been assigned to blocks 2 and 5, except that they con- 
tain, together with block 3, three putative phosphoryla- 
tion sites (Thr-133, Ser-239 and Thr-322) which are abso- 
lutely conserved among all CKs and are also found in 
some of the invertebrate guanidino kinase sequences. 

A comparison of the CK framework with the other 
guanidino kinase sequences reveals that block 1 is 'mis- 
sing' in the invertebrate guanidino kinases, while in 
blocks 2-6, pronounced homology is observed (Fig. 2). 
It is therefore tempting to speculate that block 1 deter- 
mines the guanidino substrate specificity of the guanidi- 
no kinases and, in particular, the Cr specificity of the 
CKs. In accordance with this notion, it has recently been 
postulated, on the basis of biochemical evidence, that 
the N-terminal and C-terminal halves (= domains) of the 
CK molecule are involved in Cr and MgATP binding, 
respectively [61]. In the invertebrate guanidino kinases 
known so far, Cys-283 and Lys-196 (only in Flukeckpl, 
Lys-196 is replaced by Arg) are also highly conserved, 
while Cys-74 and Asp-340 are not. 
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('--), and BB-CK ..... ) [same proteins as in Fig. 5]. The spectra were recorded on a Jasco J-710 dichrograph at a protein concentration of I mg/ml in 
50 mM potassium phosphate buffer, pH 7.0. Cylindrical quartz cells with 1 cm path lenglh were used. Residual molar ellipticities ([(@]) are given in 
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Isoenzyme-specific boxes 

While the six highly conserved blocks of the 'CK frame- 
work' often do not allow a distinction between isoen- 
zymes, the more variable segments in between frequent- 
ly contain single residues or even extended peptide 
stretches that either allow a clear-cut distinction be- 
tween cytosolic and mitochondrial CKs or are specific 
for any one isoenzyme (M-, B-, Mi d- or Mib-CK ). The 
most instructive of these residues or peptide stretches 
are boxed in Fig. 1, with purely isoenzyme-specific resid- 
ues within larger boxes being written in bold. Extended 
stretches (__ 5 residues) with isoenzyme-specific se- 
quence patterns are termed 'diagnostic boxes' (A, B, C, 
�9  I), since they are likely to allow the correct assign- 
ment of a new vertebrate CK sequence to one of the four 
isoenzyme classes (boxes A, B, D, G, H, I) or at least to 
either the mitochondrial or cytosolic CK isoenzymes 
(boxes C, E, F). For instance, screening of the Gen- 
EMBL sequence data libraries with blocks A and I 
yielded exclusively the expected CK sequences with 
100% identity, showing that they are absolutely specific 
for the respective CK isoenzymes. 

It is very likely that the 'diagnostic' residues or boxes 
are responsible for isoenzyme-, cytosolic CK-, or Mi-CK- 
specific properties, e.g. for octamer formation, membrane 
binding, interaction with the myofibrillar M-band or other 
subcellular sites. Accordingly, limited proteolysis and site- 
directed mutagenesis experiments have shown that the 
very N-terminus of chicken Mib-CK , particularly the posi- 
tively charged residues 5-7, is important for octam- 

er formation and stability [72]�9 Further mutagenesis ex- 
periments on chicken Mib-CK have shown that Trp-269 
in block F of Fig. i is also important for octamer forma- 
tion and stability [73], indicating that blocks B and F may 
form the complementary surface areas on neighboring 
dimers that interact with each other within the Mi-CK 
octamer. None of the other diagnostic boxes has been 
linked with a function of the molecule so far. 

Structural homologies in the guanidino 
kinase family - conservation of 
secondary structure and of aromatic 
side chains 

The high sequence homology among the members of 
the guanidino kinase family is paralleled by a number of 
structural similarities which are revealed by spectro- 
scopic investigations. Circular dichroism (CD) mea- 
surements are particularly well suited for a structural 
comparison of the guanidino kinases. 

Secondary structure compositions of proteins can be 
evaluated and compared by measuring CD spectra in 
the far-UV wavelength range ()~ <_ 240 nm). Using a li- 
brary of reference spectra of proteins with known three- 
dimensional structures, the secondary structure compo- 
sition of the protein of interest can be computed by a 
variety of algorithms [74]. The far-UV CD spectra of the 
guanidino kinases reveal a high {x-helical content, the 
spectra closely resembling those of lysozyme or myoglo- 
bin. All guanidino kinases, including the mammalian 



and avian octameric Mi-CK and dimeric cytosolic CK 

isoenzymes, as well as the invertebrate (mostly mono- 
meric) arginine, lombricine and taurocyamine kinases, 
display nearly superimposable far-UV CD spectra (Fig. 
5 and [75]), indicating an almost perfect conservation of 
secondary structure elements. This leads to the conclu- 
sion that all the distinctive properties of the individual 
members of the family (guanidino substrate specificity, 
ability to form oligomeric molecules, specific localiza- 
tion within the cell and association with subcellular 
structures) do not require major adaptations of second- 
ary structure, but can be achieved by relatively small dif- 

ferences in primary sequence (e.g. the isotype-specific 
sequence boxes of the CKs described above). 

Since the far-UV CD spectra of the guanidino kinases 
are nearly indistinguishable, a representative secondary 
structure calculation was performed for chicken Mi b- 
CK, using the variable selection algorithm introduced 
by Manavalan & Johnson [76], with 22 proteins in the 
original reference database. The procedure resulted in a 
prediction of 37% (x-helix, 30% antiparallel [~-sheet, no 
parallel ~3-sheet, 15% turns, and 18% other  structures. 

From CD spectra in the UV wavelength range above 
240 nm (near-UV), information about the aromatic ami- 
no acid residues, in particular Tyr and Trp, can be ob- 
tained. Although the near-UV CD spectra of the various 
guanidino kinases (Fig. 6; see also [75]) show distinctive 
characteristics, they also exhibit several common, con- 
served features. The most obvious one is a conserved 
negative Cotton band at 295-300 nm, which, from its po- 
sition, can clearly be assigned to (a) Trp residue(s). Since 
magnetic resonance, fluorescence [77], CD [78], and 
chemical modification data [79] have shown that in CK, 
a Trp residue positioned close to the adenine nucleotide 
substrate is essential for enzyme activity, it might be as- 
sumed that the CD band originates from this structur- 
ally and functionally conserved Trp. The only two Trp 
residues common to ArgKs and CKs are amino acids 211 
and 228 (numbering according to Fig. 1). They are the 
only Trp residues present in lobster ArgK, whereas CK 
has two (cytosolic CKs) or three (Mi-CKs) additional 
indole side chains. Consequently, either residue 211 or 
228 should be the Trp essential for catalytic activity. Site- 
directed mutagenesis studies on Mib-CK have indeed 
confirmed that Trp-228 is essential for catalysis, with 
even the conservative replacement by Phe leading to 
_> 99% inactivation. However,  these experiments fur- 
ther showed that Trp-211 is also important  for the struc- 
tural integrity of the active site and that in fact this latter 
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residue is the origin of the Cotton band at 295-300 nm 
[73]. 

In the region below 290 nm, all CKs and ArgKs show 
a characteristic pattern of three negative Cotton peaks 
at 288, 280 and 274 nm, superimposed on a broad nega- 
tive band extending from 255 to 290 nm. This region 
mainly reflects the environment of Tyr residues. For CK, 
an involvement of Tyr in enzyme activity has also been 
demonstrated [80], suggesting that the common CD pat- 
tern reflects the structural and functional conservation 
of tyrosyl side chains among the guanidino kinases. 
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