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P E R C E P T R O N S ,  PP, A N D  THE 
P O L Y N O M I A L  H I E R A R C H Y  

RICHARD BEIGEL 

Abstrac t .  We construct a predicate that is computable by a perceptron 
with linear size, order 1, and exponential weights, but which cannot be 
computed by any perceptron having subexponential (2 ~~ size, sub- 
polynomial (n~ order and subexponential weights. A consequence is 
that there is an oracle relative to which pNP is not contained in PP. 
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1. In troduct ion  

A perceptron is a depth-2 circuit with a threshold gate at the root and AND- 
gates at the remaining level. The order of a perceptron is the maximum fanin 
of its AND-gates. The weight of a perceptron is the maximum absolute value 
of the weights on the inputs to its threshold gate. The size of a perceptron is 
the number of AND-gates it contains. Perceptrons are an important computa- 
tional model, which is used in practice, and which has been studied by Minsky 
& Papert (1988), Beigel et el. (1994), Aspnes et.al. (1991), Tarui (1993), and 
Beigel et aI. (1991b). 

Minsky & Papert (1988) constructed several predicates that require expo- 
nential weight (assuming that distinct AND-gates compute distinct functions). 
However, all of their examples require exponential size as well. 1 

1Minsky and Papert did construct predicates that were computable as thresholds of a 
small number of basis functions, but not with small weights. However, the basis involved 
was ad hoc, being designed specifically to make the weights large. The usual basis for 
perceptrons consists of the AND-functions, as in this paper. 
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In this paper, we define a predicate called ODD-MAX-BIT that ~s com- 
putable by pereep~rons having linear size, order 1, and exponential weight. 
However, ODD-MAX-BIT is not computable by perceptrons having quasipoly- 
nomial size, polylogarithmic order, and subexponential weight. 

We think that quasipolynomial size and polylogarithmic order are theoret- 
ically important for two reasons. First, perceptrons of this size and order arise 
naturally in the work of Beigel et al. (1994), Beige1 et at. (1991b), Tarui (1993), 
and Aspnes et al. (1991). Second, if we replace the threshold gate at the root 
of a perceptron with some other symmetric gate like a parity gate, then the 
notion of size and order still make sense; such circuits having quasipolynomial 
size and polylogarithmic order arise in the work of Yao (1990), Beigel & Tarui 
(1994), Tarui (1993), Atlender (1989), and Allender & Hertrampf (1994). In all 
those papers, the weights are quasipolynomial as well. 

Quasipolynomiat size, polytogarithmic order, and quasipolynomial weight 
come up quite often for an additional reason. When translating between nonde- 
terministic Turing machine complexi ty and circuit complexity in the manner of 
Furst et at. (1984), polynomial time translates into quasipolynomiai size, poly- 
logarithmic order, and quasipolynomial weight. Relativizable upper bounds 
for nondeterministic ~[~lring machines with a particular acceptance mechanism 
translate into upper bounds for depth-2 circuits with a corresponding gate at 
the root. Lower bounds for circuits translate into separations of Turing machine 
complexity classes via oracles. 

Toda (1991) has shown that the polynomial hierarchy is contained in PPP. 
Toda's result has been extended by Toda & Ogiwara (1992) and independently 
by Tarui (1993). Tarui shows that the polynomial hierarchy is probabitistically 
m-reducible to PP with zero-sided error. Beigel et al. (1991a) have shown that 
pNP[logl is contained in PP. Their result has been improved by Oundermann 
et al. (1990) who showed that pC=P[~og] C_ PP. and by Beigel et at. (1994) 
who showed that pPP[ log]  = pp.  People have asked whether some of those 
techniques can be extended to show that more of the polynomial hierarchy 
is contained in PP. Our lower bound for ODD-MAX-BIT yields an oracle 
relative to which pNP is not contained in PP, and in fact pNp[f(n)] is contained 
in PP iff f ( n )  = O(log n). (Independently, Fu 1992 has observed that Minsky 
and Papert 's one-in-a-box theorem yields an oracle relative to which a weaker 
separation holds: NP Np ~ PP.) Since the techniques of Toda (1991), Beigel et 
al. (1991a), Toda & Ogiwara (1992), Tarui (1993)9 Gundermann et a/~ (1990), 
and Beigel et al. (1994) relativize, this means that other techniques will be 
needed in order to determine how much of the polynomial hierarchy is contained 
in PP. 
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2. T h r e s h o l d  C i r c u i t s  

Throughout this paper we assume that the weights on the inputs to a threshold 
gate are integral. If we allow a perceptron to contain identical AND-gates then 
there is a partial tradeoff between size and weight in perceptrons, because an 
AND-gate having weight w can be replaced with Iwl identical AND-gates each 
having weight w/Iwl. Identical AND-gates can only be a nuisance when trying 
to prove lower bounds. We eliminate them, as well as logical negations. 

We say that a perceptron is in clean form if it contains no logical negations 
and no identical AND-gates. The following lemma is essentially due to Minsky 
& Papert (1988). 

LEMMA 2.1. If  f is computed by a perceptron with size s, weight w, and order 
d, then f is computed by a perceptron in clean form with size 2ds, weight sw, 
and order d. 

PROOF. For each AND-gate, replace each negated input g by 1 - x, and 
replace "and" by multiplication. Expand using the distributive laws of arith- 
metic. Each term in the expansion is a conjunction of the inputs to f .  The 
total number of terms obtained by expanding all AND-gates in this way is at 
most 2ds. Each term is contributed at most once per AND-gate, so when we 
collect terms, no weight is greater than sw in absolute value. [] 

DEFINITION 2.2. ODD-MAX-BIT is the set of all strings over {0, 1}* whose 
rightmost 1 is in an odd-numbered position, i.e., the set of strings of the form 
zl0  k where the length of x is even. 

By associating the weight 2 i to the input xi if i is odd, - - 2  i if i is even, we 
obtain a family of perceptrons having size N and order i which compute N- 
bit instances of the predicate ODD-MAX-BIT. (Similar ideas were applied t o  
pNP[log] by Hemachandra & Wechsung 1988.) 
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3. Polynomial Approximations 
We wilt use an extension of Markov's theorem in approximation theory. We 
follow the t reatment  of Rivlin & Cheney (1966). g P is a real-valued function 
and Y is nonempty, define 

lIellY ; max~eyP(x) ,  
IIPII = max~e[-1,11P(x) , 

Henceforth let P denote a polynomial of degree d. Let pt  denote the derivative 
of P.  A. A. Markov's theorem, which can be found in Cheney (1966), Lorentz 
(1966) or Pdlya & Szeg6 (1972, Vol. II, Part Vt, Prob. 83), says that  

[lUll <_ d21 lP I I  �9 

The following lemma is due to Ehlich & Zeller (1964). See Rivlin & Cheney 
(1966) for an improved version. 

LEMMA 3.1 (EHLICH AND ZELLER). Let rn be a positive integer, and Iet 
Y { - 1 , - 1  + 2 4 2 ~ , - 1  + ~,  1 - 1} Assume that d2(d 2 " !)~re 2 < 6. 

Then 
1 

I !P I I  _< I lP l l~ ,  �9 1 - ~d2(d 2 -  1)/re ~" 

The following lemma is immediate. 

LEMMA 3.2. Let p be a degree-d polynomiM. Suppose that p(0) = 0 and 
W < p(x) < 3 W  for x = 1 , . . . , m ,  where m is a positive integer. Then 

d> J(v -9)re. 
PROOF. Let P ( x )  = p([re(x  + 1 ) ) _ 3  [W,  and let Y be as in Lemma 3.• 

3 Since P ( ' I )  = 3 1 Then [IPllY _< gW. -~W and P ( - !  + ~)  _> - ~ W ,  we have 

lIP'll _-_ �89 If d2(d 2 - 1 ) /m  2 ~ 6 then d > 4 ~ ,  so we are done. Other- 
wise we can apply Markov's theorem and Lemma 3.i. 

~ r e w  < l!P'll 

1 
-- d2llPll7' 1 -  ~d2(d 2 -  1)Ire 2 

23 1 
< d'-~W" 1 1 2  2 - - g d  ( d  . 1 ) / m  2" 
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Therefore, 

m 

m 

1 - ~d4/m 2 

0 

1 
< 3d 2 �9 
- 1 - -~d~(d ~ -  1 ) / . ~  ~'  

1 
< 3d 2 �9 

i - ld4/m2' 

< 3d2/ra, 

< l(d2/m)2 + 3 d 2 / m -  1. 
O 

Since d2/m is nonnegative, d2/m > ~ - 9. [] 

4. H a r d n e s s  of  ODD-MAX-BIT 

Let max (S) denote the lexically maximum string belonging to the finite set S. 
In this section, let exp (k) denote 2< 

LEMMA 4.1. Let d >_ 1. If C is a perceptron in clean form having size s, 
weight w, and order d which recognizes ODD-MAX-BIT f-1 {0, 1} N then 

> iexp { (N- I) l) 
- s \L2fd=/-C-v~7 -- 9)1J 

PROOF. Let x = Xl,..  �9 x x  denote the input to C. We identify the vector 
x with the set X = { i : x i  = 1}. By assumption, C accepts x iff max (X) is 
odd. Let T denote C's threshold gate. Each input to T depends on a set 
S C_ {1 , . . . ,  N} such that 0 < ISl _ d. For each S let w(S) denote the weight 
given to the corresponding input to T (0 if there is no such input). 

Let 

c(X) : ~ ~(s) 
SCX, ISI<_d 

denote the total weight of X .  Then C accepts x iff c(X) > 0. Hence c({1}) _> 1. 
For 0 < i < d, let 

c~(X) = ~2 w(S) 
so_X, ISl=i 
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denote the weight of X due to subsets of size i. Clearly 

c(X)= E c,(x). 
O<i<d 

Suppose w e  have found X such that c(X) = - W  < 0 and max (X) = *, where 
i _< N - 2 m .  Let m = [ d a / ( v / ~ -  9)], and M = {i + 1, i + 3 , . . . , i  + 2 m -  t}. 
We will find Y___M such that c ( X U Y )  >_ 2W. Similarly i fc{X)  > O. we 
will find Y C_ M such that e(XUY)  <_ -2c(X) .  We start with X = { 1 }  
and W __ 1, and we iterate [(N 1)/2m] times to obtain a see X C_ 
{ 1 , . . . , N }  with ]c(X)l > e x p ( [ ( N -  1)/2mJ), so w ___ l e x p ( [ ( N  -- 1)/2mj) = 

}exp ( [ ~ 1 ) .  
It remains to show that the desired set Y always exists. We will consider 

only the case c(X) = - W  < 0, because the other case is entirely similar. Fix 
X, i, m, and M as above. For each nonempty Y _ M, we have c(X U Y) 20.  
For each S _C M let 

b(S) = Z w(R) 
xuR=xos, IRI_<a 

denote the weight due to S. Let 

~ ( z ) =  ave b(s) 
so_Y, Isl=k 

denote the average weight due to a k-element subset of Y. Note for each j > k 
that uk(M)is equal to averc_M, igi=juk(Y). Now 

~ ( x u Y )  = E b(s) 
SCY 

= c(x) + Z b(s) 
sc_Y, l<lSl<_d 

= ~(x)+ E Z b(s) 
l < k < d  SCY, IS]=h 

l < k < d  \ / 

Therefore, for every nonempty Y C_ M we have 

ftYl~ . 
E \ k )ukiY)  = c(X U Y ) .  c(X) >_ W. 

l < k < d  

(4.1) 
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If, for some Y C M we have 

l < k < d  

then c(X  U Y)  > 2W and we are done, so assume that for every Y _C M we 
have 

1<kK_d 
Combining (4.1) and (4.2), we have for every nonempty Y C M 

W ~ l<k<dE (IY')~h(Y) < 3W" 

Recall that for j > k, uk(M) is equal to aveyc_M, jYj=j uk(Y). Therefore, for 

operator 
aveycM, Iyt=j to all three terms in the inequality above, we obtain for 1 _< j _ m 

l < k < d  

Define a dth degree polynomial 

l < k < d  

Then p(0) = 0, and W < p(z) < 3W for z = 1 , 2 , . . . , m .  

By Lemma3.2,  d > V/(v/-~ 9)m. But m = [d2 / (v /~  - 9)1. This contra- 
diction completes the proof that the set Y always exists. [] 

The following theorem is immediate. 

THEOREM 4.2. ODD-MAX-BIT is not recognized by any family of perceptrons 
2 , order n ~ and weight 2 ~( ) having size ~4~) ~ . 

5. A n  orac le  for pNP ~ p p  

The structure of the oracle construction is as follows. We define a test language 

ODD-MAX-ELEMENT A = {0n: max(A (3 {0, 1} ~) ends in a 1}, 
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which clearly belongs to P Np'a. The correspondence between oracle Turing 
machines and circuits is as in Furst et al. (t984), We will just sketch the basic 
idea. We construct an oracle A such that ODD-MAX-ELEMENT a ~ ppA by 
an initial segment argument. In order to defeat a polynomial-time probabilistic 
oracle TM M we choose m such that AN {0, 1} TM is as yet completely undefined. 
By convention we assume that a computation of M includes the oracle answers. 
Fix an input 0 TM. Let N = 2 ~. We will construct a perceptron C of size 
2 p~ weight 1, and order polytog N that simulates M: Its input, consists of 
N = 2 "~ bits: the characteristic sequence of AN{0, 1} ~, For each of the 21~ ~176 
computations of M, we construct an AND-gate that verifies the oracle answe-rs 
in the computation; each such AND-gate has fanin m ~ = potylogN. If a 
computation accepts, then we give its AND-gate weight +1; if it rejects, then 
we give its AND-gate weight - i .  The perceptron C accepts the characteristic 
sequence of A ~ {0, 1} ~ if and only if M accepts 0~iwhen using oracte A. We 
choose A Y/{0, 1} "~ so that C accepts or rejects incorrectly. The construction 
fails only if there is a family of perceptrons having size 2P~176 weight 1, and 
order polylog N which compute the predicate ODD.MAX, BIT. 

We have shown that there is no family of perceptrons having having size 
2 p~176 order polylog N, and weight 1 which compute N-bit instances of the 
predicate ODD-MAX-BIT. Thus the desired oracle must exist. 

Let P NPA[/(~)I denote the class of languages accepted by a deterministi c 
polynomial-time bounded oracle Turing machine that is allowed at most f(n) 
queries to an NP A oracle. The following proposition follows from the standa~:d 
connection; which we sketched above, between oracle Turing machine complex- 
ity and circuit complexity. 

PROPOSITION 5. I. 

o If, for every oracle A, ODD-MAX-ELEMENT A belongs to PP~, ~hen N- 
bit instances of ODD-MAX-BIT can be decided by perceptrons having 
size 2 p~176 weight 1, and order polylog N. 

o If, for every oracle A, P NPAtf(~)1 belongs to ppA, then (2 ](~) -- 1)-bit 
instances of ODD-MAX-BIT can be decided by perceptrons having size 
2 ~~ weight 1, and order n ~ 

THEOREM 5.2. ff f(n) # O(logn) then there exists an oracle A such that 
P NpA[f(n)] is not contained in ppA. 
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PROOF. Suppose that  P NPA[f(n)] ~ ppA. Then (2 f(n) - 1 ) - b i t  instances 

of ODD-MAX-BIT can be decided by perceptrons with size 2 ~~ weight 1, 
and order n ~ Therefore they can be decided by perceptrons in clean form 
with size s = 2 ~~ weight w = 2 ~~ and order d = n ~ By Lemma 4.1, 
w > !2(2ft')-l)/Sd2 Therefore, 

- -  8 * 

~2(2f(~)-2)/sd2 = 2n ~ 
2 

2(2f( n)-2)/8d 2 ,~nO(1) 
3Z 

2(2f(')-2)/sd 2 = 2 ~~ 

(2 s (n )  _ 2 ) / S d  = 

2 f ( ~ ) - 2  = n~ 2, 

2f(n)--2 = nO0), 

2f(~) = n~ 

f (n )  = O(logn).  [:1 

COROLLARY 5.3. There exists an oracle A such that P NPA is not contained in 
ppA. 

The following corollary was obtained independently by Fu (1992). 

COROLLARY 5.4 (INDEPENDENTLY BY FU). There exists an oracle A such 
that PH A is not contained in ppA. 

Because O~ = pNP[log] C PP,  we obtain the following old result of Buss &: 
Hay (1991). 

COROLLARY 5.5 (Buss  AND HAY). There exists an oracle A such that 
(O~) A C ( ~ ) A .  
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