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Abstract. Employing the method of moving frames, i.e. Cartan's algorithm, we find a complete 
set of invariants for nondegenerate oriented surfaces M 2 in ~4 relative to the action of the general 
affine group on ~4. The invariants found include a normal bundle, a quadratic form on M 2 with 
values in the normal bundle, a symmetric connection on M 2 and a connection on the normal bundle. 
Integrability conditions for these invariants are also determined. Geometric interpretations are given 
for the successive reductions to the bundle of affine frames over M 7-, obtained by using the method of 
moving frames, that lead to the aforementioned invariants. As applications of these results we study 
a class of surfaces known as harmonic surfaces, finding for them a complete set of invariants and 
their integrability conditions. Further applications involve the study of homogeneous surfaces; these 
are surfaces which are fixed by a group of affine transformations that act transitively on the surface. 
All homogeneous harmonic surfaces are determined. 

Mathematics Subject Classifications (1991): 53A15, 53A55, 53B25. 

0. Introduction 

We use the method of  moving frames to study immersions x: M 2 ~ ~4. We wish to 
find invariants induced on M 2 by x such that if  two immersions of  M 2 into ~4 are 
given whose corresponding induced invariants are the same, then the immersions 
differ by an affine transformation of  ~4. That is, we seek a complete set of  invariants 
for  surfaces under the action of  the affine group on ~4. Moreover,  given such a 

complete  set o f  invariants on M 2, we wish to find integrability conditions for these 
invariants that insure the existence of  an immersion x: M 2 -~ ~4 whose induced 

invariants are the given ones. Some work has already been done on this problem, 
most  notably by Klingenberg [1], [2] and Wilkinson [7]. Recently, Nomizu and 
Vrancken [4] developed a new theory for the corresponding equiaffine problem; 
of  particular interest is that one will find in this paper a comparison of  previous 
approaches. Wilkinson used the method of  moving frames but was motivated 
by Klingenberg and earlier work of  Weise [5], [6] in making his reductions of  
the bundle of  all affine frames induced over  the surface M z. We have tried to 
apply Cartan's 'a lgori thm'  as faithfully as possible in making reductions. In so 
doing, we succeeded in finding the desired invariants for suitable nondegeneracy 
conditions. Invariants were also found under geometrically interesting cases where 
the nondegeneracy conditions fail. 

The  first section of  this paper is primarily concerned with constructing a semi- 
conformal  structure on the oriented surface M 2 induced by the immersion x. What  
is meant  by a semiconformal  structure is defined in this section. This structure 
is not new; in fact, every author dealing with this problem has observed it. Our 
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first nondegeneracy condition - as well as everyone dse 's  - is that the induced 
semiconformal structure is nondegenerate. This allows for the completion of a 
second-order reduction of the bundle of affine frames induced over M 2 by x. 
Depending on whether the nondegenerate semiconformal structure is definite - in 
which case we refer to it as a conformal structure - or not, we have what is called 
an elliptic or hyperbolic immersion, respectively. 

In Section 2 we proceed with the reduction of the frame bundle assuming that 
the immersion is hyperbolic. In course of doing so, a number of new invariants 
are discovered, amongst them some quadratic forms. Other invariants are found 
as well, including a normal bundle, a normal bundle-valued quadratic form on 
M E, a symmetric connection on M 2, and a connection on the normal bundle. To 
complete the reduction, we must impose an additional nondegeneracy condition. 
A couple of different such nondegeneracy conditions are considered. In any case, 
the ultimate third-order reductions produce framings which are specializations of 
earlier framings found by Klingenberg. 

In Section 3 we are primarily concerned with understanding the geometry of the 
reductions made in the earlier sections. We find structures which are introduced in 
making the second-order reductions and the conditions imposed on these structures 
in making third-order reductions. We also prove existence and uniqueness theo- 
rems related to the invariants we have introduced. These invariants are a normal 
bundle-valued quadratic form and connections on M E and the normal bundle. The 
integrability conditions for these invariants consist of four equations, two of which 
involve just the curvatures of the connections on M 2 and the normal bundle and 
two of which involve up to the second derivatives of these curvatures. 

In Section 4 we look at an interesting collection of immersed elliptic surfaces 
which we call harmonic immersions. These surfaces are called harmonic because 
the immersions defining these surfaces are harmonic with respect to natural induced 
complex structure that exists on every elliptic surface. It turns out that a complete 
set of  invariants for these surfaces is the induced normal bundle-valued quadratic 
form together with the induced connection on the normal bundle. 

Finally in Section 5 we study homogeneous nondegenerate immersions. We 
classify large numbers of such surfaces and give many examples of such surfaces. 

There are occasions where expressions appear which contain terms whose fac- 
tors have repeated indices, one an upper index and the other a lower index, for 
which no sum is intended. Because of this, sums over repeated indices are to be 
reserved to expressions in which the symbol ~ explicitly appears. 

1. The Affine Semiconformal Structure 

The space b r of affine frames is defined by 

~" -- { (p ,  e l ,  e2, e3, e4) E (~4)5 . e l  A e2 A e3 A e4 ~ 0}. 
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We denote a frame by (p, e) so that e stands for (el, e2, e3, e4). It is clear that j r  is an 
open submanifold of I~ 2° with two connected components. We will use the index 
range 1 _< r, s, t <_ 4. If we regard the components of (p, e) E j r  as determining 
IRn-valued functions on jr ,  p: U ---, R4 and er : j r  ~ IR 4, then we may define 
1-forms crr and w s on j r  by 

dp = ~ e r o  "r, 

de~ = ~e~wfl.  
(1.1) 

The structure equations are 

da ~ = - ~ w ~ A a  t, 

d~; = - ~ ~r ^ ~.. 
(1.2) 

If we identify j r  with A(4, 1~), the affine group of 1~ 4, in the usual way, then the 
twenty 1-forms a ~, w~ form a basis for the left-invariant 1-forms on A(4, l~). 

The map p: j r  ~ ]I~ 4 makes j r  into a principal fiber bundle over  ~ 4  with fiber 
Gp = GL(4, 1R). Clearly the set of forms {o "~} span the semibasic forms of the 
projection p: j r  ~ I~ 4. 

Let M be an oriented surface and x: M ~ ]~4 be a smooth immersion. We 
define the zeroth-order frame bundle of x, jr(0), to be the pullback under x of the 
bundle p: j r  --+ IR 4, i.e. 

f~o) = {(~,  p, e) e M × Y" x ( ~ )  = p). 

We will identify m with x(m). Thus 

From now on x will denote, in addition to itself, its pullback to F (°). Thus on 

Sx (°), dx = EeTar; hence the 1-forms a r (restricted to ~-(0)) are semibasic. 

We define the first-order frame bundle, jrx 0), by 

5~'X (1) ~- {(9Tt,, e )  ~ ~-(0) i 0.3 ~--_ 0.4 = O and  ~yl A 0.2 2> 0 a t ( m ,  e ) ) .  

The group of the bundle p: ~(1) --. M, G1, is defined by 

c)  2x2 } 
• e C  a, b E G L ( 2 ,  R ) a n d d e t a > 0  

b 

where iR 2x2 denotes the space of 2 x 2 matrices. 
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We will use the index ranges 1 _< i, j ,  k _< 2, and 3 < ~, fl, 7 -< 4. The 
structure equations (1.2) along with Cartan's lemma imply that there exist smooth 

real valued-functions A s on ~'x (1) such that A S = Aj~ and w~ = Y.A~aJ. Define 

a semibasic quadratic form ¢ on ~O) by 

95 3 4  4 3  
~ 1 ~ 2  -- W l ~  2. 

The determinant as a function o n  ~ 2 x 2  is a quadratic form. We denote the 
associated symmetric bilinear form by [, [ so that la, a[ = det a. If we let 

A s Ai = ( ij), then 

¢(ei ,  e j ) =  IA~, Ajl .  (1.3) 

We wish to study how 95 varies along the fibers of p: ~-(1) --+ M. Let (m, e) and 

(m, 6) denote two frames in F O). Let w~ and 95 (respectively, 03~ and q~) denote 
the values of these forms at (m,  e) (respectively, (m, 6)). 

LEMMA 1.1. I f6 = e(~ ~), then ¢ = (det a /de t  b)95. 
Proof. Let 

# =  \~o4 ~,4j and / 2 =  ~4 ~4 j -  

It is straightforward to show that/2 = b -  1 #a .  Now just take the determinant. 

By a semiconformal structure compatible with a quadratic form Q 
mean 

[] 

w e  

{rQ • r is real and ~ 0).  

Lemma 1.1 says that the quadratic form 95 on ~x  (1) induces a semiconformal struc- 
ture on the tangent space at each point of M,  or, for short, induces a semiconformal 
structure on M.  We denote this semiconformal structure on M by 95 and call it the 
affine semiconformal structure induced by x. 

We make the first nondegeneracy assumption: 

(I) 95 is everywhere nondegenerate on M 

If 95 is definite, we say that x is elliptic. If 95 is indefinite, we say that x is hyperbolic. 
If x is elliptic, then the orientation of M and 95 determine a complex analytic 

structure on M.  For hyperbolic x, the structure 95 is completely determined by a 
pair of rank 1 distributions on M which are everywhere transversal; the union of 
these distributions is, of course, the set of null vectors of 95. 
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For hyperbolic x we can make the following partial second-order reduction: 

.U(¢) = {(m, e) E .~(1) . q~(ei, e i ) =  0}. 

If x is elliptic, we complexify .Tx (°) and replace U(1) as defined above by 

) c(1) = {(m, el ,  e~, e2, e~) C 5 u(°) ® C" e~ = ei-, e2 = ~-~, 

~Rel and 3el are tangent to M at m, and - iel A ei > 0}, 

where ~ e l  and ~el denote the real and imaginary parts of el, respectively. Then 

5Cx (¢) is defined just as in the hyperbolic case but in this setting e = (el ,  ei ,  e2, e~). 

Thus, (m, e) C S (¢) if and only if el is a vector of type (1, 0). 
We will continue to use the same index ranges when x is hyperbolic. However, 

for elliptic x we will use 1, 1 in place of 1, 2 and 2, ). in place of 3, 4. We also 
introduce the following convention. For a given index n which may have one of 
two values, ~ will denote the other possible value. For elliptic x, since g~ = ee it 

--: - --'7 ~ and A~ = A~. follows that cr ~ = a ~, a;~ = co~ 

2. Completing the Reduction for Hyperbolic Immersions 

In this section we assume that x is hyperbolic. From (lo3) it follows that on 

~rx(¢), det Ai = 0 and ]Ai ,  A~[ is nowhere zero. This implies that rank Ai = 1 

everywhere on 5cx (6). If t(A~2 A~2 ) ¢ 0, then one can show that t(A~l A41) 
and t(A32 A42) are linearly dependent. But this contradicts IA~, A~I ¢ 0. Hence 
A~ = O. 

LEMMA 2.1. For  all  m E M ,  there exist ( m ,  c) E ~(¢ )  a twhichaJ  3 : a ' ,  a~ 3 : 
O, a; 4 = O, w 4 = cr 2, i.e. A~I = A42 = 1 and all  other ATj = O. 

Proof. Let (m, e) E .)c(¢). Set ei = ei, 63 = 2e~A~l, and e4 = ~e~A~2. 

This gives the required result since (m, ill, e2, 63, e4) C ]Cx(4). [] 

Now define the second-order frame bundle, ~c(2), by 

5 c(2) = {(m, e) e 5Cx (¢) • all the conditions in Lemma 2.1 hold}. 

This is a G2-bundle over M. If we set s = (0 1), then 

{(: G2 = b E G1 • 

a or sa  is diagonal and b = a 2 or sb = (sa) 2, resp.}. 
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LEMMA 2.2. The forms w~, wa ~ , .2~ I _ 033 and 2w 2 - 034 are semibasic on ~(x 2). 
Proof In general w~ = EA~a: .  Take the exterior derivative of this equation to 

get 

Aitw j _ ~ A,~ 03t 3 ,~ aj Z ( d A ; -  ,~ t lj i + Z Aijw~) A =0 .  

Thus, by Cartan's lemma and the fact that A s is symmetric in i, j ,  there exists 
scalars C~k, symmetric in the three lower indices, such that 

dA'~ - ~_, Aaw d '~ ' - y ~  A~.w~ + ~ A~03~ = y~  C~ka k. 

For the A s on ,~(2) this becomes 

- = " - C 4 ( 2 . 1 )  0.13 203~ )"~ C31ioZ;  034 2 0 3 2 - "  ~-'~ 22i ' 

_03~ ~ 3 i. (2.2) : C 1 2 i  O. , _ 0 3 2  : y-~ t.~4 (7i .  /_., w21i , 

w3 = z_.,x-" "-'22i"-'3 ai., w34 = S C4,i a ' .  [] (2.3) 

LEMMA2.3. Foral lm E M, thereexist(m, e) C ~(x 2) atwhichC~2 2 = C411 = O, 
i.e., w12 A a 1 = w 2 A t7 2 = O. 

Proof Let (m, e) be given. Set 6i = e l ,  e3 = --e2C2411 -1- e3 and 6 4 : 
-elC322 + e4. Then the new frame (m, e l ,  e2, e3, 64) is of the sort we claimed 
existed. [] 

We make a partial third-order reduction: 

.T(g) : {(ra, e) C ~(2) :  C 3 2 2 : C 4 1 1 = O a t ( m  ' e)}. 

LEMMA 2.4. Each of  the 1-forms wl, w23, dC32, _ C121032,3 2 dC4t2 _ C2,2wl , 4  1 

dC322 - C2322(3032 - 2wl) and dC4n - C41,( 3w~ - 2w~) is semibasic on f(a) .  
Proof Compute the exterior derivatives of w~ = -C321 a l ,  w 2 = -C412a z, 

W34 = C1411 O'1 , andw43 = C2322 O'2 and apply Cartan's lemma. [] 

With the help of Lemma 2.4, one sees that, at this point of the reduction process, 
a number of invaxiants appear. For example, span{el, ca} and span{e2, e4} are 

constant on each connected component of a fiber o f~x  (°) but are interchanged on the 
two components. Moreover one sees that the quadratic formw~w 2 = ,_) l12,J221v t'v3 t~4 ,,~1,~.2~, 
is invariant and thus is the pullback of a quadratic form on M 2. We denote this 
quadratic form by # and call it the affine (Lorentzian) metric. One may also 
show that 03340343 = w222Wlt"v3/-v411 c,~l~2v is the pullback of a quadratic form which we 
denote by h and call the secondary affine (Lorentzian) metric. The difference 

3 4 3 4 1 2 k = h - 9 = (C~22Clll - Cl12C221) cr tr will also turn out to be important. We 
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call it simply the difference metric. We say an immersion is regular if k is nowhere 
zero on M 2. Note that all these metrics are compatible with ¢ wherever they differ 
from zero. 

LEMMA 2.5. For all m E M2 there exist (m, e)E .Y(x g) atwhich C311 ~--- C2422 ~-- 
O. 

Proof Compute the exterior derivatives of the equations (2.1) and use Cartan's 
lemma to obtain 

dC311_ClllW 1 3  1--3w~ ~ 0 and dC222-C~22w2-3a; 4 4  4 . 2 2 ~ 0mod(cri). (2.4) 

The result follows by a standard moving flame argument. 

We make yet another partial third-order reduction: 

[] 

5(xn) : {(m, e) E 9c(g) : C~11 : C422 = Oat (m, e)}. 

LEMMA 2.6. The 1-forms w~ and cc] are semibasic on 50~). 
Proof. This is an immediate consequence of (2.4). [] 

One immediately sees that span{e3} and span{e4} are invariant on connected 

components of any fiber of ~'(x '~) and are interchanged on the two components of 
the fiber. In particular, span{e3, e4} is constant on each fiber and we may define 
a bundle over M z denoted by N M  whose fiber over m E M, N,~M, is the 

span{e3, e4} where (m, e) E .T(x ~). We call N M  the affine normal bundle of the 
immersion x. 

On 5C(x n) the quadratic form 

A -= ~ eozA;.cr j ~-- e3(o l )  2 -I- e4(02) 2 

is invariant; we call A the affine quadratic form. Also the cubic form C defined by 

C = Ee~C~k~¢~J~r k 

e3 0.2 (C211 ( o r 3  1 ) 2 -l-" C322 (0"2)2) nt- e40l  (C411 (or 1)2 -t- C1422 (02) 2 ) 

is invariant. We refer to it simply as the cubic form. The invariance of C will be 
verified from another point of view quite easily in the next section. Also to be 
verified there is that the symmetric connection V On M 2 defined by w} and the 
connection D on N M  defined by w~ are invariant. We call V and D the affine 
connection and the normal affine connection, respectively. The curvature forms f~i 
of V are defined by 

• 1 
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where Rik I = - R i l  k are the components of the curvature operator R of V at 

(m, e) E ) t'(n). Also the curvature forms f ~  of D are given by 

where N~i j = - N ~ j  i are the components of the curvature operator R ± of D at 

(m, e) C Ux (n). One may obtain still other invariants using the components of 
R 112/(C221) and also invariants these curvature operators; e.g., 2 4 2 R221/(Cl12 ) 1  3 2 are 

where C321C412 ¢ 0. 
To complete the reduction we must impose another nondegeneracy condition. 

Perhaps the most natural such assumption for hyperbolic x is the following: 

(II) g never vanishes on M.  

This is equivalent to asserting that ~ A ~2 never vanishes on M 2. When (II) holds 
we may refer to the immersion as being nonsingular. 

LEMMA 2.7. I f  x satisfies (II), then for  each m E M there exists a frame 
(m, e) E ~(n) a twhichwl  = (9" 1 andw 2 = ~r2, i.e. C312 = C421 = -1 .  

Proof We leave it to the reader to see how C312 and C411 transform under the 

action of G~, the group of the fiber of .Y'x (n), in order to believe this is so. It is 
important to realize that Gn has two components, [] 

Finally, under the assumption (II), we define the complete third-order reduction for 
hyperbolic x: 

f-(3) = ( (m,  e) E -Y "(n)" w~ = cr 1 andaJ 2 = cr 2 at (m, e)}. 

One easily shows that G3, the group of the bundle ~-(3), is trivial. Hence M 2 is 

diffeomorphic to 5 r(3) and the unique section of F (3) defines what we call the 
canonical framing e induced on M 2 by x. When e is the canonical framing, we 
will denote the basis dual to el, e2 by 81 , 02. 

On .?-(3) we may introduce a connection 1-form ~b by 

d81 =- - ¢  A 81 and d82 = ¢ A 82. (2.5) 

Of course, ~b is a connection form of the Levi-Cevita connection of g relative to 
the canonical framing. Of importance is the fact that ~b is an invariant. This is also 
true for the functions a i defined by 

if, = a181 -- a2 82. (2.6) 
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Assuming (II), ~b and ai are defined everywhere on M 2. The components o f / / a n d  
R 1 with respect to the canonical framing are additional invariants. One may show 
the following respect to this framing: 

wl : (1 - R1212)01 + (1 - a 2 ) 0 2  

co 2 = ( 1 - a l ) 0 1 + ( 1 - / ~ 1 2 1 ) 0 2  
(2.7) 

co33 : 2(1-R1212)0 l + ( 1 - a 2 ) 0 2  

w 4 = (1 - 2al)01 + 2(1 - R121)02 
(2.8) 

Another nondegeneracy condition which, as the reader will see, leads to partic- 
ularly nice existence and uniqueness theorems is the assumption that x is regular. 

We will not consider any reductions of $'('~) under the assumption of regularity. 

3. Existence and Uniqueness for Hyperbolic Immersions 

One of the main tasks of this section is to interpret geometrically the reductions 
made in the previous sections. 

The only differential geometric structure on ~4 is ~7, the standard symmetric 
connection. It is natural to ask whether x can induce from V a symmetric connection 
V on M 2 and a connection D on some rank 2 bundle N M  such that T M  ® N M  = 
M × R4. In fact, once N M  is chosen it is easy to induce such connections. For 
once we choose a bundle N M  such that T M  ® N M  = 3/I × ~4, we can define 
a number of connections and tensors in the following fashion. Define a symmetric 
connection V on M and a symmetric NM-valued  covariant 2-tensor A on M by 

~TxY = V x Y  + A(X ,  Y) ,  (3.1) 

where X and Y are vector fields on M. Also, for a vector field X on M and a 
section y of N M  set 

~TxY = - S y ( X )  + D x y ,  (3.2) 

where Sy (X)  is a vector field tangent to M and D x g is a section of N M. Equation 
(3.2) uniquely defines S and the connection D on N M .  We wish to choose N M  so 
that V and D have some relation to other structures induced by x. These structures 

are determined by ~-(2) and we shall turn our attention to them. 
L e t  ]t~ 4 denote the dual space of 1~4 and ( , )  : N4 x N4 _.+ ]~ denote the 

canonical pairing. Given an immersion x: M --+ ]~4 we define the vector bundle 
C M  by asserting that for each m E M its fiber CraM is the subspace of iR4 that 
annihilates TmM (viewed as a subspace of R4). By means of the natural duality 
between C M  and any choice of bundle N M  transverse to T M ,  we can induce 
a connection on C M  also denoted by D, which depends on the choice of N M .  
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We do this as follows. For any section ~ of CM and vector field X tangent to M, 
define D x (  by requiring that (Dx( ,  y) = X(~, y) - (~, Dxy) for any section y 
of NM.  

Assuming x is hyperbolic, we may define 

K =  ( X  E T M  : qS(X, Y) = O f o r s o m e Y  ¢ 0 } .  

Then K is the union of two transversal rank 1 subbundles which we denote by 
K1 and/ (2 ;  we denote K N TraM by Kin. Also note that the set of subspaces 

{span{el, e2, e3}, span{el, e2, e4}} is invariant on fibers of .T (2). That each 
subspace of this set is invariant on a connected component of a fiber follows from 

ot the fact that w~ and w~ are semibasic on ~x(2); the two subspaces of the set are 
interchanged on the two components of any fiber. Now define L = U~eM Lm 
where 

L,~ = {~ E CraM : ~ annihilates span{el, e2, ca} 

where a = 3 or 4 and (m, e) E .T'(2)}. 

Again L is the union of two transversal rank 1 subbundles of C M ;  we denote these 
subbundles by L3 and L4. Let K~ and L~ denote Ki and L~ with their 0-sections 
removed, respectively; also let K t = K~ U I(~ and L' = U 3 U Lt4 . 

Using A (for any N M )  we can define a bundle map A t : K I ~ L I as follows: 
For X E (K')m, the fiber of K '  over m, define A'(X) E (L'),~, the fiber of L' 
over ra, by 

(At(X), A(X,  X ) ) =  1. 

This equation uniquely defines At(X) for the following reasons: (i) Even though 
A(X,  X)  depends on the choice of N,,~M, its value modulo TraM is independent 
of this choice. (ii) (~, A(X, X))  = 0 either for all ~ E (L3)m or for all ( E (L4)~. 
From now on we label L3 and L4 so that At(K~) C L~+i. 

Before going on, we mention that if (ra, e) E ~-(2) and e = (e 1, E 2, e 3, E4) 
is dual to e, then At(ei) = e 2+i. Moreover, if we let NmM = span{e3, e4), then 
at ra it is the case that A = e3(crl) 2 + e4((r2) 2 but A varies with the choice of 

(ra, e) E f(2) .  However, 

t (  t L t A' ,2+i/(,,i)2: ( 
= ~ ( 2+i )m 

is invariant of  this choice. 
One would like to require that the induced connection V has some relation to 

the subbundles Ki. For example, one might want to require that each Ki is parallel, 
i.e. for any section X of 1(i, ( V X )  A X = 0. The results of Section 2 show that, 
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in general, this is impossible since a~ need not be identically zero. The reduction 

to 5rx (g) is obtained by requiring that any integral curve of Ki, denoted by 7i, is 
geodesic with respect to the connection V. This is so since the reduction is defined 
by requiring that w~(e~) = 0, i.e., Ci~ +i = 0; c.f. equation (2.2). We get for free 
that the subbundle L2+i is parallel along 7i; this follows since C~ +i = 0 implies 
Cd2-t-i [ , A t 2+~[ei) --- 0. Since gives an inverse quadratic relation between K~ and L j 2+i, 
it is natural to want to impose the condition that 

( D x A ' ( X ) ,  X)  = - 2 ( A ' ( X ) ,  V x X )  

for any section X of Ki. This is precisely the condition that defines the reduction 

to 5 c(n) since that condition is equivalent to asserting that co22+~(ei) = 2wi(ei ) on 

.T ('~), i.e. C 2+i = 0; cf. equation (2.1). 
= C 2.+.i = 0 are known as Weise's apolarity conditions; The conditions Ci277+~ i - m  

cf. [7] where the notation is somewhat different. Since these conditions reduce ~(2) 

to 5 x  ('~) they determine the affine normal bundle N M  and thus A, V, D and S. 
Let ~' be the connection induced on T M  ® T M  N N M  by V and D. It turns out 

that ~TA is the cubic form C. Thus the Weise's apolarity conditions are conditions 
on ~rA. 

We suppose from here on that N M is chosen so that Weise's apolarity conditions 

hold, that is, by means of Yx (n), and turn to uniqueness questions. It is clear from 
(3.1) and (3.2) that if S is determined by A, V, and D, then x is uniquely determined 
up to an affine transformation oflR 4 by A, V and D. By taking covariant derivatives 
of (3.1) and (3.2) we find the following. 

LEMMA 3.1. Let X ,  Y and Z be vector fields tangent to M and let y be a section 
of M. Then 

(1) R ( X ,  S ) Z  ~- S A ( y , z ) ( X )  - S A ( X , z ) ( Y ) ,  

(2) VA is a cubic form, 
(3) R±(X ,  Y )y  : A(X ,  S u ( Y ) ) -  A(Y, Sy(X)),  
(4) ( V x S y ) ( Y )  - SD×v(Y) = ( V Y S v ) ( X ) -  S D y y ( X ) .  

Let e be a section of F (~) which we will call a standard section and define 
scalar functions Si j  by setting Sea = S~ = Y;e,S~j '  i .  j ,  i.e. co si = --2Sij~r j. Also 

let R}k t and N~i j be the components of R and R ± with respect to this section 
standard section. 

LEMMA 3.2. The following relations hold for any section e of ~ ('~). 

$312 ----- R~21 = N3312, $21 = 1~212 ~- N4412, (3 .3)  

$322 = R 2 S~1 = R 1 (3.4) 121' 212' 

: N;'21, S12 : lv212. (3.5) 
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Proof These equations follow by setting X = el ,  Y = e2 and Z = e 1 or e2 

in (1) of  Lemma 3.1 or X = el ,  Y = e2 and y = e3 or e4 in (3) of Lemma 3.1. [] 

Clearly equations (3.3)-(3.5) are equivalent to (1) and (3) of Lemma 3.1. It remains 
to be seen whether or not s l l  and $22 can be determined. 

For any standard section e, we define scalar functions r}~ by, w~ = ~r}ka  k. 
Also, for any function f : M ~ JR, define f,i by 

d f  = 

Finallyl a semicolon, used in a similar fashion, will denote covariant differentiation. 

The next lemma is a restatement of (2) of  Lemma 3.1 in terms of a standard section 
e.  

LEMMA 3.3. Let e be any section of  Y(x ~). Then 

3 1 ' 3 2 1 3 1 N 3 4 3 ] 
6 2 2 2 S 3 1  6 1 1 2 ~ 4 2  = R212;2  - C 2 1 1 R 2 1 2  - 412;1 - C ~ 2 1 N 4 1 2  

4 1 4 2 2 4 2 N 4 3 4 Cl12N;12 C 1 2 2 R l 1 2  312;2 C 2 2 1 S 3 1  C111S~,2 R l12 ;1  

(3.6) 

3 1 
S 1 2(r~2 -t- C l 1 2 ) S ~ 1  31,2 - 

R 1  4 1 3 2 4 Ng3 121,1 <11 + + C221)R121 = --  __ __ C l l l  ,d2  C I I 2 R 1 2 1  

4 2 s 2 2(rl, + c 21)s 2 42,1 - -  

3 2 4 1 3 4 &2,2 (rh + + Ci12)R212 = - -  _ C~21/~212 - C ~ 2 2 N 3 2 1  

(3.7) 

and Proof We get these equations by taking the exterior derivatives of  wq 
applying the structure equations. Lemma 3.2 is used to replace some S~j by 
curvatures. [] 

Notice that equations (3.6) may be used to determine S~1 and $422 on M if 
3 4 3 4 C~22Cll 1 - Cl12C~11 is never zero on M. But this means that x is a regular 

hyperbolic immersion. This gives our first uniqueness result. 

THEOREM 3.4. I f  x: M 2 ~ JR4 is a regular hyperbolic immersion of an oriented 
surface, then x is determined up to an affine transformation of l~ 4 by A, V and 
D. 

We now wish to consider a uniqueness theorem of nonsingular hyperbolic immer- 
sions. For these considerations all of our calculations are in terms of the components 
of the canonical framing. In particular, C1312 -- C42I = - 1  on M. We say a non- 
singular hyperbolic immersion x is exceptional if everywhere on M 

3 4 = 1), (1) k = 0 (i.e. g = h or equivalently Cl11C222 
(2) [] logC411 = 4 • d • ¢ ,  
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where • denotes the Hodge star operator and [] = ,  d ,  d is the d'Alembertian, or 
wave, operator associated with the affine Lorentzian metric g. 

THEOREM 3.5. Let x: M 2 --+ IR 4 be a nonsingular hyperbolic immersion. I f  x is 
not exceptional, the x is determined up to an affine transformation of!~ 4 by A,  V 
and D. I f  x is exceptional, then x is determined up to an affine transformation of  
a 4 by A ,  V ,  D and either 5:11(m0) or 5:22(mo),for some mo E M.  

Proof  Again we show that under the hypotheses of this theorem 5:311 and 5:2 2 
can be determined on M by the other data. 

Let M1 = {m E M: C312C421 = 1 at m}. On M \ M 1  we may use (3.6) to 
determine 5:311 and $422 . If M1 is nowhere dense, then 5:11 and 5:2 2 are determined 
on M. Thus we suppose that M1 has interior points and restrict our attention to 

o 

M1, the interior of M1. Rewrite (3.6) and (3.7) in the following form: 

SI -- C312S2 = -P I ,  

5:1,2 + 2a25:1 = Q1, 

C421~I -- 5:2 = P2,  

5:2,1 n t- 2a15:2 = Q2, 

(3.6') 

(3.7') 

where S1 and 8 2 stand for $11 and S242, respectively, and -/:'1 , P2 and Qi are the 
right-hand sides of (3.6) and (3.7), respectively. We have used (2.7) to evaluate F12 
and P21 . From equations (3.6') and (3.7') we obtain 

S,,, + [2a, - (log C411),1]Sl = (P2,1 -t- 2alP2 - 2 - Q2)C1411 . (3.8) 

A similar equation, arrived at by interchanging the indices 1 and 2, holds for $2 o n  
o O 

M1. Equation (3.8) and the first equation of (3.7') imply that on M1 

ds:i + # iS i  = Pi, (3.9) 

taking into account the symmetry of the indices, where 

#i [2ai (log C 2+/) i]er i = - ill , + 2a~ °~ (3.10) 

and 

Pl [P~,i + 2aiP~ g3 ](72+itr i 0 -~ = - ~ J ~ i i i  v + Q i  • (3.11) 

Compute the exterior derivative of (3.9) and substitute Pi - #iSi  for dSi to obtain 

Si d#i = dpi + #i A Pi. (3.12) 

o o 

Let U = {m EM1 " d#ilm = 0}. One may show that for any m EM1, either 
o 

both or neither of d#ilm are zero. On M1 \U, we may solve (3.12) for $1 and $2. 
o 

Hence if U is nowhere dense in M1,  S1 and $2 are determined on M. Thus we 
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may suppose that m0 is an interior point of U. If there exists ml not in the interior 
of U, let e: [0, 1] -+ M be a curve with e(0) = m0 and e(1) = ml.  Since the 
5,i are known at ml ,  we may use (3.9) along c to determine Si at too. Hence if 
ml exists, $1 and 5'2 are determined on M. If no such ral exists then U = M;  
thus on M,  4 3 C 1 1 1 C 2 2 2  = 1 and d / / ;  = 0 .  T h e  last condition is precisely (2) of the 
definition of  an exceptional hyperbolic immersion. Hence if no such ml exists then 
x is exceptional. It should now be clear as well that i fx  is exceptional then the only 
additional information we need to determine the 5'4 is a value of one of them at 
some point of  M.  [] 

Remark. It is worth noting that when x is a nonsingular hyperbolic immersion 
and not exceptional then it is determined up to an affine transformation of ~4 by 
the 1-forms 0 i and the real-valued functions Ci 2+i and Ri~r; cf. equations (2.7) 
and (2.8). From this one sees, under the same conditions on x, that A, C and R 
determine x up to an affine transformation of ~4 (cf. Wilkinson [7]). This follows 
since C and A determine the canonical framing when the hyperbolic immersion x 
is nonsingular. 

We now turn to existence theorems. Let M be an oriented surface and B M  be 
a rank 2 vector bundle over M.  Assume V is a symmetric connection on M and 
D is a connection on B M .  Let A be a section of T*M ® T*M ® B M  which 
is symmetric in its arguments when viewed as a bundle-valued bilinear form. For 
short, we will simply say that the triple (A, V, D)  is associated with M and B M .  
We say A is hyperbolic on M if, for all m C M, the image of Aim spans B ~ M  
and there exist linearly independent X,  Y E TmM such that A(X,  Y) = 0. When 
A is hyperbolic, a frame el ,  e2, e3, e4 of T ~ M  ® B m M  is said to be standard 
i f e ;  E TraM, e,~ E BmM,  el Ae2 > 0, A(e l ,  e2) = 0 and e 2 + / =  A(ei,  ei).  
Let C = ~TA, where ~' is induced from V and D, and suppose C is a cubic form. 
Then C is said to satisfy Weise's apolarity condition if the components of C with 
respect to a standard frame satisfy 

,,!.+.2 = c ; + 2  = o. 

The triple (A, V, D)  is said to be regular on M if with respect to any standard 
3 4 3 4 frame C222Cll 1 - Cl12C~21 is never zero. Also, the triple (A, V, D) is said to be 

nonsingular on M if there exists a standard framing of M with respect to which 
C13/2 = C2421 = - 1 everywhere on M; such a standard framing is unique if it exists 
and is called the canonical framing. Let/91 , 0 2 be a framing dual to the canonical 
framing el ,  e2; then 010 2 is a Lorentzian metric on M. Because of this metric, it 
is possible to define, in a fashion similar to the way we define an immersion x to 
be exceptional, the idea that a triple (A, V, D)  is exceptional. 

By a realization !I: B M  ~ ]I~ 4 of B M  we mean a smooth map such that, for all 
m E M, y: B ~ M  ~ ~ 4  is a nonsingular linear map. A bundle N M  over M of 
2-dimensional subspaces o f ~  4 is said to be the image of B M  under the realization 
y i f y ( B ~ M )  = NmM,  for all m E M. 
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THEOREM 3.6. Let (A, V, D) be a triple associated with the open simply 
connected oriented surface M and the ;'ank 2 bundle B M. Assume that A is 
hyperbolic and C = (T A is a cubic form that satisfies Weise's apolarity condition. 
I f (A,  V ,  D) is regular and, with respect to a standard framing, 

: N 2 +  i (1) Ria  (2+0u' and 
(2) S~1 and S~1 , which are defined by (3.6), satisfy (3.7), 

(where Vej ei = EekF~j ), then there exists a regular hyperbolic immersion x: M --+ 
]R 4 and a realization y: B M  --+ ~4 whose image is N M ,  the normal bundle 
of x, such that the induced affine connection is V. Moreover, identifying N M with 
B M  by means of y, the induced affine normal connection is D and the induced 
affine quadratic form is A. 

The proof is straightforward so the details are left to the reader. 

In general, the existence theory for triples which are not regular but are non- 
singular is messy. However, the assumption that the triple is nonsingular and 
exceptional can be dealt with quite reasonably. We define 1-forms #i as in (3.10), 
where ai are defined by (2.5) and (2.6) using the canonical flaming. Because the 
triple is exceptional, dp; = 0 on M. Assuming M is simply connected, there exist 
smooth functions fi: M ~ ~ such that dfi = #i. Define Pi and Qi by comparing 
(3.6) and (3.7) with (3.6 t) and (3.71); also define Pi using (3.1 1). In order for there 
to exist $3al and $42z satisfying (3.6') it is necessary that C312p2 + P1 = 0. In order 
for any solution $1 = S~1, $2 = $42z of (3.6') to satisfy (3.7') it is also necessary 
that (3.9) holds. But (3.9) may be written 

d(e]~ Si) = eY'pi. (3.13) 

For (3.13) to have a solution Si it is necessary that dpi + tzi A Pi = O. Because of 
these observations the next theorem should seem quite reasonable. The details of 
the proof are left to the reader. 

THEOREM 3.7. Let (A, V, D) be a triple associated to the open simply connected 
surface M and the rank 2 vector bundle B M. Assume that A is hyperbolic and C 
is a cubic form satisfying Weise's apolarity conditions. Assume also that the triple 
( A, V,  D) is nonsingular and exceptional. Suppose (with respect to the canonical 

: N 2+i framing) R!i ~ (2+Ou, C312P2 + P1 = 0, and dpl + #l A Pl = 0 on M. Let 
mo E M; then for each S C I~ there exists an exceptional nonsingular hyperbolic 
immersion x: M --+ ~4 and a realization y: B M -+ ~4 whose image is N M which 
induces the affine connections V and D, the affine quadratic form A, and for which 

4. Elliptic Immersions (Including some Nongeneric Cases) 

Everything we did in Sections 2 and 3 for hyperbolic immersions can be done for 
elliptic immersions. The results in Section 2 can be transformed into results for 
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elliptic immersions by replacing the indices 2, 3, 4 by i ,  2, 2, respectively. Also 
indices of the form 2 + i are to be replaced by 1 + i in Sections 2 and 3, with the 
understanding that 1 + 1 = 2. The only differences to note in the elliptic setting are 
that the fibers and groups are connected and the metrics g and h are Riemannian 
where they are not zero. The interpretations of the conditions that lead to the 

reduction of .T (2) to .Tx (~) are similar when one works with the complexifications 
of T M ,  N M ,  etc. More will be said about this later in this section. The existence 
and uniqueness theorems of Section 3 have the same form in the elliptic setting 
with the exception that one deals with just $11, whose real and imaginary parts 
correspond t o  $311 and $42z . 

We wish to examine some nongeneric immersions in the elliptic case. The most 
interesting nongeneric situation is the one in which the subbundles K1 and I f  7 (the 
elliptic analogues of KI and l f2) are parallel on M z. As stated in Section 3, this 
is a natural condition to want to impose on V but this condition does not hold in 
general. Certainly, elliptic or hyperbolic immersions for which this condition holds 
should be of interest, Before we begin the study of such surfaces, we mention that in 
the hyperbolic case, if K1 and K2 are parallel then x (at least locally) is a translation 
surface, i.e., it is the sum of the immersions of two curves in ~4. Also, while it is 
possible for just one of K1 or K2 to be parallel on M in the hyperbolic case, the 
corresponding situation is not possible in the elliptic case. This is so because K1 
and t (  T are conjugate to one another and V commutes with conjugation. 

Let x be an elliptic immersion for which K1 is parallel on M. Note that K1 is 
parallel if and only if w~ = 0 on M relative to a standard (elliptic) framing and 
this condition is equivalent to the affine (Riemannian) metric g = 0 on M. Recall 
that when x is elliptic it induces a complex analytic structure on M with or 1 of type 

(1, 0) (meaning that for any standard framing e: M ~ f 'x (n), e*(cr 1) is of type 
(1, 0)). 

PROPOSITION 4.1. Suppose g = 0 on M ;  then x: M -* I~ 4 is harmonic, i.e. 

OOx = O. 
Proof  Just note that 0x  = e w  I so that ~0x  = d0x -- (elw~ + e3 a l )  A ~r 1 - 

elwl A 0 "1 = 0 since w] = 0. [] 

Consequently, we will call such an elliptic immersion a harmonic immersion. 

Since w I = 0 for harmonic immersions, C'~i 1 = 0 on ~ ( ' ) .  This implies 

LEMMA 4.2. I f x  is harmonic, then, on .Tx (n), w 2 = 2w~. 

This last lemma shows that A and D determine V since wl = 1 2 and wl = 0 ~w2 

on ) r(n). Of course, if x is regular then A, X7 and D determine x up to an affine 
transformation of ~4. Thus, we obtain 

THEOREM 4.3. Let x be a regular harmonic immersion. Then x is determined 
by A and D up to an affine transformation o f ~  4. 
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If x is harmonic and regular t h en  C1211 is never zero on M. Because of this, for 

each m E M, we can find a frame (ra, e) E f (n )  at which C~I 1 = 1. This leads 

to a new third-order reduction 5bx (3) defined by 

One may show that 03, the group of the bundle, is isomorphic to Zs. We call any 
section of this bundle a canonical harmonic framing. With respect to such a framing 
h = O'10 "~. 

Let us now turn to existence results. Suppose M is an oriented surface and B M  
is a rank 2 vector bundle over M. Let A be a section of T*M ® T*M ® BM 
which is symmetric when viewed as a BM-valued bilinear form and let D be a 
connection on BM. For short, we will say that the pair (A, D) is associated to M 
and BM. Let B*M be the bundle which is dual to BM and let D also denote the 
connection induced on B*M by means of this duality. We say that A is elliptic on 
M if, for all m E M, A(X, Y) = 0 for some X, Y E T,~M implies that X or Y 
is zero. We complexify TM, BM, and B*M and denote any complexification by 
the same symbol. We define ( K ) ~  by 

(K),~ = {X E TmM" A(X, Y) = 0 for some nonzero Y E T,~M} 

and let K = UmeM(K)~. Define K1 = {X E K • - i X  A X > 0}; this is a 
rank 1 subbundle of TM. If we set K i = Kl ,  then K1 and K i are transversal and 
K = K1 U KT. We define a complex analytic structure on T M  by asserting that 
K1 is the bundle of all vectors of type (1, 0). Let (K1),~ and (KT),~ denote the 
fiber of K1 and K~ over m, respectively. Define L2 to be the rank 1 subbundle 
of B*M whose fiber over m, (L2),~, is the annihilator of A((Ifi),~, (Ki),~). 
Likewise, L1 = L2 is the bundle of annihilators of A(K1, K1). We say the pair 
(A, D) satisfies the harmonic apolarity condition if L2 is (1, 0) parallel, i.e. 
Do/oz ~ A ~ = 0 for every section { of L2 and any local complex coordinate z. We 
say the pair (A, D) is regular harmonic if Do/o~ ~ A { is not zero anywhere the 
section ~ of L2 is not zero. 

A frame field e = ( e l ,  el ,  e2, e~)  of T M  ® B M  is said to be standard if 
e~ = e-7, el is a vector field of type (1, 0), and e2 = A(el ,  el) .  Given a pair 
(A, D) associated to M and B M  with A elliptic, we can define a connection V on 
M as follows: Let e be a standard framing of T M  ® BM; then V is the connection 
whose connection forms w i with respect to el ,  ei  are given by 

&~m 1 2 ~w 2 and aJ~ = 0 (4.1) 

on M. Finally, note that if 

e , .  -  2(el) = 2 [ e l ,  e , ]  (4 .2)  
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holds for any standard framing then it holds for all standard framings. 

LEMMA 4.4. The connection V is well-defined. It is symmetric if (4.2) holds 
for any standard framing. Moreover, if (A, D) satisfies the harmonic apolarity 
condition, then C = £7A is a cubic form and the triple (A, V, D) which is 
associated to M and B M satisfies Weise's apolarity condition. 

Proof One must check that the connection forms wj transform in the appropriate 
fashion under a change of standard framing; this is easy to do. Thus the connection 
is well-defined. It is also easy to show that if (4.2) holds for any standard framing, 
then V is symmetric. Note that/(1 is parallel with respect to V and, by definition, 
L2 is parallel in the (1, 0) direction. Since w 2 = 2w~ as well, Weise's apolarity 
condition holds. One may show that 

C = e2C[T]'(O'T) 3 ~- e~C~l l (o ' l )  3 

with respect to a standard framing so it is a cubic form. [] 

When (A, D) satisfies the harmonic apolarity condition and is regular on M,  one 
can find standard framings o f T M  • B M  for which w} = cr 1 . Such framings are 
called canonical harmonic framings. 

THEOREM 4.5. Let ( A, D) denote a pair associated to the open simply connected 
oriented surface M and the rank2 bundle B M with A elliptic, (A, D) satisfying the 
harmonic polarity condition and (4.2) hoMing for any standard framing. Suppose 
( A, D) is regular and let e be a canonical harmonic framing. If  with respect to 
that framing, 

N21i = _ i  

N ~  - ½(3F~1 2 2 2 2 211,1,1 - - r 2 1 ) N ~ , ~  - r 2 i N ~ i l , 1  

1 _ r2 __ r 1(3r 1_ F I)_ I]N~il - ~[3P~1,i 21,1 
1 (F2 r~ 1 ), = g~ Zl + 

(4.3) 

(4.4) 

where De~e 3 = Ze~F~i, then there exists a regular harmonic immersion x : M --+ 

]~4 and a realization y : B M  -+ ~4 with image N M  such that A and D are the 
affine quadratic form and the affine normal connection, respectively. 

Proof. We define the symmetric connection V using (4.1) for a canonical 
harmonic framing. By Lemma 4.4, C = VA is a cubic form and Weise's apolarity 
condition holds for the triple (A, V, D). Since (A, D) is regular, it follows 
that ( a ,  V, D) is regular. One shows that R~i 1 = _1 ,  using w~ = 2w~, for a 
canonical harmonic framing, so that N~I i = R~il, which is the elliptic analogue 
of condition (1) in Theorem 3.6. One also shows that the elliptic analogue of (3.6), 
for a canonical harmonic framing, implies 

Sl l  = ~(2i1,1 1 2 2 2 - ~(3r~l - F21)N~i 1. (4.5) 
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Then the elliptic analogue of (3.7) becomes (4.4). Hence condition (2) of the elliptic 
analogue of Theorem 3.6 holds. [] 

We could consider elliptic immersions for which h = 0 on M and g 56 0 anywhere 
on M. A complete set of invariants in this case consists of A and V, since, in 
this case, A and X7 determine D mad the immersion is regular. Results similar to 
Theorems 4.3 and 4.5 can be obtained. 

Before we consider elliptic immersions for which h = g = 0 on M we need 
some preliminary results which are of general interest. 

LEMMA 4.6. In terms of  a section of  U (~), i.e. a standard framing, for an elliptic 
immersion x the following hold: 

3R~i 1 = C 2 _ 111;1 - -  31C~1i12 -IC~-l  2 
R}I i = C 2__ _ 2(C121i) 2 111;1 

N~i 1 = C ~ _ 111;1 - 2C21iC12n 

Proof. We take the exterior derivatives of w22 = w~ + C121io -1, w 1 = - C ~ u a l  , 

and ~2 = C211(71  and use the elliptic analogues of (3.3)-(3.5). [] 

LEMMA 4.7. I f  C = 0 on M, then R = R ± = 0 and, for any standard framing, 
$2 = el • S2110"l- 

Proof Lemma4.6 implies R = R ± = 0 on M. The elliptic analogue of Lemma 
3.2 implies $2 = el  • S l l  0"1 • [ ]  

It is obvious that 9 = h = 0 on M if and only if C = 0 on M, when x is an elliptic 
immersion. Under the assumption that C = 0, it is the case that A arid x7 determine 
D but S is not determined by them since the elliptic analogue of (3.6) degenerates 
to the equation 0 = 0, by Lemma 4.7. However, S has a very simple form as can be 
seen from Lemma 4.7. One may show that -w~c0 = Sll(O'I) 2 is a holomorphic 

quadratic differential; let us denote it by S. Hence, we obtain 

THEOREM 4.8. Any elliptic immersion x for which C = O is determined up to 
an affine transformation of  JR 4 by A, ~7 , ~. 

If we suppose that S is never zero on M we can introduce a third-order reduction 

P (x 3) defined by 

~ ) :  {(ra, e) C -7"(n): w~ : a] a t (m,  e)}. 

The group of J :~ )  is Z2. For any section of ~(3) one may show that wl : dz 
and w~ : k dz where z is a local complex coordinate and k is holomorphic. With 
respect to the coordinate z, x satisfies the differential equation 

( dz 3 dz 2 + 2k 2 - - - 1  = 0 .  (4.6) dz ~ 
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If C = 5' = 0 on M,  then x is affine equivalent to the immersion q : U --+ ]~4 

given by q(u ,  v) = (u, v, uv, u 2 - v 2) and U is a connected open subset of 
~2. Viewing ~I~ 4 a s  C 2 with coordinates z i, the image of q is part of the graph of 
z2 = (z l )2 .  

One may show there are no integrability conditions. Hence, given any open 
simply connected oriented surface M,  a rank 2 vector bundle B M ,  an elliptic 
symmetric section A of T * M  ® T * M  ® B M ,  a flat symmetric connection V 
on M,  and S, a holomorphic quadratic differential with respect to the complex 
structure induced on M by A, there exists an elliptic immersion x : M --+ ~4 with 
A the induced affine quadratic form, V the induced affine connection on M, C = 0 
and S determined by S in the obvious manner. 

Remark. Similar results hold for hyperbolic immersions. There are more possi- 
bilities to consider since all the members of any subset of the set {C31z, C3222, C421 , 
C1411 } of  components of C with respect to a standard framing may be set equal to 
zero. 

5. Homogeneous Surfaces 

We look for immersions x : M ~ I~ 4 with a large group of affine symmetries. Let 
M be oriented and simply connected and suppose x : M ~ ~4 is a nondegen- 
erate immersion. Let A0(4, ~ )deno te  the group of orientation preserving affine 
transformations o f ~  4. Suppose G is a Lie group that acts effectively on M and for 
each 7- E G (viewing as a diffeomorphism of M)  there exists T C A(4, ~ )  (with 
necessarily T E A0(4, ~ ) )  such that 

T o x = x o T - .  (5.1) 

When a diffeomorphism 7- of M satisfies the preceding condition we say that 
it is compatible with an affine transformation. Any compatible 7- must preserve 
invariant 1-forms or interchange them. Such forms exist i f C  or S is not zero on M; 
thus, when that is so, the dimension of  G is at most 2. If C = S = 0 on M,  then G is 
3-dimensional; for that case, the immersions have simple explicit parametrizations 
and there is not much to say after that. Thus we will focus on the case where G 
is 2-dimensional. We say that x is homogeneous if there exists a Lie group G of 
dimension at least 2 acting effectively on M by compatible diffeomorphisms. If G 
contains an orientation-reversing diffeomorphism then we say that x is symmetric. 

We begin by considering homogeneous elliptic and hyperbolic immersions 
which are nonsingular and thus possess invariant 1-forms 0 i. Let us suppose that G 
is a 2-dimensional Lie group and denote the connected component of the identity 
of G by Go. Since each 7- E Go must preserve 0 i, Go acts simply and transitively 
on M.  Any 7- E G is an isometry of the induced affine metric g. The curvature K 
of the induced affine metric g must be constant and in the elliptic case K _< 0 since 
each nontrivial isometry of 52 has a fixed point. If K = 0, then Go is the group of 
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all translations of either the Euclidean or Minkowski plane. If K ~ 0, then Go is 
the group of all orientation-preserving isometrics that preserve a field of geodesics 
(that foliate M). 

Any r E G \ G o  must interchange 0 i and 0 ~. In the elliptic case this means 
that fftel must be preserved by such r. For the hyperbolic case, this means that 
el + e2 is preserved by such r. Since every orientation-reversing isometry of a 
semi-Riemannian surface of constant curvature is a reflection or a glide reflection 
in a geodesic, the vector field 9~el in the elliptic case or el + ez in the hyperbolic 
case is foliated by geodesics if G \ G o  ~ O. In fact, if G \ G o  ¢ 0, then G consists 
of all the isometries of M that preserve those geodesics. 

Consider a homogeneous (nonsingular) elliptic immersion x. All the invariant 
functions induced on M by x are constant. In particular, with_respect to the canonical 
framing, the connection form ~b is given by ~b = al 01 - a~O 1, where al = constant. 

i Also K = -41al  12, Rl l i ,  C1211, and $211 are constant. We introduce a change of 

i - S 1 respectively. By the notation and write a, r, c, and s for al ,  Rl!  i, C211, and 21, 

elliptic analogue of ( 2 . 7 ) ,  r h  = 1 - r a n d  r { ,  = 1 - a ,  w h e r e  = r , r } k  0 k. T h e n  

R l l l ~  = 1 q- a - ~ q- Rr  - l a l  2 and N2,  = a - 2 ~  q- 2 ~ r  - 21al z - I c l  z. 

The integrability condition R~ 1i = -N221i implies 

Ic[ 2 =  l + 2 ~ - 3 a - 3 1 a t  2 + 3 a ~ .  (5.2) 

One may show that N21i = (2~ - 3~ - 1)c. Then the elliptic analogues of (3.6) 
and (3.7) become 

s + ca = (1 - 2r)r  - (3R - ~)(3~ - 2~ + 1)c, (5.3) 

2 ~ a = ( 1 - r - a ) ( l + a - ~ + a r - J a ] 2 ) - r + ( 2 r - 3 a - 1 ) i c l  2. (5.4) 

If the affine Riemannian metric has curvature K = 0, then a = 0 and the system 
of equations (5.2)-(5.4) reduce to 

s + r(2r  - 1) ) 
c = i f s # r ( 1 - 2 r )  

8 + r (2r  - 1) / (5.5) 

lcl = 1 i f ,  = r(1 - 2r). 

Also, if K = 0, M must be C and we may suppose that 01 = dz, where z is the 
standard coordinate on C. Conversely, if C is given along with complex constants 
c, r, and s satisfying (5.5), then there exists a nondegenerate elliptic immersion 
x • M --+ IR 4 with 01 = dz and C2n = c, R~I i = r and $211 = s, with respect 
to the canonical framing for which el = O/Oz. Moreover, x is homogeneous and 
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the induced affine metric on C is fiat. The images of the immersions that were just 
discussed will be calledflat homogeneous elliptic surfaces. 

PROPOSITION 5.1. The classifying space for flat homogeneous elliptic surfaces 
(mod affine transformations of~ 4) is C 2 with coordinates r, 8 projectively blown-up 
along the curve 8 = r - 2r 2. 

Flat symmetric (nonsingular) elliptic immersions are characterized among the 
homogeneous ones by the condition that c, r a n d ,  are real. For such immer- 
sions 

e = 4 - 1  and c =  1 = ~ s = r - 2 r  2. 

We call the images of such immersions flat symmetric elliptic surfaces. 

PROPOSITION 5.2. The classifying space forflat symmetric elliptic surfaces (mod 
affine transformations o f~  ~) is ~2 t_J 1~ with I~ 2 (respectively, ]~ ) corresponding to 
the case c = 1 "(respectively, c = -1). 

Among the fiat homogeneous elliptic immersions there is precisely one (modulo 
affine transformations) which is algebraic with respect to a Cartesian coordinate 
system on M = C and, in fact, it is a symmetric immersion. This immersion 
corresponds to r = 5, 8 = ~ ,  and c = - 1 .  Modulo an affine transformation of 

]~4 and an isometry of  C, this immersion x • C ~ ]~4 is given by 

x ( u + i v ) = t ( v , u + 2 v 2 ,  uv+~v3,  u 2 + ( 4 u - 1 ) v 2 + 4 v 4 ) ,  (5.6) 

w h e r e d u + i d v  = 01 . Because r = 35- ( a n d a  = 0) one may show that this 
immersion is 'homogeneous with respect to the action of the equiaffine group on 
~4,. This immersion was also found by Jiangfan Li [3]; there it is pointed out that 
this immersion is a critical point of an equiaffine area functional but no mention is 
made of  the fact that it is equiaffine homogeneous. 

Let us turn our attention to homogeneous immersions that are not flat. If a 76 O, 
then K < O; a natural choice for the domain of such a homogeneous immersion 
x is H = {z E C : 2z > 0}. Necessarily the domain of  such an immersion is 
conformally equivalent to IE. When the domain is E, one may show that 

01 _ dz a ( z  - (5 .7 )  

Moreover, c, r, and s are solutions of (5.2)-(5.4). Conversely, if a 1-form is given 
by the right side of (5.7) on M and a, c, r, and 8 satisfy (5.2)-(5.4), then there 
exists_ a nond_egenerate elliptic immersion x : E ~ ~4 with 01 satisfying (5.7), 
C211 = e, R~I i = r, and Sll = s with respect to the canonical framing. Also the 

induced connection form ~b = a81 - ~0 i. The images of such immersions will be 
called negatively curved homogeneous elliptic surfaces. 
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An explicit computation (with the help of a computer) involving (5.2)-(5.4) 
shows that the following hold: 

PROPOSITION 5.3. There exists at least one negatively curved homogeneous 
elliptic surface with any value for  a ~ O. There are at most 5 such surfaces, 
which are affinely inequivalent, with any particular value for  a # ± 1. There exists 
one such surface, up to affine equivalence, with a = i l  and c = 0, 2, - 3  or 
e i°, 0 E ~, andno such surfaces with a = ±1 andothervaluesfore.  

PROPOSITION 5.4. A negatively curved homogeneous elliptic surface with a real 
and not equal to ± 1 or a = ± 1 and c real is symmetric. For a not equal to ± 2_ 

3 

or ±2, there are 5 such affinely inequivalent surfaces. For a = ±2 (respectively, 
t2) ,  there exists 4 (respectively, 3) such affinely inequivalent surfaces. 

We will now consider a homogeneous regular harmonic immersion x • M 2 + ~4. 
Let e denote a canonical framing associated with the immersion. Denote the (1, 0)- 
form dual to el by 01 ; thus h = 01O ~ . Define ~b and a in the same manner as we did 
earlier for this/91 . The only other 'primary' invariant is N221i, which will be denoted 
by n. Of course, a and n are constant and will change by a factor which is a fifth 
root of unity if the canonical framing is changed. Define r~k by w~ = EP~k~rk. 
From the definition of ~b, it follows that I?~fl = - ~ .  Using the facts that C2~ = 0 

for a harmonic immersion and C{ii = 1 for a canonical framing, the third equation 
of Lemma 4.6 implies that F[1 = -½(~  + 3a). Thus 

= + 3 , 0 0 '  - 

We use this to compute R111i. The integrability condition (4.3) becomes 

. n  + 2 = 2 (5.8) 

By (4.5), Sll  = ½(3a - ~)ff. Recall that I~2 i = The integrability condition 
(4.4) becomes 

3 i a l e n  - a n  z - ~(n - ~) = O. (5.9) 

From (5.8) observe that a # 0. Hence, for all homogeneous regular harmonic 
immersions the metric h has constant negative curvature. Of course, ~ is the natural 
domain for such immersions and 01 may again be given by (5.7). Simultaneous- 
ly solving (5.8) and (5.9) we find the following, where a homogeneous regular 
harmonic surface is the image of the same kind of immersion. 

PROPOSITION 5.5. For every homogeneous regular harmonic surface, la] = 1 
or 1. Conversely, iflal = 1 or ½ then there exists a homogeneous regular harmonic 
surface with that value for  a which is unique up to an affine transformation of  I~ 4. 



48 JOEL L. WEINER 

We have found examples of  parametrizations for all the homogeneous regular 
harmonic surfaces. An immersion X for which a = e *~ is given by 

X ( z )  = ~t(z,  iz ,  e-5/2i~z2,  e-5/2i~°z3) for z E ]HI. 

An immersion X for which a = ½e i~ is given by 

X ( z )  = ~[ i  e-5/2i~°(z, z 2, z 3, Z4)] for z E 

Due to the fact that the group of  the fiber of  ~(3) is Zs, the isotropy subgroup of  the 
stabilizer group of  a homogeneous regular harmonic surface contains a subgroup 
isomorphic to Zs. The isotropy subgroup is isomorphic to Z5 precisely when a is 
not a fifth root of  -4-1 or 4- ½, otherwise the isotropy subgroup is isomorphic to the 
dihedral group Ds. 

Finally, consider homogeneous harmonic immersions x for which C = 0 but 
S # 0. Modulo  reparametrizations, they all have domain C and satisfy (4.6) with k 
a complex constant and z the standard coordinate on C. If  we consider/~ 4 = C 2 with 
coordinates z i, then the images of  these immersions, modulo affine transformations 
o f ~  4, consist of  the graphs of  z 2 = log z 1, z 2 = z 1 log z 1 and z2(z l )  - R  = 1, 
where _R E C\{½, 1, 2}. (Here we view log z 1 and (zl)  -R  as multiple-valued 
functions where appropriate.) For comparison it is worth remarking that when 
C = S = 0 the corresponding surface is the graph of  the complex parabola 
z 2 = ( z l )  2. 

Very similar results hold for homogeneous hyperbolic immersions in the non- 
singular case and in comparable singular cases where the immersion is a translation 
surface. 
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