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Abstract .  Suppose that a Boolean function f is computed bya constant 
depth circuit with 2 m AND-, OR-, and NOT-gates--and m rr~ajority- 
gates. We prove that f is computed by a constant depth circuit with 
2 m~ AND-, OR,, and NOT-gatesmand a single majority-gate, which 
is at the root. 

One consequence is that if a Boolean function f is computed by 
an AC ~ circuit plus polylog majority-gates, then f is computed by a 
probabilistic perceptron having polylog order. Another consequence is 
that if f agrees with the parity function on three-fourths of a~ inputs, 
then f cannot be computed by a constant depth circuit with 2 n~ AND-, 
OR-, and NOT-gates, and n~ majority-gates. 

Key  words. Majority-gate; threshold-gate; symmetric gate; circuit; 
parity. 

Subject  classifications. 68Q15. 

1. In troduct ion  

One of the goals of complexity theory is to find ways to reduce the use of one 
resource. Typically this entails a modest increase in some other resources. 

Recently, quasipolynomial size circuits have been the setting for unexpected 
resource tradeoffs (Allender 1989, Allender & Hertrampf 1994, Yao 1990, Beigel 
& Tarui 1994, Tarui 1993, and Beigel et al. 1991). In this paper we show how 
to reduce the number of majority-gates in many kinds of quasipotyn0mial size 
circuits from polylog to 1. 
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For example, consider constant depth quasipolynomial size circuits that 
consist of AND-, OR-, NOT-, and majority-gates. We show how to reduce the 
number of majority-gates from m to 1, while increasing the number of other 
gates by 2 mp~176 and increasing the depth by 2. As a corollary we convert such 
circuits to probabilistic perceptrons having small order. As another corollary, 
we unify the lower bounds of Aspnes et al. (1991), Yao (1985), Hastad (1989), 
and Siu et al. (1993) for computing parity with constant depth circuits, proving 
that if a constant depth circuit consisting of AND-, OR-, NOT-, and majority- 
gates computes parity correctly on three-fourths of all inputs, then the circuit 
must have exponential size or a polynomial number of majority-gates. 

Our result is an exponential improvement on the bounds of Beigel et al. 

(1994). The proof uses the low-degree polynomials developed in that paper 
and an observation of Fortnow & Reingold (1991) in a nontrivial way. 

We also show how to reduce the number of symmetric gates in many kinds 
of quasipolynomial size circuits from O(log log n) to 1. Consider constant depth 
quasipolynomial size circuits that consist of AND-, OR-, NOT-, and MODk- 
gates and symmetric gates. We show how to reduce the number of symmetric 
gates from m to 1, while increasing the number of other gates by 22m polylogn and 
increasing the depth by 1. The proof uses base-B representation in the same 
way as Papadimitriou & Zachos (1983). As a corollary we extend results of Yao 
(1990) and Beigel & Tarui (1994) on ACC, showing that any function computed 
by a constant depth, quasipolynomial size circuit consisting of AND-, OR-, 
NOT-, and MODk-gates and O(log log n) symmetric gates is in fact computed 
by a depth 2, quasipolynomial size circuit with a symmetric gate at the root 
and AND-gates having polylog fanin at the bottom level. 

Our results are for circuits with a single Boolean output gate. Amir et 
aI. (1990) obtained contrasting results for circuits with multiple output gates. 
They proved in a very general setting that m + 1 majority-gates permit such 
circuits to compute more functions than only m majority-gates; in fact, their 
result holds not only for threshold-gates but for any nontrivial gate. 

2. R e p r e s e n t i n g  B o o l e a n  funct ions  

Boolean values are often represented as elements of {0, 1}, 0 denoting false, 
and 1 denoting true. They can also be represented as elements of {-1,1}, 
-1 denoting false and 1 denoting true. Real polynomials or rational functions 
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in either representation can be converted to the other without affecting the 
degree. 

A majority-gate outputs true if more than half of the inputs are true. By 
standard techniques, we will assume that  it is never the case that  exactly half 
of the inputs to a majority-gate are true. 

In the first representation, the majority function is 

( 
MAJ(xl~ . . . ,x~)  = l 

In the second representation, 

1 1 i f ~ x i > : n ,  
0 i f ~ x i < ~ n .  

MAJ(x l , . .  o ,x~) = s g n ( ~  xi), 

where sgn(x) denotes the signum function ( -1  if x < 0, t if x > 0, and 0 if 
x = 0 ) .  

A threshold-gate computes a weighted sum of the inputs and tests whether 
the sum is greater than a threshold. In circuits, a threshold-gate with integer 
weights can be simulated by a majority-gate, because we can use parallel wires 
to simulate weights. Thus our results for circuits with majority-gates hold as 
well for circuits with threshold-gates having small integral weights: The results 
for threshold circuits will not be stated explicitly. 

3. Approximat ions  

Rational approximations were developed by Newman (1964). Low-degree ra- 
tional approximations are an important  toot, which was applied to threshold 
circuit lower bounds by Paturi  & Saks (1994). In order to prove upper bounds, 
Beigel et al. (1994) observed that  small integral coefficients are also important .  

DEFINITION 3.1. A reM-valued function g ( x l , . . .  ,x~) approximates a func- 
tion f ( x l , . . . , x ~ )  with error e i f  for all x l , . . . , x ~  in the domain of f ,  

fg(xl , . . .  ,x~) - f ( x l , . . .  ,x~)i _< ~. 

LEMMA 3.2 (BEIGEL et al. 1994). MAJ(x l~ . . . ,x~)  can be approximated 
with error e by a rational function g( xl  , . . . , x~ ) having degree O(log n log ( l /e))  
and integer coet~cients bounded by 2 ~176 ~log(1/~)). 
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DEFINITION 3.3. 

o The norm of a polynomial is the sum of the absolute values of its coetB- 
dents. 

o The norm of a rational function is the norm of its numerator plus the 
norm of its denominator. 

This definition of norm will be robust enough for our purposes because changing 
between the {0, 1 } representation of Boolean values and the { -1 ,  1} represen- 
tation changes the norm of a degree d rational function by a factor of onIy 
20(d )  

Note that  the value of a polynomial over {0, 1} k or over { -1 ,  1} k is bounded 
by its norm. We need the following easy corollary to Lemma 3.2. 

LEMMA 3.4. Let n be any natural number. M A J ( x l , . . . , x ~ )  can be ap- 
proximated with error e by a rational function g ( x l , . . . , x n )  having norm 
20(log 2 n log (1/r 

PROOF. The number of monomials in a polynomial with n variables and 
degree d is (,~+d'~ Therefore the numerator  and the denominator of the \ d ] "  
rational function in Lemma 3.2 contain n ~176176 monomials, which is 
2 ~176176 The coefficients are also 2 ~176176 [] 

4. Eliminating majority-gates 

Let G be any set of gates that  includes unbounded fanin AND-gates. Let 
ThreshCa(depth  d, size s, majorities m) denote the class of circuits consisting 
of gates in G and majority-gates with depth d, size s, and m majority-gates. 
Let Ca(depth  d, size s) denote ThreshCa(depth  d, size s, majorities 0). 

THEOREM 4.1. Suppose that f is in ThreshCa(depth  d, size s, majorities m). 
Then f is in ThreshCa(depth  d+2, size 2"q~176 +~, majorities 1), where the 
majority-gate is at the root. 
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Taking G = {AND, OR, NOT} and d = O(1), this exponengia!ty improves 
the size bound of Beigel et al. (1994). 

A perceptron is a depth-2 circuit with a threshold-gate at the root and 
AND-gates at the other level. The order of a perceptron is the maximum 
fanin of its AND-gates. The weight of a perceptron is the maximum absolute 
value of its threshold-gate's weights. A probabilistic perceptron has ordinary 
Boolean inputs x l , . . . ,  x~ and random Boolean inputs r l , . . . , rm .  A proba- 
bilistic perceptron computes a Boolean function f if, for all xl . . . . .  x~, for at 
least three-fourths of all r l , . . ,  r,~, the circuit's output is equal to f ( x l ,  . . . .  xn). 
Let G = {AND, OR, NOT}; Tarui (1993) and Beigel et al. (1991) proved that 
every Boolean function computed by a ThreshCa(depth d. size s~ majorities 1) 
circuit where the majority-gate is at the root is, in fact, computed by a proba- 
bilistic perceptron having order (log s) ~ and weight 20~176 The following 
extensions of their resu!t are immediate. 

COROLLARY 4.2. Let G = {AND, OR, NOT}. Every function in 
ThreshCa(depth d, size s, majorities m) is computable by a probabilistic per- 
ceptron having order (m log s) ~ and weight 2(~l~176 

COROLLARY 4.3. Let G = {AND, OR, NOT}. Every function in 
ThreshCa(depth O(1), size quasipolynomial, majorities polylog) is computable 
by a probabiiistic perceptron having polylog order and qnasipolynomial weight. 

Let G = {AND, OR, NOT}. Yao (1985) and nastad (1989) proved that 
Ca(depth O(1), size 2 n~ circuits cannot compute parity correctly on all in- 
puts. This was improved by Cai (1989) and Babai (1987), who showed that 
such circuits cannot compute parity correctly on even three-fourths of all in- 
puts. This was further improved by Aspnes et at. (1991), who showed that 
ThreshCa(depth O(1), size 2 ~~ majorities 1) circuits where the majority gate 
is at the root cannot compute parity correctly on three-fourths of all inputs. Siu 
et al. (1993) proved that ThreshCr O(1), size n ~ majorities n ~ cir- 
cuits cannot compute parity correctly on all inputs. By combining Theorem 4.1 
with the result of Aspnes et al. (1991) we unify the bounds just stated. 

COROLLARY 4.4. Let G = {AND, OR, NOT}. f f  f agrees with parity on three- 

fourths of ali inputs in {0, 1} ~ then f is not in ThreshCa(depth d, size 2 ~(1/~2) , 
majorities n~ 



comput complexity 4 (1994) When do extra majority-gates help? 319 

For comparison, parity can be computed exactly by circuits with O(n ~ 
majority-gates alone (Siu et aI. 1993) or with 2 n~176 AND-, OR-, and NOT- 
gates alone (Hs 1986). In Corollary 4.4, the special case d = O(1) is 
notable. 

COROLLARY 4.5. Constant depth circuits consisting of AND-, OR-, NOT-, 
and majority-gates require either exponential size or a polynomial number of 
majority-gates in order to compute parity correctly on three-fourths of M1 in- 
puts. 

PROOF OF THEOREM 4.1. It will be convenient to assume that  f ' s  argu- 
ments  are in {0, 1} and that  f ' s  result is in { -1 ,  1}. Let f :  {0, 1} n --~ { -1 ,  1} 
belong to ThreshCa(depth  d, size s, majorities rn). We wilI show that  
f = s g n ( p ( f l , . . . ,  re)) where p has norm 2 m(~176 and f l , . . . ,  fe belong to 
Ca(depth  d, size s). (In fact if we view the original circuit as a DAG, f l , . . . ,  fe 
are some of its subgraphs.) That  proves the theorem, because products can be 
computed by AND-gates when inputs are represented in {0, 1}. 

Let ThreshCc(depth  d, size s, majorities m, level k) denote the class 
of ThreshCa(depth  d, size s, majorities m) circuits with majority-gates on 
only levels 0 through k, where level 0 is the root. If f is computed by a 
ThreshCa(depth  d, size s, majorities m, level k) circuit we will construct p and 
f l , . . . ,  fe such that  f = s g n ( p ( f l , . . . ,  f~)), p is a polynomial whose norm is 
bounded by some function Np(k), and f~ , . . . ,  fe belong to Ca(depth  d, size s). 
We will find a recurrence for Np(k), and show that  Np(k) = 2m(~ l~ . The 
theorem follows from that bound, taking k = d. 

We use - 1  to represent false and 1 to represent true. Consider a function 
f computed by a circuit C with majority-gates only on levels 0 through k. Let 
gl , . . .  ,gt, where t < rn, denote the majority-gates on level k. If (bl , . . . ,  bi) E 
{--1, 1} t, we let fbl ..... bt be the function computed by the circuit obtained from 
C when we replace gi by the constant bi for all i, and we let % ..... b~ equal 1 if 
the output  of gi is bi for all i and 0 otherwise. Then 

f = ~ fbl,...,b,% ..... bt. 
(bl ..... b t ) e { - 1 , 1 }  t 

The function fbl ..... b, is the sign of a polynomial p of Ca(depth  d, size s) 
functions, where the norm of p is bounded by h%(k - 1). The function % ..... b, 
is the product  of exactly t factors, each of which is either a majority or its 
complement.  Let c = 1/(rn(2"~Np(k - 1) + 1)). Each majority has at most s 
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inputs,  so it can be approximated within error c by a rational function whose 
norm is 2 ~176 ~)(,~+logNp(k-1))) by Lemma 3.4. 

If a major i ty-gate  is approximated within e by the rational funcfioa r. then 
its complement is approximated within r by the rational function 1 - r, which 
has the same denominator  as r. If r is as in the previous paragraph, then the 
norm of 1 - r is also 2 O((l~ s)(m+logNp(k-1))). 

We approximate the function %,...,bk by the product of the rational functions 
tha t  approximate  the corresponding majorit ies or their complements.  The error 
is at most  (1 + r _ 1 < (1 + r - 1. Furthermore the denominator  is the 
same for each te rm because r and 1 - r have the same denominator.  Call the 
approximation cb~,...,bk. 

Then the function f is approximated by taking the sum of the 2 ~ terms 
of the form fbl,...,b, ch,...,b,. Since ]fb~,...,b,l is bounded by N~(k - 1}, the error in. 
approximating f is bounded by 2"~Np(k 1)((1 + r _ 1), which is less than  
1 by L e m m a  4.6 (proved below) with N = Pi~(k - 1), so the approximation has 

the same sign as f .  
Recall tha t  all the rational functions used in the approximation have the 

same denominator .  We obtain a polynomial that  has the same sign as f by 
mult iplying by the square of that  common denominator.  If N~ bounds the norm 
of the rational functions and Np(k  - 1) bounds the norm of the polynomials p 
tha t  computes fh  ..... ~, then 2"~N~(k - 1)N~ bounds the norm of the resulting 
polynomial,  so 

Np(k )  <_ 2"~Np(k - 1)2 ~176 s)(m+logNp(k-1))) 

Furthermore,  we have Np(0) < s. An easy induction shows tha t  

]Vp(k) = 2 (m+l~176 = 2 m(O(l~ [] 

LEMMA 4.6. Let r = ! / ( m ( 2 m . N  -t- 1)). Then  2"~N((1 ,- c) "~ l) < i 

PROOF. For all real y, ! + y < e y, with equality holding iff y = 0. By 
inverting tha t  inequality and lett ing y = - 1 / ( 1  § x) where z > 9. we obtain 

1 1 1 ),~. 
1 + 1/x > e~--u = ( e ~ ( - ~ )  ~ > (1 + m(x + 1) 

Lett ing x = 2raN, we have 

2raN((1 + ~)m - 1) < 2~N(1 + 2-~:V -1 - 1) = I, 

as claimed. [] 
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5. Eliminating Symmetric Gates 

By applying some simple techniques developed by Papadimitriou & Zachos 
(1983) in the study of # P ,  we will show how to reduce the number of symmetric 
gates in circuits to 1. Let SymmCa(depth d, size s, symmetries m) denote the 
class of circuits consisting of gates in G and symmetric gates with depth d, 
size s, and m symmetric gates. (In this section G need not contain unbounded 
fanin AND-gates.) 

THEOREM 5.1. Suppose that f is in SymmCa(depth d, size s, symmetries m). 
Then f is in SymmCa(depth d + 1, size s 2~+1, symmetries 1), where the sym- 
metric gate is at the root. 

PROOF. In this proof, we write "subcircuit" to mean a subcircuit containing 
only gates in G; subcircuits may have more than one output. Consider any 
circuit C with m symmetric gates, g l , . . . ,g ,~  where the depth of gi-1 is at 
least as great as the depth of gi for i = 2 , . . . , m .  Trying all possible output 
values for g l , . . . ,  gi-1 we find that gi computes a symmetric function of one of 
2 i-1 subcircuits of C. Doing so for all i, we see that it is sufficient to evaluate 
2 "~ - 1 symmetric functions of subcircuits of C and to evaluate a subcircuit 
of C in the case that there is not a symmetric gate at the root. A fortiori, it 
suffices to evaluate 2 TM symmetric functions of subcircuits of C. Let M = 2 m, 
and let Xo, . . . ,  XM-1 respectively denote the sum of the inputs to each of those 
symmetric functions. All of these numbers can be encoded into a single number, 
X = ~ M o l  x iB  i, where B is any number larger than each of the xi's; taking 
B = ~ suffices. The number X, and hence the function f ,  may be computed 
by a single symmetric gate whose inputs are (B M - 1)/(B - 1) subcircuits of 
C. The size of the resulting circuit is at most 

- 1 ) / ( B  - 1 )  = 4 J  - - 1 )  < s [ ]  

ACC is the class of Boolean functions computed by constant-depth 
polynomial-size circuits consisting of AND-, OR-, NOT-, and MODk-gates 
for some positive integer k (the number k may depend on the function but 
not on the input length). Yao (1990) proved that every function in ACC 
is computable by a depth-2 quasipolynomial-size probabilistic circuit with a 
symmetric gate at the root and polylog-fanin AND-gates at the leaves. Let 
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G = {AND, OR, NOT, MODk}; Beigel ~: Tarui (1994) improved Yao~s result, 
showing that every function in SymmCa(depth d, size 8, symmetrics i) where 

the symmetric gate is at the root is, in fact~ computed by a depth-2 2 (l~176 
size deterministic circuit with a symmetric gate at the root and (log s)2~ 
AND-gates at the leaves. By combining Theorem 5.1 with Beige1 and Tarui's 
result, we obtain the following extension. 

COROLLARY 5.2. Let G = { A N D ,  OR, NOT, MODk}. Then every function 
in SymmCa(depth d, size s, symmetrics m) is computable by a depth-2 

2 (2ml~176 -size deterministic circuit with a symmetric gate at the root and 
(2 TM log s) ~~ AND-gates at the leaves. 

The following special case is notable. 

COROLLARY 5.3. Let G = {AND, OR, NOT, MODk}. Then every ihnction in 
SymmCa(depth O(1), size quasipolynomial, symmetrics O(loglog n)) is com- 
putable by a depth-2 qu~sipolynomial-size drcuit with a symmetric gate at the 
root and polylog-fanin AND-gates at the leaves. 

6. E x t e n s i o n s  

When we eliminate majority-gates, it is notable that unbounded-fanin AND- 
gates are not always required. The fanin of the AND-gates at the second level 
of the simulating circuits is bounded by the degree of the polynomial associated 
with the construction. Furthermore, we have noted that the subcircuits which 
feed into those AND-gates are subgraphs of the original circuit. Our size bounds 
are at most squared if we make separate copies of the inputs to those AND- 
gates. Therefore, alt of our results about majority:gates go through for formulas 
as well as for circuits. Our results about symmetric gates go through directly 
for formulas. 

Our results also apply to circuits and formulas with threshold-gates hav- 
ing small weights. Some authors specify polynomial-bounded weights. A more 
general way of requiring small weights is to define the circuit size to be the 
number of wires plus the sum of all weights (then polynomial'size circuits au- 
tomatically have polynomial-bounded weights). Then our resuits go through 
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for threshold-gates in place of majority-gates, because we may convert such 
threshold-gates directly to rational functions with the same norm and degree 
bounds as in Lemma 3.4. 
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