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Abstract. Using the classification of the finite simple groups, we classify all finite generalized 
polygons having an automorphism group acting distance-transitively on the set of points. This proves 
an old conjecture of J. Tits saying that every group with an irreducible rank 2 BN-pair arises from a 
group of Lie type. 
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1. Introduction 

In 1974, Tits [38, p. 221] conjectured that allfinite generalized polygons having 
a group acting transitively on the pairs (~,  C), where ~ is an apartment and C 
a chamber contained in ~, arise from absolutely simple algebraic groups over a 
finite field or from the Ree groups 2F4(2e), e an odd non-negative integer, in other 
words, all generalized polygons associated with a finite BN-pair are 'classical', as 
some authors would call them. Stronger conjectures have been made since then, 
such as: (*) all finite generalized polygons with a group acting distance-transitively 
on the point set are known, see Brouwer et al. [4, p. 205] or: all flag-transitive 
finite generalized polygons are known, see Kantor [23], or even more restrictive: all 
(thick) f n i t e  generalized hexagons and octagons are known, see Kantor [22]. Using 
the classification of  the finite simple groups, it has been known to several people 
that Tits' conjecture, and even conjecture (*) above, was provable, see Kantor [23] 
(from p. 252 of  [23], we quote: ' . . .  it is also clear that all generalized quadrangles 
whose automorphisnm groups have rank 3 on the set o f  points can be determined') 
for the case of  generalized quadrangles, or Brouwer et al. [4] for the general case 
(from p. 205 of  [4], we quote: 'It is very likely that every thick distance-transitive 
generalized 2d-gon with d >_ 3 is known. A proof  of  this fact  is expected to emerge 
from the prospective classication of  all primitive distance-transitive graphs). In 
the present paper, we present a proof of conjecture (*) above, motivated by the 
fact that this could stimulate the search for weaker hypotheses, as, for instance, 
point-transitivity (see Buekenhout and Van Maldeghem [8]). A more general result, 
on rank 2 geometries which are (g, dp, dt)-gon with 2 <_ g <_ dp < dl <_ g + 1, 
can be found in Buekenhout and Van Maldeghem [9]. 
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The approach we take is the one outlined in [4, p. 229] for the general case of 
distance-transitive graphs: get to the primitive case, use a result of Preager et al. 
[31], restrict to the almost simple case and perform a check of all examples arising 
in this way. 

As an application, we show at the end of the paper that all finite half-Moufang 
generalized polygons are Moufang (except for some small exceptions), a result 
which was already proved for generalized quadrangles without using the classifi- 
cation of finite simple groups by Thas et al. [36]. 

2. Definitions and Statement of the Main Result 

A finite generalized n-gon, n >_ 3, of order (8, t ) is a point-line incidence geometry 
S = (7 ~, B, I ) ,  with point set ~ ,  line set B and symmetric incidence relation I 
such that the following axioms are satisfied: 

(Gnl) Every point is incident with t + 1 lines and two distinct lines are incident 
with at most one point. 

(Gn2) Every line is incident with s + 1 points and two distinct points are incident 
with at most one line. 

(Gn3) The incidence graph has girth 2n and diameter n, i.e. two elements of ~ U B 
can always be joined by a path of length l _< n (in the incidence graph) and if 
1 < n, then the path is unique. 

A generalized polygon is a generalized n-gon for some n. A generalized 3-gon 
has necessarily 8 = t and if ~ >_ 2, then it is a usual projective plane. An apartment 
of a generalized n-gon is a chain of elements forming a closed path of length 2n 
in the incidence graph. Every apartment has exactly 2n natural cyclic orders if we 
agree on starting with a point. 

Let S be a generalized n-gon and G a group of type-preserving (i.e. preserving 
the sets 7 ~ and/3) automorphisms. Then we say that (S, G) is distance-transitive 
provided G acts transitively on each set of pairs of points at a certain distance from 
each other. We say that (S,  G) has the 7~ts property provided G acts transitively 
on the ordered apartments. This is equivalent to saying that G is equipped with 
the structure of a BN-pair such that S amounts to the associated rank 2 building 
(see Tits [38, 3.2.6 and 3.11]). It is easy to check that the pair (S,  G) is always 
distance-transitive whenever it' has the Tits property. 

Before we can state our main result, we need some more notation. We denote 
by W(q)(resp.  Q(4, q), Q(5, q), / / (3 ,  q2), / / (4 ,  q2))the 'classical' gen- 
eralized quadrangle arising naturally from the classical group PSp4(q) (resp. 
05(q),  0 6 (q), U4(q), U5 (q)). The classical projective plane of order q is denoted 
by PG(2, q). The unique generalized hexagon of order (q, q) arising from Dick- 
son's group G2(q) and having ideal lines (this fixes the choice for the names point 
and line if q is not a power of 3; otherwise the geometry is self-dual and hence 
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the two possible choices are equivalent) (see Ronan [32]) is denoted by II(q). The 
unique generalized hexagon arising from the tfiality group 3D4(q) and having order 
(q, q3) will be denoted here by T(cr, q), where a denotes the field automorphism 
of order 3 involved in the triality defining 3D4(q) , see Tits [37]. Note that I t(q) 
is a subhexagon of the dual of T(a,  q). The unique finite generalized octagon of 
order (q, q2) arising from the Ree group 2F4(q) is denoted here by R(q). All these 
examples are called thick because in each case s, t >_: 2. For a given generalized 
polygon S, the dual is denoted by S D, while S x is defined as follows: the points of 
S I are the points and lines of S and the lines of S t are theflags (i.e. the incident 
point-line pairs) of S. Incidence is the natural one. For a given generalized n-gon 
S of order (s, s), S I is a generalized 2n-gon of order (1, 8), which is non-thick. 
In fact, S r is isomorphic to the incidence graph of S. All these examples are due 
to Tits [37]. 

There is one more example that will be needed, namely the unique generalized 
quadrangle of order (3, 5). This example is one out of a class of generalized 
quadrangles of order (s, s + 2 ) due to Ahrens and S zekeres [ 1 ] and independently to 
Hall [ 18]. This can be constructed as follows. Consider the projective plane PG(2, 4) 
and a complete oval 0 in it, i.e. a conic together with its kernel. Embed PG(2, 4) 
as a hyperplane in PG(3, 4) and define the following geometry F = (79, £ ,  I) :  the 
elements of 79 are the points of PG(3, 4) not in PG(2, 4); the elements of £ are the 
lines in PG(3, 4) meeting O in exactly 1 point; incidence is the natural one. Then 
P is a generalized quadrangle of order (3, 5) and it is usually denoted by T~(O). 
For more information on this interesting quadrangle we refer to a recent paper of 
Payne [30]. 

We are now in a position to state our main result: 

MAIN RESULT. Suppose ( S , G) is a distance-transitive finite generalized n-gon, 
n >_ 3, then (F, G) is one of the examples of Table I below (where q denotes 
an arbitrary prime power). In the case of (GP13), there is a simple group S with 
S × S ~_ G < So w.r. 2, where S ~_ So <_ Aut(S) and So acts 2-transitively on a 
set of  s + 1 points. No attempt has been made to classify the groups corresponding 
to case (GP14). 

3. Proof of the Main Result 

3.1. THE NON-THICK CASE 

In this subsection, we prove our main result for the non-thick generalized polygons, 
assuming the result for the thick ones. 

Suppose S is a non-thick generalized 2n~-gon of order (s, t), st > 1, and 
G acts as a distance-transitive automorphism group. First we consider the case 
n ~ ¢ 2. Assume s = 1. Then S is the incidence graph of a thick generalized W-gon 
S ~. The group G acts on S ~ transitively on the union of the set of points and lines 
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TABLE I. Distance-transitive generalized polygons 

n S G Restrictions 

(GP1) 3 PG(2, q) 

(GP2) 4 W(q) 
(GP3) 4 Q(4, q) 
(GP4) 4 Q(5, q) 
(GP5) 4 H(3, q2) 
(GP6) 4 H(4, q2) 

(GP7) 6 H(q) 

(GP8) 6 T(a, q) 

(GP9) 8 R(q) 

L~(q) <3 a < PrL3(q) 

PSp,(q) _~ G _< PrSp4(q) 
O,(q) ~_ a <_5 PrO,(q) 
O~(q) ~_ a <_ Pro6(q) 
u4(q) _~ G _< Pru4(q) 
Us(q) _~ c _< ercs(q) 

G2(q) <~ a < Aut(a2(q)) 

3D4(q) <1 G < Aut(3D4(q)) 

2F4(q) <:l a < Aut(2Fn(q) 

G contains no graph 
automorphism 

q odd power of 2 

(GP10) 4 H(4, q2)D 
(GPll)  4 W(2) 
(GP12) 4 T~(O) 

(GP13) 4 (s + 1) x (s -t- 1)-grid 
(GP14) 4 dual grid 

(GP15) 6 H(q) D 

(GP16) 6 T(cr, q)D 
(GP17) 6 H(2) 
(GP18) 6 PG(2, q)~ 

(GP19) 6 (PG(2, q)I)D 

(GP20) 8 R(2~) D 
(GP21) 8 R(2) 
(GP22) 8 W(q) I 

(GP23) 8 (W(q)Z) D 

(GP24) 8 W(2) z 

(GP25) 12 H(q) x 

(GP26) 12 (H(q)I) D 

Us(q) ~_ a < Prus(q) 
A6 
2 6 : 3 : A 6 < G < 2  6 : 3 : $6 

GRID 

G2(q) Q a _< Aut(G2(q)) 

3D4(q) _~ G _< Aut(3D4(q)) 

u3(3) = G2(2)' 
Ls(q) : 2 < G < Pr  Ls(q) : 2 

L3(q) : 2 < G < PFLa(q) : 2 

2F4(q) ~ G _< Aut(ZF4(q) 
2F4(2)' (Tits' group) 
PSpg(q).2 <_ G _< PrSp4(q).2 

PSp4(q).2 ~ G _< PFSp4(q).2 

A 6 : 2  

G2(q).2 < a < Aut(G2(q)) 

G=(q).2 _< G _< Aut(G2(q)) 

O a complete oval 
in PG(2, 4) 

G contains no 
graph automorphism 

G contains a 
graph automorphism 
G contains a 
graph automorphism 

e odd 

q even; G contains a 
graph automorphism 
q even; G contains a 
graph automorphism 
G contains a 
graph automorphism 

q is a power of 3; 
G contains a 
graph automorphism 
q is a power of 3; 
G contains a 
graph automorphism 
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(since this is the set of points of S) and hence G must contain a correlation (graph 
automorphism). It is clear that, G acts distance-transitively on S if and only if 
G acts distance-transitively on both S ~ and its dual S to. This explains examples 
(GP18), (GP22), (GP24) and (GP25). 

Now assume t = 1. Then S is the dual of the incidence graph of a thick 
generalized nt-gon S'. The points of S are the flags of S ~. A sufficient condition 
for the existence of G is that (S t, G) has the Tits property; indeed, in that case the 
pointwise stabilizer in G of a flag F in S ~ acts transitively on the set of flags in a 
given position w.r.t.F. The correlation does the rest. Reversing this argument, we 
see that G acts point distance-transitively on S if and only if (,9 ~, G) has the Tits 
property. This implies examples (GP19), (GP23) and (GP26). 

Now let n' -- 2; then example (GP13) follows directly from the classification 
of all primitive rank 3 groups (it is easily seen that in this case the group must 
act primitively). Finally, (GP14) is the remaining case and no attempt is made to 
classify the groups here. 

3.2. THE CASES n = 3, 6, 8 

The case n = 3 immediately follows from a celebrated result of Ostrom and 
Wagner [29]. So we can restrict to n = 6 and n = 8. 

We may assume that S is thick. We first show some lemmas. 

LEMMA 1. A group G acting distance-transitively on the points of a thick gener- 
alized n-gon S,  n >__ 4, acts primitively bn the set of points orS.  

Proof Fix a point x of S. Suppose G acts imprimitively on points and let S be 
a non-trivial set of  imprimitivity containing x. Then there is some further point y 
in S. By the transitivity assumption on G, we can fix x and map y to any point at 
distance d(x, y) from x. Let L be any line containing y at distance d(x, y) - 1 
from x; then all points except one on L are at distance d(x, y) from x. Since S is 
thick, this implies that S contains a point z at distance 2 from y. Now all points 
collinear to y are contained in S. As S is connected, S = S. [] 

LEMMA 2. I f  G is a group acting distance-transitively on the points of  a thick 
generalized hexagon or octagon, then G is almost simple. 

Proof The point graph F of a generalized polygon is distance regular. If we 
restrict to generalized hexagons and octagons, then clearly the number of points 
adjacent to two points at distance 2 is one; with standard notation, this means 
c2 = 1 (see, e.g., Brouwer et al. [4, p. 1 ]). By a theorem of Praeger, et al. [31 ] (see 
also van Bon [45]), there are three possibilities: 

1. F is a Hamming graph, but then c2 >__ 2 (see, e.g., Brouwer et al. [4, p. 27]). 
2. G is of affine type. Again c2 >_ 2. 

3. G is almost simple. 
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LEMMA 3. I f  Gx is the stabilizer in G of  a point :c of  a thick generalized hexagon 
or octagon and G acts distance-transitively, then Gx is 2-transitive on the lines 
through z. 

resp. Proof Let Li, L~ be two lines through z, i = 1, 2. Choose points zi,  x i 
on Li, L~, i = 1, 2, all distinct from z. All these points are at distance 4 from 
each other, so by distance-transitivity, there is an element of G mapping (zl ,  z~) 
to (z2, z~). Since z is the unique point at distance 1 from both zl  and z~, resp. X 2 

and z~, :c is fixed and the assertion follows. [] 

Now let (S,  G) be a distance-transitive generalized n-gon, n = 6, 8, of order 
(8, t). By Lemma 2, G is almost simple and the point graph F of S is a distance- 
transitive graph. By Buekenhout and Van Maldeghem [8], G is not of sporadic 
type. By the thickness assumption, the number al of vertices of r adjacent with 
two given adjacent vertices satisfies al > 0. By Ivanov [21] and Liebeck, et al. 
[26], who classified all distance-transitive graphs related to alternating groups, G 
cannot be of alternating type (because no such graph satisfies both c2 > 2 and 
a l  = 0 ) .  

Suppose G is of Lie type. Here, a complete classification of representations 
of rank _< 5 has been achieved by Cuypers [11]. By Lemma 3, we can restrict 
ourselves to the cases where the point stabilizer G~ under consideration has a 
2-transitive representation. And by Buekenhout and Van Maldeghem [8], we may 
assume that G is not displayed in the Atlas [10] (this gives us as sporadic examples 
(GP17) and (GP21)). Furthermore, if G~ is a parabolic subgroup, then by Brouwer 
et al. [4, pp. 341-343], we obtain examples (GP7), (GP8), (GP9), (GP15), (GP16) 
and (GP20). Left are the following two eases: 

1. G2(q) acting on the cosets of SU3(q): 2, q = 8, 9, 16, 32. 
2. G2(8) acting on the cosets of SL3(8): 2, q = 8. 

In the first case t = q3, but the number of points of the generalized polygon is 
the index of Gz in G and that is equal to q3. [(q3 _ 1)/2], contradicting the value 
for t (since the number of points equals (1 + 8)( 1 + 8t + 82t 2) > t2). In the second 
case, t = 72 and the number of points should be 28(29 + 1). No integer value for 
8 matches these conditions. 

This completes the eases n = 6~ 8. 

3.3. DISTANCE-TRANSITIVE GENERALIZED QUADRANGLES 

All primitive rank 3 groups are classified and they fall into three distinct classes: 
the almost simple case, the affine case and the 'grid' case. The latter is case (GP13). 
Let us look at the other two classes. 

The classification in the almost simple case (of rank 3 groups) has been achieved 
by various people for the respective classes of simple groups: Bannai [2] for the 
alternating groups, Kantor and Liebler [24] for the classical Chevalley groups, 



FINITE DISTANCE-TRANSITIVE GENERALIZED POLYGONS 47 

Liebeck and Saxl [27] for the exceptional Chevalley groups and the sporadic 
groups. 

Each rank 3 group G acts on a strongly regular graph, which is the point graph 
of the generalized quadrangle S if (S, G) is a distance-transitive quadrangle. 
Let (v~ k, A, #) be the parameters of this graph (with standard notation), then 
s = A +  1, t = # -  1 a n d k  = 8 ( t +  1) (providedk ___ v - k -  1) .Hence 
k = /z(A + 1). This condition is very easy to check in all cases and it turns out 
that it is satisfied only in the well known cases, which give rise to examples (GP2), 
(GP3), (GP4), (GP5), (GP6), (GP10) and (GP11) (a reference for the parameters 
of the strongly regular graphs is Hubaut [19] or Buekenhout and Van Maldeghem 
[9]). 

The same argument can be used for the affine case (or rank 3 groups). The 
classification in this case is due to Liebeck [25]. Here, G acts on an affine space 
AG(n,  q). One can see easily that the lines of S must be subspaces of the affine 
space AG(d, q), provided d > 1. Indeed, Gx, x E AG(d, q) has two orbits 'at 
infinity' (because in the unique case where it has only one orbit, k = v - k - 1, 
which is impossible for a generalized quadrangle). So if two points y and z are 
collinear, then all points on the line yz  in AG(d, q) are collinear to them both. This 
means that s + 1 = A + 2 must be a power of the prime p, where q = ph for some 
positive integer h. The only example from [25] statisfying these conditions gives 
rise to example (GP4). The case d = 1 remains. 

So let d = 1. Set I = v - k - 1. We have [P[ = q = ph and by Foulser and 
Kallaher [ 17], k ll. Hence t + 1 [ st, implying t + 1 is, so t < s. Now I P[ = ( 1 + s) ( 1 + 
st) = p h  so 1 + s = pY for some integer f < h, and 1 + st = p~ >_ pY, e < h. 
Hence 1 + st =_ 0 (mod pf) and since s _=_ "1  (mod pf), we have 1 - t =- 0 
(mod pY). So t = 1 (mod pf)  and this implies t = 1 or t > pf  + 1 > s, both 
contradictions. 

This completes the proof of our main result. 

4. Some Corollaries 

4.1. THE TITS CONDITION 

As immediate consequences of our main result, we have: 

COROLLARY 1. I f ( S ,  G) has the 7its property, then S is associated with a finite 
group L o f  Lie type in the standard manner, and G contains the derived group L t, 
or S is non-thick and is one of  the examples (GP18), (GP19), (GP22), (GP23), 
(GP25) or (GP26) of  Table L 

COROLLARY 2. I f  G is a finite group with an irreducible (B, N)-pair of  rank 2, 
then G arises from a group of  Lie type. 
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4.2. THE MOUFANG AND HALF-MOUFANG CONDITIONS 

Let S be a generalized polygon and G a group of automorphisms. A geodesic path 
7 of length n in S is called a root. Denote by "~ the geodesic of length n - 2 
obtained from 7 by deleting its extremities. The root 7 is called Moufang (with 
respect to G) if the subgroup of G fixing every element incident with a variety 
of '~ acts transitively (and hence regularly) on the set of apartments containing 7. 
Note that, if 7 is Moufang, then so is every root 6 for which 5 = "~. If every root 
of F is Moufang with respect to G, then (F, G) is called Moufang (see Tits [39]). 
All Moufang polygons (finite and infinite) are classified (see Tits [39], [43], [41], 
[44] and also Faulkner [12]), in particular a thick Moufang generalized g-gon must 
satisfy g E {2, 3, 4, 6, 8} (see Tits [40], [42] and Weiss [46]). In the finite case, 
the classification of Moufang polygons follows from a result of Fong and Seitz 
[14], [15] on split (B,  N)-pairs. 

An interesting thing happens when n is even, because in that case, there are 
two kinds of roots depending on the type of variety in the middle of the root. If we 
require all roots of only one type to be Moufang, then we obtain a half-Moufang 
generalized polygon. An immediate question is whether the half-Moufang property 
is enough to ensure the Moufang property. The question is only interesting for thick 
generalized polygons because of the following observations: (1) every generalized 
polygon of order (1, t) is trivially half-Moufang for the roots based at a line; (2) if a 
generalized 2n-gon of order (1, t) is Moufang, then the corresponding generalized 
n-gon is half-Moufang. Note that for non-thick Moufang generalized polygons the 
corresponding group G need not act transitively on the points or the lines and then 
Moufang does not necessarily imply Tits. 

We will answer the above question in this subsection for the finite case. Note 
that we can assume n = 6 or 8 since the case n = 4 is done by Thas, et al. [36]. 
More exactly, we will show: 

COROLLARY 3. Let S be a thick finite generalized hexagon or octagon and G a 
collineation group of S. The pair ( S , G) is half-Moufang if and only if it is distance- 
transitive or its dual is distance-transitive, depending on the type of Moufang roots 
in S. In particular, half-Moufang implies Moufang whenever (s, t) # (2, 2) (for 
generalized hexagons) or ( s, t) ~ (2, 4), (4, 2) (for generalized octagons). Also, 
S is Moufang with respect to some collineation group if and only if it is half- 
Moufang with respect to some (possibly other) collineation group. Finally, ( S , G) 
is half-Moufang if and only if G is flag-transitive on S (and S is classical). 

Proof. Suppose S is half-Moufang with respect to G for roots based at lines. 
(1) Let x and y be two collinear points. Considering a root 7 based at the line xy 

and not containing x nor y, we see that we can map x to y. An inductive argument 
shows that G is transitive on the set of points. 

(2) Let l l lxlll2Ix2II3. Consider any root 7 = (12, x2, 13, . . . ,  li), where i = 5 
or 6 (resp. for g = 6 or 8). Let y be distinct from both Xl and x2 but incident 
with ll. Suppose also that l~ is a line through xl distinct from 12. Let O1 be the 
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collineation fixing every element incident with a variety of-) and mapping x 1 to y. 
Let 1 be the unique line concurrent with li and at distance g - 3 from y. There is a 
unique geodesic of length g - 3 based at a certain fixed point z on l~ and ending in 
a line l' concurrent with I. There is also a unique root 5 -- (12, x2 , . . . ,  V). Denote 
by 02 the unique collineation fixing all elements incident with some variety of 
and mapping y to xl. The mapping 0102 is a collineation fixing Xl, /2, X2 and 13 
and mapping ll to l~. So G is flag-transitive. 

(3) By choosing the root 7 in (1) suitably, it follows from (1) and (2) that G acts 
transitively on the set of geodesics of length 6 based at points. So if G = 6, G acts 
distance-transitively on the points of S mad the result follows from proposition 1. 

(4) Suppose now g = 8. It is easily seen that one can map any point y at maximal 
distance from some point x to any point u collinear with y and also at distance 8 
from x while fixing the point x. Now, if (s, t) 7~ (2, 4), Brouwer [3] shows that 
the set of points at maximal distance from x endowed with the induced lines, is 
connected, hence we have a distance-transitive group on the points of S and the 
result again follows from Proposition 1. 

(5) So suppose (8, t) = (2, 4) and g = 8. The number of points is 1755 = 
33.5.13, the number of points at distance 6 of a fixed point is 640 = 27.5 and the 
number of points at maximal distance from a given point is 1024 = 21°. It follows 
that IGI is divisible by 29.33.52.13. So put IGI = k.29.33.52.13. Let x and y be two 
points at distance 6 and denote by 1 the unique line through y at distance 5 from 
x. The stabilizer Gz,y has order 4k and does not act transitively on the set of lines 
through y distinct from l, otherwise G acts as a rank 5 group on the point set and 
the result follows from Proposition 1. So Gx,y acts transitively on 2, 4 or 6 points 
collinear to y and not incident with I. Let z be a point in the smallest orbit (an orbit 
of size 2 or 4). The 'remaining' group G~,y,z has order k or k/2. No element of that 
group stabilizes at least two lines through z distinct from yz except the identity 
(otherwise a thick proper suboctagon is fixed, but there are no such). This implies 
that k or k/2  divides 12. Hence IGI divides 212.34.52.13. Now, it is readily seen 
that G acts primitively on the set of points of S. Applying a theorem of O'Nan [28] 
and Scott [33] (in the version of Buekenhout [7]), we see that, since 179[ = 1755 
is neither a prime nor a non-trivial power of an integer, G is almost simple. By 
the foregoing, the socle S of G must divide 212.3452.13. By inspection, no simple 
group of order less than 212.34.52.13 has Out(G) divisible by 5 or 13, hence 52.13 
divides 1,91. By inspection again, only L2(25), U3(4) and 2F4(2)' satisfy the given 
conditions. But the automorphism group of the first two groups has a size less than 
29. 3.52.13. So only 2 F4(2)~ qualifies and the result follows from Proposition 1 and 
the fact that the permutation representation of 2F4(2)~ on 1755 points is unique up 
to conjugacy and has rank 5 (Atlas [10]). 

The last assertion follows directly from the previous and a result by Seitz [34]. 
This completes the proof of Corollary 3. [] 
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