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Abstract. For a convex body K C E 2 and a lattice L C E 2 let #i(K, L), i = 1, 2, denote 
its covering minima introduced by Kannan and Lovasz. We show #I(K, L)tt2(K, L )V(K)  > 
4 ~ det(L), where V denotes the area. This inequality is tight and there are five different cases of 
equality. 

Mathematics Subject Classifications (1991): 52C05, 11H06. 

1. Introduction and Results 

In the fol lowing let E d, d >_ 2, denote the Euclidean d-space, and the set of  lattices 
L C E d with lattice determinant det(L) # 0 is denoted by £d. For L C £d let 
L* = {!1 C Ed: x • !1 C Z, for all x C L} denote the dual lattice. An unimodular 
transformation is defined by an integral matrix with determinant 4-1. An unimodular 
transformation maps a lattice onto itself. Let /C d denote the set of  convex bodies 
- compact  convex sets - in E d and let/Co d denote the subset of  the 0-symmetric 
convex bodies,  i.e. K C /C d with K = - K .  For K C /C d let V ( K )  denote its 
volume (for simplicity we use V also for d = 2, where it denotes the area). 

For K C/C d and L E /2  d Kannan and Lovasz (cf. [8]) introduced the covering 
minima 

# i ( K ,  L) = min{t > 0: tk  + L meets every 

(d - / ) - d i m .  affine subspace of  Ed} ,  i = 1 , . . . ,  d. 

Clearly 0 = #0 _< #1 _< "'" _< #d and pal(K, L )  is the usual covering radius [3]. 
These functionals have been (implicitly) mentioned first by G. Fejes T6th [4], 

who posed the fol lowing problem: Find the thinnest d-dimensional lattice of  spheres 
such that every k-dimensional subspace (0 _< k _< d - 1) intersects some closed 
sphere of  the lattice. For k = d - 1 this problem corresponds to the notion of  a 
non-separable lattice of  convex bodies (cf. [11], [5]). 

The covering minima are a counterpart to the successive minima Ai(K, L),  1 _< 
i _< d, for K E/~od, with respect to a lattice L C £d,  defined by 

Ai(K, L) = min{A > O: d im(AK M L) _> i}. 
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For the volume V and the successive minima hold Minkowski's fundamental 
theorems in Geometry ofNumbers (cf. [6, p. 123]). For K E/C0 d and L E £d holds 

~I (K,  L)dV(K) <_ 2d det(L), (1) 

AI(K, L) . . . . .  Ad(K, L )V(K)  <_ 2 d det(L): (2) 

Both inequalities are tight and (2) is an improvement of (1) since h i ( K ,  L) _< 
• . . _   d(K, L) .  

For K E/~d, L E f.d and u E L we call maxx,ueK u(x - y) the lattice breadth 
of K in the direction u. If we minimize over all u E L* we obtain the lattice width 
)~ and it holds (cf. [8], [ l l ] )  

1 
#1(1(, L) - )~7 = .~I((K - K)*,  L*) = ueL*min x,yeKmax u(x - y), (3) 

where K* = {y: x - y _< 1, for all x E K )  denotes the polar reciprocal body of 
K E/~0 d. Equation (3) was first proved by Makai Jr [1 l] in terms of non-separable 
lattices and lattice packings. 

G. Fejes T6th [4], Mahler [9] and Makai Jr [1 l] raised the problem to find an 
inequality for the covering minima and the volume analogous to (1), i.e. they gave 
inequalities of the type 

P~I (K,  L)dV(K)  >_ ed" det(L). (4) 

The best known results quoted by Betke, Henk and Wills [1] are immediate con- 
sequences of the theorems by Rogers and Shepard [12], Bourgain and Milman [2] 
and (1): 

(dd)-l(cl~ d 
#, (K,  L)dV(K) >_ \2-d] ' f o r K  E hS d, 

(c1)  
 I(K, L)dV(K) _ , for K E d. 

Makai Jr conjectured that ed = 1/d! and ee = (d + 1)/(2ddt) are valid in (4) for 
K E/Co d and K E/C d, respectively. For the crosspolytope and the simplex respec- 
tively and suitable lattices he showed equality and so these constants could not be 
improved. The conjecture for the centrosymmetric case would follow, including 
the case of equality, if Mahler's_conjecture [101, V(K)V(K*)  >_ 4d/dt, would 
hold. 

Both conjectures hold true in the Euclidean plane. The centrosymmetric case 
follows from the fact that Mahler's conjecture is true for d = 2 (cf. [6, p. 113]) and 
the general case, 

3det(L),  K E K :  2 , L E £ 2 ,  (5) tZl(t(, L )zV(K)  >_ g 
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has been proved by L. Fejes Toth and Makai Jr [5] with equality for the triangle in 
Figure 5 (and L = Z2). 

The question to find an inequality for the covering minima and the volume 
analogous to (2), 

lA1 ( I ( ,  L)  . . . . .  tAd(K, L ) V ( K )  > fd" det(L), (6) 

has been raised by Betke, Henk and Wills [1]. Of course, every ed in (4) is a valid 
fd in (6). 

This paper deals with the planar case. A result by Hurkens [7] states that 
IA2(K, L) _< (1 + 3Zvf3)lAl(K, L) forK E ]~d. I f K  = - K  then it follows from a 
result by Kannan and Lovasz (cf. [8]) that #2(K, L) < 2#t(K, L). Here we give 
the following tight inequality of the type (6). 

THEOREM. (a) For K E I(, 2 and L E 1,2 holds 

#I(K,  L)IA2(K, L ) V ( K )  >_ ~ det(L). 

(b) For each L E L2 there is up to translations, dilatations and unimodular 
transformations exactly one triangle, one parallelogram, one trapezoid, one pen- 
tagon and one hexagon such that equality holds. 

For L = Z 2 the polygons in (b) are 

(A) the 0-symmetric hexagon 

I (  : conv{q-(  1, 3);  _[_(__2 1 1 7, 7); 

Fig. 1. 

03) the 0-symmetric parallelogram 

K = c o n v { ± (  3 ,3 ) ;  +( 3 3)}, 

Fig. 2. 
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(C) the asymmetric pentagon 

K = conv{+(bo/4, bo/4); (1 - bo/4, -bo/4); (bo/4, bo/4- 1); 

(1 - 5/4bo, 5 /4bo-  1)}, 

where bo = 1 + }v/5 

Fig. 3. 

(D) the asymmetric trapezoid 

K c°nv{( 1~ , - 1  -i-o); ~, - 9  - 7  7 
= ( _ (~-, ~)}, 

Fig. 4. 

(E) the asymmetric triangle 

I( = conv{(1, -1) ;  ( -1 ,  01; (0, 11}. 

Fig. 5. 

Since the hexagon and the parallelogram are 0-symmetric, the theorem cannot be 
improved for K E/Co 2. 
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2. Proof of the Theorem 

Since all occurring sizes are equi-affine invariant it suffices to consider the lattice 
L = Z 2. So in the following we will write #i(K) or just/zi instead of #i(K, L). 
Further we can assume that #z -- 1. 

I f # l  > ¼ then # I # 2 V ( K )  = (# l / #2 )V( I z zK)  >_ t4 since K + ~2 = E 2. 
I f # i  ___ ½ then # I # 2 V ( K ) =  (#2 /# l )V(# lK)  >_ 14 because of(5). 
Thus we set b := A~ = 1/#l  and in the following we consider the case 

4 g < b < 2 .  

It is sufficient to prove that 

3b 
V ( K )  >_ -£. 

Since Z 2 is a covering lattice for K,  there is a centrally symmetric hexagon (possibly 
a quadrangle) H contained in K,  such that Z 2 + H is a lattice tiling (cf. [6, Lem- 
ma 22.3]). We can assume that H has the center 0. Obviously Z 2 is a critical lattice 
for 2 H  and hence the boundary of H contains three points u, v, u - v E ½Z 2, where 

{2u, 2v} is a basis of Z 2 (el. [6, Lemma 22.2]). We can assume that u = (3, 0) 
and v = (0, ½) (else we apply a suitable unimodular transformation). Therefore H 
contains the hexagon H '  =conv{+(½,  0); +(0,  ½); +(½, -3 )} .  There is a point 
P0 = (x0, Y0) in W := {(x, y): Ixl, [Yl -< 3} which is contained in the boundary 
of H and of  two further translates. P0 is contained either in the boundary of H ~ or 
in the interior of W \ H  r (the case that Po is contained in the boundary of W \ H  I 
can be reduced to the first one). 

In the first case we can apply an unimodular transformation so that Y0 = 3. The 
corresponding two translates are e2 + H and (e2 -- el ) + H and H is a parallelogram 
with two horizontal sides with length 1 and height 1. Since the breadth of K in the 
direction e2 is _> b it follows that K \ H  contains two triangles with basis length 1 
and total height of  at least (b - l)  and hence V ( K )  > 1 + (b - 1)/2 > 3b/4 since 
b < 2 .  

In the following we consider the case 

1 1 
0 <  x0, Y0 < g; xo+Yo > ~. 

The two translates which contain Po are el + H and e2 + H (else there are two over- 
lapping translates). Hence the points pl = Po - e 1 and P2 = Po - e2 belong to H and 
we obtain the 0-symmetric convex hexagon H = conv{+po, +Pl ,  -t-P2} C K.  
Let gl be the line containing -P2 and Po, 92 the line containing - P l  and P2 and 93 
the line containing -Po  and Pl. Further, let Sl, s2, s3 be the points of intersection 
of the lines 91 and g2, 92 and 93 and if3 and ffl, respectively (Figure 6). 
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41 

g2 

42 

Fig. 6. 

We can calculate the coordinates xi~ Yi of  si elementary and we obtain 

2xo(1 - 2xo) 
Xl ~ X 0 +  

1 - 2yo 

x 2 = l - - x 0 - - 2 y 0 ,  

2x0 -- 2y0 - 1 
x3 = X02x ° + 2y0 -- 1 '  

Yl = 2x0 + Y0 -- 1, 

2y0(1 - 2yo) 
Y2 = --Y0 -- 1 -- 2x0 

2xo - 2yo + 1 
Y3 = Yo 2xo + 2yo - 1" 

Obviously  the lattice breadths o f / /  in the directions el ,  e2 and el + e2 equal 

2(1 - Xo), 2(1 - Yo) and 2(Xo + Yo), respectively. 

(a) I f  1 - xo < b/2 then K \ t t  contains two triangles with basis PoP2 and 
-(P-6-~), respectively, with total height at least b - 2xo less the triangles 

+conv{po ,  P2, - P l } .  Hence 

b 
V ( K \ H )  >_ - 1 + xo. 

(b) If  1 - Yo < b/2 then we have analogously 

b - l + y o .  >_ 

(c) If  xo + Yo < b/2 then we can conclude like in (a). Here we use the triangles 
with basis PiP2 and - (~-p-~), respectively, with length x/2 and we obtain 
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b 
V ( K \ H )  >_ - (xo + yo). 

At least one of  the cases (a), (b) or (c) occurs since from (1 - x0) ~ b/2 and 
(1 - Y0) ~ b/2 follows x0 + Yo _< 2 - b < b/2. We have to consider the following 
7 cases 

(1) 1 -  xo >_ b/2and l - yo >_ b/2, 

(2) 1 - xo >_ b/2 and xo + Yo >_ b/2, 

(3) 1 - xo _> b/2and xo + Yo >_ b/2, 

(4) xo + Yo >_ b/2and 1 - :co, 1 - Yo < b/2, 

(5) 1 -  yo >_ b /2andxo + Yo, 1 -  xo < b/2, 

(6) 1 -  xo >_ b / 2 a n d x o +  Yo, l - yo < b/2, 

(7) x o + Y o ,  1 - x o ,  1 - y o < b / 2 .  

The substitution Vo = 1 - xo - Yo, wo = xo is corresponding to an unimodular 
transformation and reduces the case (2) to (1) and (5) to (4). Analogously vo = 
1 - xo - Yo, wo = Yo reduces (3) to (1) and (6) to (4) and so it suffices to consider 
the cases (1), (4) and (7). 

In case (1) we have xo + Yo _< 2 - b < b/2 and in (c) we obtain an additional 
area of at least b/2 - (xo + Yo) >_ 3b/2 - 2. Since b > ~ it follows V ( K )  >_ 
3 b / 2 -  1 > 3b/4. 

In case (4) one of the additional areas in (a) and (b) is as least as large as their 
mean value b/2 - 1 + ½(x0 + Y0). It follows V ( K )  >_ b/2 + ½(xo + Yo) >_ 3b/4. 

For case (7) we need some extra investigations. If  P0 and -P0  are contained in 
the interior of  K then # z ( K )  < 1. Hence let -P0  be contained in the boundary of  
1( and by the same reason -Pa  and -P2  are contained in the boundary of K ,  too. 
It follows that K \ H  can be decomposed into three parts that are contained in the 
semi-stripes 

the Pl-side of  the stripe between 9I and -91,  

the p0-side of  the stripe between g2 and -92,  

the p2-side of  the stripe between 93 and -93- 

In each of  these semi-stripes can be contained parts of  the areas from (a), (b) 
and (c), which possibly may overlap. We can restrict ourselves to the case that K 
contains in each semi-stripe at most three further vertices which guarantee that the 
lattice breadths in the directions el,  e2 and el + e2 are at least b. Now it happens 
that the parts that participated 

in (b) and (c) in the first semi-stripe, 

in (a) and (b) in the second semi-stripe, 

in (a) and (c) in the third semi-stripe, 
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do not overlap (they possibly have one side in common).  Thus the areas in (a), Co) 
and (c) are counted at most  twice and it follows 

) V(K\11)>_-~  - l + x o + - ~ - l + y o + ~ - x o - Y o  = -~- - 1, 

and hence V ( K )  >_ 3b/4. 
We still have to investigate the case of  equality. 
If  b = ~, equality only holds for V ( # 2 K )  = 1, i.e. K = / / .  Since 1 - x0, 1 - 

Yo, :co + Yo >_ b/2 = z it follows that x0 = Y0 = 3 a and we obtain the hexagon 
described in (A). 

If  b = 2, equality only holds for V ( # I K )  = }. From the equality case in (5) it 
fol lows that K is equivalent to the triangle described in (E). 

For 3 ~ < b < 2 equality cannot hold i f / / i s  a parallelogram and in cases (1)-(3). 
For equality in (4) we  must have x0 + Y0 = b/2 and the areas in (a) and (b) 

must  be identical, in particular x0 = Y0 = b/4. Further, in each of  the estimations 
equality holds. This is only possible by the addition of  the vertices -t-s3 or one of  
it t o / / a n d  if  the lattice breadths in the directions el and e2 are exactly b. 

(tx) In the first case (addition of  s3 and --'-q3) w e  have - x 3  = Y3 = b/2 and hence 
b/2 = xo/(4xo - 1) = b/(a(b - 1)), i.e. b = 2 ~. We obtain the symmetric 
parallelogram conv{:kpo, ±s3}  described in (B). 

(~)  In the second case (addition of  s3) we have 1 - xo - x3 = b = Y3 - Yo + 1 
- - 1  - -  and it fol lows that 1 - xo + xo/(4xo 1)_x/5 = b  or 1 + b/(a(b - 1)) = 5b/4. 

The only possible solution is b = 1 + b0 and we obtain the pentagon 
conv{t-P0,  - P l ,  P2, s3} described in (C). 

For equality in (7) all parts of  K \ H  in (a), (b) and (c) must be counted twice 
and in the corresponding estimations equality must hold. This is only possible by 
the addition of  some points of  the set {-t-s1, ±s2 ,  5:s3}, more exactly either two 
or three of  these points. Further, the lattice breadths in the directions el,  e2 and 
el + e2 are exactly b. 

( a )  If  we  add three points we obtain the triangle K = cony{s1,  s2, s3} (or 
K = c o n v { - s l ,  - s 2 ,  - s 3 } ) .  Since K + Z 2 is a lattice covering and the 
thinnest lattice covering with triangles has density } (cf. [6, Th. 22.7]), it 

fol lows that V ( K )  = V ( K ) / d e t ( Z  2) >_ ~ > 3b/4. 
(/3) If  we add two points then one of  the areas in (a), (b) and (c) can be decom- 

posed in two parts which are identical with the areas added in the other 
cases. We can assume (by an unimodular transformation) that the area cor- 
responding to (c) can be decomposed and we obtain the trapezoid K = 
conv{s l ,  s2, Pl ,  -P2} .  Further, we have b/2 - xo - Yo = 3 b / 4 -  1, i.e. 
xo + Yo = 1 - b/4. From the condition 1 - Y0 - Y2 = b = x 1 - Xo + 1 it follows 
that x0 ( 1 - 2x0)2 = Y0 (1 - 2yo)2. An elementary discussion of  the function 
f ( t )  = t(1 - 2t) 2 together with xo + Y0 > ½ gives that x0 = Y0 = ½ - b/8. 
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On the other hand, from the condition xl  + Yl - x2 - g2 = b it fo l lows with 
x0 = g0 that x0 = (b + 2 ) /12 .  From the two representations of  x0 it fol lows 
that b = ] ,  xo = Y0 = -~ and we  obtain the trapezoid described in (D). 

At the end one easily verifies that for each body given in (A)-(E) it holds that 
#2 = 1 and V = 3 b / 4 .  
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