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O N  A C C  

RICHARD BEIGEL AND JUN TARUI 

A b s t r a c t .  We show that every language L in the class ACC can 
be recognized by depth-two deterministic circuits with a symmetric- 
function gate at the root and 2 l~176 AND gates of fan-in log~ at 
the leaves, or equivalently~ there exist polynomials p~(xl , .~ ,, x~) over 
Z of degree log~ and with coefficients of magnitude 2 l~176 and 
functions h,~ : Z ---, {0, 1} such that for each n and eo~ch x C {0, 1} n, 
XL(X) = h , . (p~(x t , . . . , xn ) ) .  This improves an earlier result of Yao 
(1985). We also analyze and improve modulus-amplifying polynomiMs 
constructed by Toda (1991) and Yao (1985)i 
Subject  classifications. 68Q05, 68Q15, 68Q25. 

1. Introduct ion and O v e r v i e w  

1.1. T h e  A C C  p r o b l e m .  Strong lower bounds have been established %r the 
size of constant-depth circuits that compute explicit Boolean functions in the 
case where the allowable gates are NOT. OR, AND. and MODq, where q is a 
fixed prime power. (For Boolean variables 91, . . . ,g~,  MOD,~(V~ . . . .  ,V,) = 1 
if E y i  = 0 mod m, and 0 otherwise.) A series of work by Furst e~t al. (1984), 
Ajtai (1983), Yao (t985), and Hs (1986) has established a near-optimal 
exponential lower bound for the size of constant-depth circuits with NOT. 
OR, and AND gates that compute PARITY. Razborov (1987) and Smolensky 
(1987) have shown that to compute the MODq function, constant-depth circuits 
with NOT, OR, AND, and MODq, gates require exponential size if q and q~ 
are powers of distinct primes. For more information about these results and 
this llne of research including history, motivations, and applications, see Sipser 
(1992) and Boppana &; Sipser (1990). 

It remains an open problem, however, to show a limitation of constant-depth 
circuits with MOD,~ gates, where m is a fixed composite: The class ACC--  
defined by Barrington (1989) and considered further by Barrington (I989), 
Barrington & Th6rien (1988), McKenzie & Th6rien (1989). and Yao (1985) 
consists of languages recognized by a family of constant-depth polynomial-size 
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circuits with NOT and unbounded fan-in OR, AND, and MOD,~ gates, where 
m is fixed for the family. It is an open problem to show some explicit language 
(e.g., a language in NP) which is not in ACC. 

1.2. Boolean  funct ions and polynomials .  Considering the representabil- 
ity (in several senses) of a Boolean function by a polynomial has provided many 
insights into the theory of shallow circuits. Work along this line can give pos- 
itive results, by showing that predicates in a certain class can be represented 
in a certain sense by polynomials of some restricted type (e.g., polynomials of 
degree polylogarithmic in the number of variables) and that such polynomials 
can be simulated by certain circuits. It can also give negative results, e.g., that 
some function f is outside a class C, by showing that function f cannot be 
represented by the polynomials used to represent class C. 

The work of Razborov (1987) and Smolensky (1987) mentioned above is 
a beautiful example of a negative result, while the celebrated work of Toda 
(1991) is a positive result: Although Toda's work is in the context of PH, 
the polynomial hierarchy (for a definition, see Johnson 1990, for example), 
it can be translated into the context of shallow circuits because of the well- 
known connection established by Furst et al. (1984) between PH and AC ~ 
(the class of languages recognized by constant-depth polynomial-size circuits 
with NOT, OR, and AND gates; more accurately, corresponding to PH is 
the class qAC ~ obtained by taking the size bound to be quasipolynomial, i.e., 
21~176 Indeed, corresponding results in terms of shallow circuits and their 
improvements have been shown in a series of subsequent work by Allender 
(1989), Allender & Hertrampf (1994), Beigel et al. (1991), Kannan et al. (1993), 
Tarui (1993), and Toda & Ogiwara (1992). Many other results obtained by 
considering polynomial representations are expIained by Beigel (1993). 

1.3. Resul ts .  Yao (1985) obtained the first nontrivial upper bound on the 
computing power of ACC circuits. In this paper, we simplify Yao's proof and 
improve his result (thus, both contributions are positive results). 

For a polynomial p ( x l , . . . ,  x~) over Z, the ring of integers, define the norm 
of p to be the sum of the absolute values of the coefficients of p. (Beigel & Tarui 
1991, respectively Yao 1985, use the word "size" to denote what we call norm, 
respectively the logarithm of what we call norm.) Define SYM + to be the class 
of languages L for which there exist a family { r ~ ( x l , . . . ,  xn)} of degree-log~ 
norm-2 l~176 polynomials over Z and a family {h~} of functions from Z to 
{0, 1} such that for each n and each x C {0, 1} ~, XL(X) = h ~ ( r ~ ( x l , . . . , x ~ ) ) ,  
where XL denotes the characteristic function of L. (Beigel & Tarui 1991 called 
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the class SYM + by the name SYMMC. Here, we have adapted the notation 
proposed by Beigel et al. 1991 and Barrington 1992.) By standard techniques of 
Beigel et al. (1994) it is immediate that a language L is in SYM + if and only if L 

�9 . l o g O ( 1 ) n  . . . . . .  can be recognized by depth-two size-2 ctrcmts wath a symmetric-function 
gate at the root (top) and AND gates of fan-in log~ at the leaves (bottom). 
(A symmetric-function gate computes some symmetric Boolean function, i)e, a 
Boolean function that only depends on the number of inputs that are i. NOT 
gates need only appear in a circuit as negated input literals ~-7's.) 

Yao (1985) showed that ACC is contained in a probabilistie version of 
SYM+: If L is in ACC, there exist finite sets S'~ of degree-log~ norm- 
2 l~176 polynomials in n variables, "simple" probability distributions On on 
S~, and functions h~ : Z --+ {0, 1} such that for each n and each x E {0, 1}~, 
when r E S~ is randomly chosen according to p~, XL(Z) = h~(r~(**, , . . ,  x~)) 
with high probability. 

In this paper, we show that ACC is in fact contained in SYM+: 

THEOREM 1.1. 
ACC a SYM +. 

We can think of Yao's result and our improvement as exhibiting the some- 
what surprising representational power of low-degree polynomials or as raising 
the new problem of showing that some explicit language is outside SYM + or 
some subclass of SYM + by analyzing (maybe a restricted class of) low-degree 
polynomials algebraically or combinatorially (i.e., showing a negative result for 
SYM +, as mentioned above). In both senses, it seems more usefu! to think 
of SYM + in terms of low-degree polynomials as opposed to depth-two circuits 
(hence our definition of S YM + above). 

Actually, we can obtain a ~'uniform" version of Theorem 1.1 by using the 
Valiant Vazirani method due to Todd (1991) for probabilistic simuiations of 
OR and AND. If we do not care about uniformity, we can instead use a simp!e 
nonconstructive argument together with the Razborov-Smolensky method, and 
obtain polynomials of lower degree in the end. We include a fuI1 explanation of 
how to do this. and the paper is totally self-contained in its proof of Theorem 1.! 
as stated (without uniformity). (For the proof of the uniform version, we refer 
the reader to the literature for a discussion of the Valiant-Vaziram method.) 

We also show the following extension of Theorem 1.1, in which we allow an 
output gate to be any symmetric-function gate, not just a MOD,~ gate. 

PROPOSITION 1.2. Let L be a language recognized by a family of constant- 
depth size-21~176 circuits having a symmetric-function gate at the root and 
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NOT, OR, AND and MOD~ gates elsewhere, where m is f~xed for the family. 
Then L is in SYM +. 

We prove Theorem 1.1 by showing how one can convert an ACC circuit to 
an equivalent modular polynomial circuit in which each gate evaluates a low- 
degree polynomial modulo some prime p, and showing how one can collapse 
such a modular  polynomial circuit using modulus-amplifying polynomials. In 
this way, we can present all arguments explicitly in terms of polynomials, which 
is how they are best shown. 

1.4. M o d u l u s - a m p l i f y i n g  p o l y n o m i a l s .  Say that  an integer polynomial 
P(x) in one variable is k-modulus-amplifying if, for all integers N and all inte- 
gers m > 2, the following properties hold: 

N - 0 m o d m  ~ P ( N ) - O m o d m  k, 
N ~ l m o d m  ~ P ( N ) = l m o d m  ~. 

Toda (1991) was the first to discover a construction and an application of 
low-degree modulus-amplifying polynomials. Toda constructed a k-modulus- 
amplifying polynomial of degree O(k 2) and used it to prove the fact that  
B P .  |  C_ P#P[~]. (The polynomials actually constructed by Toda have 
moduIus-amplifying properties of a slightly different kind, as will be explained 
in Section 2.3.) Yao (t985) discovered a new application of modulus-amplifying 
polynomials and obtained the result mentioned above; he also noted that  a 
k-modulus-amplifying polynomial of degree O(kl~ a) can be obtained by a 
slightly different construction. Both Toda and Yao used a recursive construc- 
tion. We put these polynomials that  seem somewhat magical in better perspec- 
tive and obtain a k-modulus-amplifying polynomial of degree 2k - 1, which is 
optimal. Modulus-amplifying polynomials of lower degree yield polynomials of 
lower degree in the proof of Theorem 1.1, but are not essential for the proof. 

2 .  P r o o f  o f  T h e o r e m  1 .1  

As usual, we assume without loss of generality that  NOT gates in a circuit 
only appear as negated input literals ~ ' s .  All polynomials in the paper are 
over Z. We let Z [ x l , . . . ,  xl] denote the ring of polynomials over Z in variables 
X l , .  . . , X l .  

Throughout  the paper, we will be interested in producing low-degree small- 
norm polynomials. It turns out that  for the polynomials that  we deal with, 
the norm is always at most exponential in the degree, and that  checking this 
is usually easy. Thus, the reader may pay attention mostly to the degree. 
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x ~ 0 mod p~ 

PROOF. Write 

2.1. R e p r e s e n t i n g  MODp. ,  OR,  and  A N D  m o d u l o  p. In this subsection, 
we show how the OR, AND, and MODp~ functions, where p is prime, can be 
represented, modulo p, by low-degree small-norm polynomials over Zo 

2.1.1. MODpo. We include our own proof of the following lemma, which 
seems to be folklore (the earliest use of it that  we can find is due to Chandra 
et al. 1984). 

LEMMA 2.1. Le~ p be a prime and let e >_ 1. Then, there is a polynomial 
r ( x l , . . . ,  zn) of  degree pe _ 1 and norm n ~ suck that for each x E {0, } ,  

MODp~(Xl,. . . ,  x~) = r (x~ , . . . ,  x~) rood p. 

To prove the lemma, we use the following fact. A proof of this fact using 
Kummer 's  Theorem was given by Beigel & Gill (1992); a proof using Lucas's 
theorem was given by Beigel & Tarui (1991). Here, we give a simple, direct 
proof. 

FACT 2.2. For a prime p, a positive integer e, and an integer x, 

..' > Y i E { O , . . . , e -  !} ( x )  pi = 0 mod p. 

( x )  x ( x - 1 ) . . . ~ ) - p i + l )  

v! = 7'(-7 
The factors in both the numerator and the denominator take each one of the 
vahes  0 , 1 , . . . , p i - 1  modulo p i. Thus, (~) = 0 m o d  p i f  and oniy if the unique 

factor in the numerator  that  is a multiple of pi is in fact a multiple of p~+l. 
From this, the conclusion follows by a simple induction on i. [] 

PROOF OF LEMMA 2.1. By Fermat's little theorem, for integers y l , . . . ,  Yk, 

-Y~ ) - {  ~[(1 p-1 1 mod p if g i E {1 , . . . ,  k} yi - 0 mod p, 
i=1 0 m o d p  otherwise. 

From this and Fact 2.2, it is easy to see that  the following polynomial satisfies 
the conclusion. 

= 1-I 1 -  E j = l x j  
i=0 \ pi 

i=0 sg{1,...,=},tsl=p~ jes 
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2.1.2.  O R  a n d  A N D .  A probabilistic polynomial p ( x l , . . . ,  x~) is a random 
variable that  is uniformly distributed over some finite multiset gt = {pl, �9 �9 �9 p~}, 
where pi E Z [ x i , . . . ,  x~]. The degree and the norm of a probabilistic polynomial 
p are, respectively, the maximum degree and the maximum norm of pi (for 
t < i < s ) .  

The Valiant-Vazirani method due to Toda (1991), as reinterpreted and 
extended by Allender (1989), Allender & Hertrampf (1994), Beigel et al. (1991), 
Kannan et at. (1993), Tarui (1993), and Toda & Ogiwara (1992), yields the 
following result. (For a proof of the particular version stated below, see Tarui 
1993 or Beigel et al. 1991; the second condition in the statement of the lemma 
is a technical one that  makes our subsequent proofs simpler and can easily be 
satisfied by raising a polynomial to the (p - 1)-th power.) 

LEMMA 2.3. Let p be a prime and let c > O. Then, there is a probabilistic 
polynomial r ( x l , . . . ,  xn) that has degree d = O(log(1/~)log n), norm nO(d), 
and an "easily" constructible sample space of size 20(l~176 n) and satist~es 
the following conditions: 

1. For each x e {0, 1} '~, r(x) mod p = OR(x) with probability at least 1 - r 

2. For each x C {0, 1} ~, r(x) mod p C {0, 1} with probability 1. 

A similar probabilistic polynomial for AND also exists. 

REMARK 2.4. To obtain "uniform" versions of our results, we need "easy" 
constructibility of a sample space. If  we do not care about uniformity, we can 
alternatively proceed as follows. Let 

In --~ { ( a l X l  Av " ' '  AvanXn)P-l: (a l , . . . , a~ )  e { 0 , . . . , p - -  1}n}.  

Jr v~e take e = O(log(1/~)) large enough a ,d  let 

g 

A = { t -  II(1  -q~) :  (ql , . . . ,qr c r~}, 
i=1 

then /or each x 6 {0,1} ~, a randomly chosen r E A satisEes r(x)  mod p = 
0R(x)  with probability at least 1 - (1/2)c as was ~oted by Razborov (1987) 
and Smolensky (1987). 

By  a simple probabilistic argument involving the Chernoff bound, the ex- 
istence of a small subset f~ C A that computes OR with probability at least 
1 - ~ can be shown. Fix x e {0, 1 p .  For large enough X = O((1/~) . n), if  
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we sample a polynomial from A independently N times and obtain r'i, . , rN, 
then the probability that ri(x) 5~ OR(x) for more than e N  ri's is less than 
2 -~ by the Chernoff bound on the tail of Bernoulli trials. Thus. there exists a 
mult iset  f~ C_ A of size N such that for every x E {0, 1} n, r(x)  rood p = OR(x) 
except for at most a fraction e of r's in fk  

The multiset f~ considered as a probabilistic polynomial satisfies the eondi- 
n ~ and tions of Lemma 2.3 and has lower degree d = O(plog(1/e)) ,  norm.  , . 

smaller sample space of size O((1/e) . n). Lower degree and smailer sample 
space yield polynomials of lower degree in our subsequent proofs. ActualIy, to 
achieve low degree, using a Chernoff-bound argument as above at a later stage 
is more effective, as will be explained in Remark 2.6. 

2.2. M o d u l a r  p o l y n o m i a l  c i rcui ts .  In what foiiows, we denote a gate in 
a circuit by a lower-case letter, e.g., gi, and the Boolean function that a gate 
computes by the corresponding upper-case letter, e.g.. Gi. We also let 9 i , . .  , gl 
denote both gates and formal variables in a polynomial. We assume, without 
loss of generality for all our purposes, that between any pair of gates in a circuit, 
there is at most one edge. For a gate g in a circuit, input(g) denotes the set of 
gates gi such that there is an edge from gi to g. 

A modular polynomial circuit C for n Boolean variables is similar to a stan- 
dard circuit except that each gate is labeled by a polynomial instead of AND, 
OR, etc. Each non-output gate g with input(g)= {91,-.. ,  gz} is associated with 
some polynomial r E Z[9i , . . .  ,gl] and a positive integer m called its modulus. 
We require that each such pair of polynomial r and modulus m has the prop- 
erty that for each (gl,... ,gQ E {0, 1} l, r (g l ,  . . . .  gt) rood m E {0, 1_}. Each such 
gate is interpreted to compute the Boolean function 

g(z , = . . . .  . . . .  , x , ) )  rood m .  

An outpu~ gate g with input(g)= {gi , . . .  ,gl} is associated with some poly- 
nomial r E Z[gl, . . . ,gz] and some function h : Z ~ {0, 1} (no modulus is 
associated with an output gate), and is interpreted to compute the Boolean 
function h(r(Gl(X), . . . .  al (x ) ) ) .  

A modular polynomial circuit C is stratified if each wire in C is between 
gates of depth d and d + 1 for some d and all the gates at depth i are associated 
with a common single modulus mi. For a modular polynomial circuit, the size 
and the depth are. as in a standard circuit, the number of vertices and the 
depth of its underlying graph, respectively; the degree and the norm are the 
maximum degree and norm, respectively, of all the polynomials associated with 
its gates; its modulus size is the maximum of the moduli associated with its 
gates. 
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LEMMA 2.5. For any depth-c size-s {AND, OR, MODm} circuit for n variables, 
there exists an equivalent stratified modular  polynomial  circuit of  depth c' = 
O(c), size s' = 2 ~176 degree d = O(rn log 2 s), norm t = s ~ and modulus  
size no more than m.  In particular, for s = 2 l ~ 1 7 6  and m = log~ we have 
s t = 2 l~176 d = log~ t = 2 l~ 

= �9 ~, be the prime PROOF. Let C be a circuit as above and let m p ~ l . . p ,  
factorization of rn. A MOD,~ gate is equivalent to the AND of a MODp~I gate, 
a MOD ~= gate, , and a MOD ~. gate. Thus, by adding some "dummy" 

�9 P 2  " " " P t ~  

gates if necessary, and increasing the size and depth by only a constant factor, 
we can convert U into an equivalent stratified ACC circuit U' in which all the 
MOD gates at the same depth i share a single modulus Pi.~i 

Now, fix the depth to i and let p = pi and e = e i .  A gate at depth i is 
either an AND, an OR, or a MODp~ gate. If there is no MOD gate at depth i, 
take p = 2. For each gate g with input(g) = {gl , . . .  ,gz}, associate a modulus 
p, and associate a polynomial r E Z[91, . . . ,  gz] as follows. 

Case 1: g is a MODp~ gate. Associate the polynomial given in the proof 
of Lemma 2.1. ( .~ .  

Case 2: g is an OR gate or an AND gate. Associate a probabilistic 
polynomial as given in Lemma 2.3 (take e = 1/(3s)) that has degree 
d = O(plog ~ s), norm s ~ and sample space of size s' = 2 O(l~ s), and 
computes OR or AND on {0, 1} e with probability at least 1 - 1 / (3@ 
(Note that g _< size(C') = O(s).)  

At the bot tom level, proceed similarly as above using (1 - xi) for each negative 
literal ~ .  

Now C' has been transformed to a "modular probabilistic polynomial cir- 
cuit" that,  for each x, computes C" with probability at least 2/3�9 We can 
assume that all probabilistic polynomials used have underlying sample space of 
the same size S = 2 ~176 ~) and that each sample space ~ is indexed by the set 
{ 1 , . . . , S }  (i.e., 9t = {r i}s l ) .  By fixing i to each value in { 1 , . . . , S }  succes- 
sively, thus "fixing" every probabilistic polynomial to each of the S ordinary 
polynomials in its sample space, we obtain S modular (ordinary) polynomial 
circuits, and we can connect their S output gates 91, . . .  ,gs to a new output 
gate g. Associate with g the linear polynomial 91 + �9 �9 " + gs and the function 
h : Z --+ {0, 1} that computes the majority among gr h(y) = 1 if y > [S/2] 
and 0 otherwise. This is the desired modular polynomial circuit. [] 
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REMARK 2.6. If  we use appropriately amplitled Razborov-Smoiensky polyno- 
mials (use the A of Remark 2.4) in Case 2 and apply a Chernoff-bound argument 
as in Remark 2.4 to the independent copies of C' thus obtained, we can produce 
an equivalent modular polynomial circuit of size O(sn) and degree O(m log s). 

2 .3 .  M o d u l u s - a m p l i f y i n g  po lynomia l s .  Recall that a k-modulus- 
amplifying polynomial Pk satisfies the following conditions for all integers N: 

N ~ 0 m o d m  ~ P k ( N ) - 0 m o d m  k, 

N - l m o d m  ~ Pk(N) - I mod m k. 

Todd (1991) constructed polynomials/5 k that satisfy the following slightly dif- 
ferent conditions and can be used for his app]ications (and for proving our 
theorem also) just as well as the poiynomials Pk: 

. u  ---5. / 5 ~ ( N ) = 0 m o d m  k, 

N = - - l m o d m  ~ / S k ( N ) ~ _ - l m o d m  ~. 

Todd obtained his polynomials by letting /52(x) = 3x 4 + 4x a and /52~(x ) = 
P2(P2~-I(z)) for i > 1. (For 2 i-1 < k _< 2 i, let Pk(x) =/52~(x).) Thus, Toda's 
Pk has degree O(k2). Noting that positive coefficients are not necessary for his 
applications (in retrospect, positive coefficients are not necessary for Toda's 
applications either), Yao (1988) constructed k-modulus-amplifying polynomi- 
als Pk starting with P2(x) = 3x 2 - 2x a and defining P2, by the same recurrence. 
Yao's Pk has degree O(k bg2 3), Now we put modulus-amplifying polynomials 
in better perspective and construct optimal-degree modulus-amplifying poly- 
nomials. 

The conditions for Pk above are equivalent to the following congruences in 
Z[x], the ring of polynomials in one variable over Z. 

Pk(x) -- 0 mod x ~, (2:1) 

Pk(x) - l m o d ( x - 1 )  k. (2.2) 

The polynomials x ~ and (x - 1) k are relatively prime in Z[x]; i~ there 
are polynomials f (x ) ,  g(x) e Z[x] such that f ( x ) x  k + g(x)(x - 1) k = 1. This 
follows from the solution we give below. Alternatively, we can argue as follows: 
In a commutative ring, two ideals (in our case (x k) and ( ( x - 1 ) k ) )  are relatively 
prime if and only if their radical ideals are relatively prime, (For a proof, see 
a textbook on commutative algebra, e.g., Proposition 1.16., p.9 in Atiyah & 
MacDonald 1969.) But the radicals of (z k) and ((z - 1) k) are (x) and (x - 1) 
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respectively, and are clearly relatively prime. In fact, x k and (x + s) k are 
relatively pr ime in Z[x] if and only if s = 1 or - 1 .  Thus, by the Chinese 
remainder  theorem (applied for the ring Z[x]), the equations (2.1) and (2.2) 
have a unique solution in Z[x] modulo x~(x - 1) k. We explicitly solve (2.1) and 
(2.2) and get a degree 2k - 1 solution, thus achieving the opt imal  degree. 

Consider (1 - x)k in Z[[x]], the ring of formal power series over Z. Since its 
constant  t e rm is 1, it is invertible in Z[[x]]; i.e., we can find Rk C Z[[x]] such 
that  (1 - x)kRk = 1. Throw away all the terms in the power series R~ of degree 
k and higher, and obtain the polynomial Qk. Then, 1 - (1 - x ) k Q k  is a solution 
to (2.1) and (2.2). In fact, we have the following equalities, the last one being 
our solution: 

Rk 
1 

(1 - x) k 
_ ( l + x + x 2 +  , . )~.  = ~ ( k + j - 1 ) .  xj ' 

j>o 3 

= 

j=o 3 

Note that  the  norm of Pk is 2 ~ In what  follows, Pk denotes the  polynomial  
const ructed  above. The effect of using our Pk's instead of the polynomials  
const ructed  by Todd and Yao will be ment ioned in Remark  2.9. 

2.4.  C o l l a p s e  b y  m o d u l u s  a m p l i f i c a t i o n .  For an integer a and a positive 
integer m, define a rood m to be the unique integer in the range [ - a ,  fl] that  
is congruent to a modulo  m, where a = fl = ( m -  1)/2 if m is odd and a = 
m/2 - 1, fl = m/2 if m is even. Note that  a = a mod m if m _> 2 lal + 1. Also 
note the following obvious proper ty  of the norm: If a polynomial  p(x l , . . . ,  xn) 
has norm N,  then for any x E {0, 1} '~, - N  < p(x) <__ N. 

FACT 2.7.  Suppose that a polynomial r ( x , , . . . ,  x~) has n o r m  N and that the 
positive integers m and k satisfy m k > 2N + 1. Let a l , . . . , a l  be integers 
satisfying a i mod m E {0, 1} (1 < i < I). Then, 

r(a~ mod r a , . . . ,  a~ mod m) = ~'(Pk(al),..., J3k(al) ) mod mk. 



360 Beigel & Tarui comput compie• 4 (1994) 

PROOF. 

r(al mod rn, . .~,al  mod m) 

= r(Pk(a,) mod ink,. . . ,  Pk(a~) mod m ~) 

= r(Pk(a~) mod mk,...,Pk(az) rood rn k) mod m ~ 

= D 

The following lemma says that we can "collapse" stratified moduiar poly- 
nomial circuits using modulus-amplifying poiynomials Pk, and, combined with 
Lemma 2.5, lets us finish the proof that ACC C SYM +. The lemma is stated 
in a setting which is a bit more general than necessary: It allows moduli of 
order log~ instead of O(1). 

LEMMA 2.8.  Let {C~} be a family of stratified modular p@nomiai circuits 
of depth O(1), size 21~176 degree log~ and norm 21~176 and modulus 
size log~ Then, the language recognized by C is in SYM +, ile., there 
exist a family { r , ( x l , . . .  ,x~)} of degree-log~ norm-2 ~~ polynomials 
and a family {h,} of functions from Z to {0, 1} such that for each n and each 

{ 0 , 1 )  = 

PROOF. Let {Cn} be as above. Fix n and let d = depth(G~). The proof is 
by induction on d. For the base case d = 1, the output gate of C~ is associated 
with a polynomial r~(x~,... ,xn) of degree log~ and n o r m  2! ~176 and a 
function h~ : Z --* {0, 1}, and there is nothing to prove since, by the definition 
of a modular polynomial circuit, C~(x) = hn(r,~(x)). For the case d > 2: 

Let {g l , . . . ,  9z} be the set of gates at depth I and assume that the output 
gate g is associated with a polynomial r(gl,. . .  , ga) and a function h : Z 
{0,1). 

Let {Yl,...,Y~} be the set of gates at depth 2 and assume that 
the gates g l , . . . , g l  at depth 1 are associated with polynomials 
re(y1, . . . ,  y~) , . . . ,  r d y l , . . . ,  y,), respectively, and with a common mod- 
ulus m = log~ (ri may be a polynomial in variables that form a 
proper subset of {yl,. �9 �9 yv} but such a polynomial can be regarded as a 
polynomial in y l , - . . ,  Y,; this simplifies the notation below.) 

We show that we can collapse these top two levels. Take k = !og~ large 
enough so that m k > 2norm(r)  + 1. Recall that in a modular polynomial 
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circuit, for each g = (y~ , . . . , y , )  E {0,1} ~, r i (g)mod m E {0, 1); thus, by 
Fact 2.7, 

r(rl(~7) mod m , . . . ,  rl(ff) mod m) 
= r ( P k ( V l ( f f ) ) , . . .  ,Pk(r/(y))) mod m k. 

Thus, if we define rl(g) and h ' :  Z --* {0, 1} as follows: 

,-'(~') = , - (P~(n( i ) ) , . . . ,P~(r , (~ ' ) ) ) ,  
hi(z) = h(z  mod ink), 

then for each ~ = (y l , . . - ,  9~) C {0, 1} ", the following equalities hold: 

h(r(rl(y)  mod m , . . . ,  rl(g) mod m) ) 
h(rl(g) ~ o d  m ~ ) 
hl(rl(~)). 

It is not hard to see that  the polynomial r' has degree log~ and norm 
21ogOO)n, 

Introduce a new output  gate g' and associate with g' the polynomial r '  and 
the function h 1. Let C~ be the new circuit thus obtained. Then, C:  is equivalent 
to Cn and has depth d - 1, size smaller than that  of C~, degree log~ and 
norm 21~176 The inductive step is complete, and we have proved the lemma. 

With this last lemma, the proof of Theorem 1.1 is complete. 

REMARK 2.9. Let 5 denote the degree of the poIynomial obtained by our proof 
method. For a polynomial-size depth-d ACC circuit, 5 = log 2| n and the 

norm of the poiynomiat is n t~ n The degree and the norm correspond, 
respectively, to the bottom fan-in and the size of depth-two circuits that char- 
a c t e r i z e  S Y M  + . 

More specitTcally, let C be a stratified polynomial-size depth-d (assume d > 
2) circuit having only MOD gates and such that all the MOD gates at the 
same depth i are MODp, gates for some prime pi of order 0(1).  Then 5 = 

O(log (a+l)a-l-1 n), where a = 1 in our case, and a would be log 2 3, or 2, if  one 
uses Yao's, or Todd's, modulus-amplifying polynomiaIs, respectively. 

Now consider a circuit that is similar to C, but has AND~OR gates in addi- 
tion and assume that we use our degree 2 k - 1  modulus-amplifying polynomials 
P~. (The analysis below remains valid as long as the degree is O(k).) 
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In this case, ~5 = O(log ~ n), where /3 = 2 d+l - 2 if one ~.~ses Razborow 
Smolensky polynomids together with a nonconstructive argument as explained 
above, and/5 = 2 d+2 - 3 if one uses the Valiant-Vazirani method. 

REMARK 2.10. The function h~ : Z --+ {0, 1} obtair,.ed in the proof above has 
the following form. 

{ 1 i f ( - . . ( ( N  rood M1) mod M 2 ) ' "  mod Me) >_ fS/2q~ 
h ~ ( N ) =  0 otherwise, 

where each Mi is a power of a prime. Recently, F. Green et al. (1992) ~ave shown 
that hn can be taken to be a "Mid-Bit" function, whose va[ue on an integer 
N is the t(n)-th least significant bit of the standard binary expansion of N 
for some t(n) = log~ Barrington's 1992 survey includes an explanation of 
other recent work that is feinted to this paper, 

REMARK 2.1 1. Theorem 1.1 still holds when we ailow the moduIus m of MOD 
gates to grow as large as m = log~ and m has only O(1) distinct prime 
factors. 

On the other heed, if  we allow O(log n~ log log n) distinct prime moduB of 
magnitude O(log n), any symmetric Boolean function on n variables can be 
computed by a circuit of the fotloMng form: an OR at the root, at most n 
ANDs of fan-in O(log n) at the next level, and O(log 2 n~ log log n) MODs at 
the bottom. Thus, if a similar result holds in this case, then TC ~ (the class of 
languages recognized by constant-depth polynomlal-size threshold circuits) is 
contained in SYM +. 

3. Proof  of Proposi t ion 1.2 

We proceed as we did to prove ACC C_ SYM+: Show that we ci~n convert 
the circuits in the proposition to equivalent low-degree small.norm modular 
polynomial circuits, and use Lemma 2.8 to finish the proof. 

Let C be a circuit of size N = 2 l~176 with a fan-in F output gate g 
computing a symmetric function and F ACC subcircuits C I , . . . , C F  below 
9. The symmetric-function gate g computes some Boolean function that only 
depends on E/r=1 Ci(x). Thus, we want a construction that can determine, for 
each x, the number of i's (1 < i < F)  such that C~(x) = i. We proceed as 
follows: 

1. Using a probabilistic polynomial of sample size S = 2 l~176 that corn: 
putes OR/AND with error probability at most 1/(3FN),  convert each 
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6 ' / (1 < i < F)  to a stratified modular probabilistic polynomial circuit 
that  computes Ci with error probability at most c = 1/(3F).  

2. For each Ci, by fixing a probabilistic polynomial to be each of the S 
ordinary polynomials in its sample space, create S stratified modular  
(ordinary) polynomial circuits and let ~i = { g ! l ) . . .  ,g[S)} be the set of 
output  gates of those S circuits. Clearly, for each input x and each set 
kgi, one of the following two cases holds: 

(a) At most eS g!J)'s (1 __5_ j < S) output  1. 

(b) At least (1 - g}Jt's (1 < j < 5) output 1. 

For a rational number r that  is not of the form j + 1/2 for some integer 
j ,  let nearest-int0- ) denote the unique integer k that  minimizes Ir - k I. 
It is easy to see that  the number of sets ~i for which the case (b) holds 
is equal to 

nearest-int ~/F=I s 
S 

3. Connect the g}J)'s to a new output  gate g' and associate with g' the linear 
polynomial ~F=I s g}j) ~ j = l  " and the function h(9) = -h(nearest-int(y/S)), 
where h : {0 , . . . ,  F} --. {0, 1} is the function computed by the symmetric- 
function output  gate of C (as expressed in terms of the number  of inputs 
that  are 1). 

We have obtained an equivalent stratified modular polynomial circuit of con- 
stant depth, size 2 l~176 degree log~ and norm 2 l~176 As for Theo- 
rem 1.1, we can use Lemma 2.8 to finish the proof. [] 
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