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The Surveillance-Evasion Game of Degree 

J. LEWIN t AND J. V. BREAKWELL 2 

Abstract. T h e  game of degree is analyzed in  a survei l lance-  
evasion problem: the evader strives to escape as soon as possible f rom 

the  pursuer ' s  detect ion circle, while the  pursuer ' s  desire is the  
opposite.  T h e  evader moves with cons tant  speed and  is capable of 

ins tan taneous  direct ion changes. T h e  pursuer  has a minimum 
tu rn- rad ius ,  i ndependen t  of speed, and  can move  forward with any  
speed not  exceeding a m a x i m u m  greater t han  the evader 's  speed. 

T h e  solut ion is surpr is ingly complex,  inc lud ing  regions where  

the  pursuer ' s  speed is optional,  switch envelopes, focal lines, as well 
as chattering by the pursuer  to prevent  the crossing of certain 
barriers. 

K e y  W o r d s .  Pursu i t -evas ion  problems,  differential games, opt imal  
strategies, bounded-s ta te  problems,  barriers. 

1. Introduction 

The first description in the open literature of the surveillance- 
evasion problem was by Dobbie (Ref. 1). A pursuer wishes to keep an 
evader within a specified detection-radius. The evader is assumed to 
move with constant speed but to be capable of instantaneous direction 
changes. The pursuer has a minimum turn-radius, independent of speed, 
and can move forward at any speed not exceeding a given maximum speed 
greater than the evader's speed. The pursuer can stop but  cannot 
reverse. 

Dobbie gave the conditions (with certain minor typographical 
errors) on the speed-ratio and on the ratio of detection-radius to pursuer's 
turn-radius, in order that there exist a surveillance region from which 
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the evader cannot escape. He thus solved the game of kind for the 
surveillance-evasion problem. 

This paper considers the game of degree, in which the evader, if 
he can escape, strives to do so in minimum time, while the pursuer strives 
to maximize this time. 

2. Bas ic  E q u a t i o n s  f o r  the  S u r v e i l l a n c e - E v a s i o n  G a m e  
of  D e g r e e  

A pursuer P wishes to keep an evader E within a specified detection 
radius rD • E is assumed to move with constant speed but  to be capable of 
instantaneous direction changes. P has a min imum turn-radius R, 
independent of speed, and can move at any forward speed not exceeding 
a given maximum speed. He can stop but not reverse. 

I f  7, 7 < 1, is the ratio of evader's speed to pursuer's maximum 
speed, and if/3 is the ratio rD/R, the equations of motion of E relative to 
P, in suitable units in which R = 1, are 

o* = --9192Y q- Y sin ~b, 

:9 = --91 + 9192x + Y cos ~b. 

Here, the y-axis is oriented along the instantaneous direction of P's 
motion (or of his possible motion in case he is standing still); ~b is E's  
direction measured clockwise from the positive y-axis; 91 , 0 ~ 91 ~ 1, 
is P's normalized speed; and 92, --1 ~< 9~ ~< 1, is the normalized 
curvature of P 's  path, ~ 1  indicating a minimum-radius right turn. 
We assume that E wishes to minimize the time r to reach 

~ / ( x  2 + y2)  = r > 

and that P wishes to maximize this time and, if possible, to postpone it 
indefinitely. 

E's  optimal direction ~b* is given in terms of the gradient of the 
optimal 7(x, y) by 

sin ~b*/% = cos ~b*/% = --1/~¢/(% 2 q- %2), 

so that E runs perpendicular to the isochrones, and P 's  optimal controls 
are: 

I~ if ] x r , a - - y % , - - % > O ,  
~1" = otherwise, 
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and 

~o2" = sign(xr v --yr~) when 91" > 0. 

As in the homicidal chauffeur game (Ref. 2), in the interior of any 
region in which ~ has a continuous gradient, 

so that E is travelling along a straight line. Also, as in the homicidal 
chauffeur game, E is running radially outward at game termination, the 
gradient (t~,  -rv) being in this case radially inward. However, this game 
only terminates on that part of the circle r = / 3  on which 

0 = tan-l(x/y) 

lies outside, rather than inside, of the interval 

--cos-ly ~ 0 ~< cos -17- 

In this game, moreover, ~1" = 0 at termination if y < 0; whereas, if 
y > 0, 5vt* = 1 and ~2" = sign x immediately prior to termination, 
imptying that P is turning toward E. 

3, Solution in Some Simple Cases 

The paths and the isochrones for a game for which fi" -}- 7 ~' < 1 are 
shown in Fig. 1. The unshaded regions are obtained by simple backward 
construction of the paths which terminate. The situation in the shaded 
region is more interesting. It should be noted first that the upper right- 
hand path, for example, of the lower unshaded region and the lowest 
path of the upper right-hand unshaded region are both described with E 
running directly toward Q, the center of curvature of P 's  minimum-radius 
right turn. It should then be observed that, if E runs directly toward Q 
from any point in the right half of the shaded region, his rate of approach 
towards Q is independent of P 's  speed qv 1 if P uses ~, = @ 1 and is 
increased by any other choice of ~%. This rate is reduced, of course, if E 
does not run directly toward Q. P can moreover choose a time-history for 
his speed ~v 1 so as to force the relative position of E through the point A, 
~1 being of course nonunique, and this clearly yields the maximum 
duration ~- that P can obtain when E runs toward Q. Should E reach 
the lower boundary of the upper right unshaded region at a point above 
A, this boundary constitutes a compulsory switch-line for P who must 
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Fig. 1. Solution for fl < ~/(1 - -  72); ; optimal paths; ...... isochrones. 

now turn at maximum speed. This switch-line is of the type called 
transition surface by Isaacs, across which the isochrones have continuous 
direction. The isochrones in Fig. 1 have a discontinuous direction only 
on the positive y-axis, which is a dispersal line (DL) from which the 
direction of relative motion is determined by E's choice of Q or its left 
image as a goal. This D L  we may, then, further designate as EDL.  

A quite different case arises for large fi (see Fig. 2), more specifically 
for 

fi > 1 -~ ~¢/(1 --  7,~) -}- 7,(~r -k sin -I 7')- 

In this case, the path terminating at the upper end B (0 = cos -1 7) of 
the usable terminal arc has infinitely large ~/(%:~-k ry2), and thus 
constitutes a barrier, which may be obtained, as shown ~ by Isaacs in the 
homicidal chauffeur game, by winding a string around a circle ~f with 
center Q and radius 7, the string starting along a radius from P. The 
reason for this can be seen in Fig. 3, in which the paths of P and E are 
shown in a fixed reference frame, together with the path of a fictitious 
point P'  moving on c~ directly between P and Q. Since the arc P1PI is 
(I/7)(arc PI"PI'), we see that the arc PI'P/is equal in length to the line 
segment E1EI, which implies the winding string property. 

But ,  in  that game, the string unwinds. 
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This barrier reaches the negative y-axis, and hence, together with 
its left-hand image, forms a closed barrier if 

t3 >~ 1 + ~/(1 -- y~) q- y0r + sin -1 y) zx fa(Y)- 

Optimal paths are defined only below this closed barrier, since E cannot 
escape from the upper enclosed region provided that P makes the 
appropriate full speed turn when E approaches the barrier from above. 
In this case, since Q is inside the detection circle, the paths which 
terminate above the x-axis with a turn arrive from below the x-axis. 
A dispersal line (PDL),  shown by a dotted line, separates P 's  STOP 
region from his T U R N  region, the choice being P's.  Note that this P D L  
reaches the barrier at a point C 1 on the extended lower tangent from P 
to ~g. This  follows from the observation that the angle wound by the 
string from B to C, is equal to ( 1 / y ) ( P B  - -  PC1), which is equal in turn 
to the time of a radial path from C 1 to the detection circle. 

A more interesting case arises if 

k(r) < 5 < k(r), 
where 

k(r)  = ~/(1 -- y") + r(Tr + 2 sin-* r). 

In this case (see Fig. 4), the barrier does not reach the negative y-axis, but  
it recrosses the lower tangent from P to C at a point C~ between P and 

A ---~× 

Fig. 4. Solution for f~(y) < fl < f3(Y) ; ' optimal paths ; ...... isochrones. 
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the point T of contact with 5 .  At C2, the barrier is perpendicular to the 
radius from P, and so ~o 2 changes sign, the barrier being here continued 
by unwinding a string around the left-hand image 5 '  of 5.  This con- 
tinuation meets its reflection on the positive y-axis, thus again completing 
a closed barrier. The optimal paths below the barrier in the STOP 
region on either side of P are straight lines bent around the barrier as far 
as its tangent from P, the barrier here imposing a state constraint on 
E who must avoid, at all costs, entering the region above the barrier. 
Note that, although the barrier above C a is a left-turn path, implying a 
left turn by P for points immediately above the barrier, this left turn is of 
no advantage below the barrier. The part of the positive y-axis below the 
barrier constitutes again an E D L  from which E can choose a left or a 
right path tangent to the barrier. The isochrones have continuous 
direction, except on the E D L  and the left and right PDL's .  

4. So lu t ion  in M o r e  Diff icult  Cases  

We come now to those cases in which there is a simple barrier but 
it is open. We take up first the relatively simple case in which 

fi < 1, but f i2_~72> 1. 

Here, Q is just outside the detection circle and there is a very short 
barrier (see Fig. 5). Any further analytic continuation of this barrier 
would reveal a cusp at the circle 5,  and hence and end to the semi- 
permeable character required. The situation is very similar to that in 
Fig. 1 where there is no barrier, the short barrier being circumvented by 
adjacent turn paths. 

We take up next the cases in which 

1 < ~ <A(~),  
with 

7~ 

f~(r) = V(1--r ' )  + r ( 1  -k T - -  2 sin-it )- 

If /3 is not too much greater than 1, the situation is as illustrated in 
Fig. 6. Here, the P D L  which ends at A is constructible backwards as far 
as a point D at which its tangent passes through P. At D, it is continued 
backward by a rather short switch envelope (SE), with straight lines 
arriving tangent on the lower side, and turn paths leaving the upper side 
towards termination on the detection circle. The switch envelope 
phenomenon seems to have appeared first in Ref. 3. The SE is here 
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Fig. 5. Solut ion for ~/(1 - -  72) < /3 < fz(y);  , opt imal  pa ths ;  ...... i sochrones.  

continued backward to a point G where paths are tangent both above 
and below. G, in turn, is the end of a focal line (FL), which starts at Q. 

The isochrone directions are discontinuous across the FL, forming 
in this ease a ravine which P, the maximizer, endeavors to leave to one 
side or the other, but is frustrated by E, who counteracts P's control 
in order to remain on the FL. For the duration of this motion along the 
FL  toward G, E faces a perpetuated dilemma, in that he must react 
immediately to any changes of strategy by P. 
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Fig. 6, Solut ion for 1 < /3 < f l (~ ' ) ,  fl no t  close to f1(7); ' opt imal  pa ths ;  ...... 
isochrones.  

The FL  between Q and G is, moreover, a circular arc of radius 7- To  
see this, consider a position E, distant r' from Q, and construct O at 
distance 7 from both Q and E (see Fig. 7). Clearly, 

EO -~ E + QO; 

but clockwise rotation of EQ through 90 ° gives the velocity ~8 of E, 

due solely to P 's  right turn. Clockwise rotation of EO and QO through 
90 ° thus yields two velocities ~1 and ~ ,  of magnitude 7, such that 
vl == vz + v3 • Therefore, E can guarantee motion perpendicular to EO, 
i.e., along a circle with center 0 and radius 7, by running perpendicular to 
Qo if P turns. This proves that the FL is an arc of radius 7 and center O, 
and E's direction, in case P turns, is perpendicular to OQ for all points on 
this FL. 

8o9[1613-4-I I* 
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Fig. 7. Construction of the focal line. 

Returning to Fig. 6, the straight and curved relative paths arriving 
tangent to the FL at Q form, as in Figs. 1 and 5, the boundary of a 
region (shaded) in which E runs toward Q and P turns hard right but in 
which P's speed is optional. Note that as fi ~ 1 from above, ~ approaches 
A and the FL, SE, and P D L  all shrink to the point A, with the 
O P T I O N A L  SPEED region rotating into its position in Figs. 1 and 5. 

A further complication arises (see Fig. 8) if 

1 < < A(r), 

but fi is now not too close to the indicated lower limit. The region above 
the barrier near B is now a TURN-A~vVAY region, where a left turn is 
advantageous for P. The T U R N - A W A Y  region is separated from the 
T U R N  region by a P D L  which reaches the barrier at the start of that 
right-turn path whose turn switch-function starts at zero. 

The left-turn paths, however, reach the barrier from above. Here, 
we must assume that P reacts immediately with a right turn to any 
attempt by E to cross the barrier. Therefore, E finds such an attempt 
fruitless and instead chooses ~b to more leftward along the barrier as fast 
as possible, with P using an intermediate 

~% = ~(¢, x, y), with --1 < ~ < 1, 

so as to keep the path immediately adjacent to the barrier. The use of a 
control ~(~, x, y) by P, depending on knowledge of E's control ¢ as well 
as the state (x, y), may be justified by replacing this by a disconitnuous 
closed-loop strategy 

I --1 above t 
~(x, y) = +1 belowt a line ~a parallel to the barrier 
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Fig.  8. So lu t ion  for  1 < fl < fl(Y), fl n o t  close to 1 ; ~ op t ima l  p a t h s  ; ...... i sochrones .  

and a short distance e above it. This  not only prevents E from crossing 
the barrier but  produces a chatter along ~ ,  at a rate equal, in the limit as 
E --~ 0, to the rate along the barrier produced by c~(~b, x, y). The  optimal 
~b, which maximizes this rate, is then calculable. This ~b is also E's  
direction on arrival at the barrier from above on paths which, it should 
be noted, are not tangent to the barrier. This  is because the barrier here, 
in contrast to Fig. 4, imposes a state constraint on P, whose vectogram 
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is straight. Indeed, if x' denotes distance along the barrier and y '  denotes 
a distance above the barrier, 

W ~  m~in(,~,~' + ,~,~' + 1) = 0 = min (%.2' -I- 1) = 0, ¢ 

which implies not only the continuity of ~b, but also the vanishing of P's 
turn switch-function on arrival at the barrier, so that ~b corresponds to 
direct pursuit of P by E. The continuity of E's direction, together with 
the discontinuity in q)2, provides a discontinuity in the direction of the 
relative paths. Knowledge of ~b next determines the arriving paths, which 
are then constructible back to the P DL, together with the isochrones, 
after making use of the time-history along the barrier. 

The TURN-AWAY region extends above the x-axis, and some 
paths will follow the barrier from points somewhat above the x-axis; 
and, as long as y > 0, P uses ~% = - - 1  with intermediate speed 
~l(~b, x, y). Now, ~b corresponds to motion by E directly towards Q', the 
left-hand image of Q, since P's speed switch-function must now vanish 
on arrival at the barrier from the left. The line ~ is now replaced by 
two lines ~ ,  c~ 2 which converge as y --~ 0. The region between ~ and 
~q'2 is a STOP region, and chatter occurs on the line ~ further from the 
barrier. ~2 merely serves to prevent E from crossing the barrier. 

Finally, we take up the case 

fl(r) < ~ < f,(r). 

Here, the barrier crosses the lower tangent from P to c~ at two points C 1 , 
C2 beyond T (see Fig. 9) before arriving (backwards) at 5 .  The tangent 
from P to this barrier touches the barrier at H between C 1 and C~.. 
The part of the barrier between H and C 1 is the source of straight paths 
which proceed radially to the detection circle. Between H and a nearby 
point G, the barrier is the envelope of arriving straight paths. G is the 
termination, as in Figs. 6 and 8, of an FL which is an arc of a circle 
through Q with radius ~,. In this case, moreover, G is the unique point 
of tangency of such an arc with the barrier itself. 

Above and to the right of Q, another mutation takes place. The 
chattering paths along the barrier cease to progress leftward as soon as 
the barrier crosses below the lower tangent from P to c~. In this case, 
indeed, as pointed out by Dobbie (Ref. 1), P can prevent escape by E, 
and the resulting SURVEILLANCE region is bounded on the right by 
our previous right-turn barrier and on the left by a new left-turn barrier 
ending at C~, where the corresponding turn switch-function changes 
sign. Note that, if this switch-function had not changed sign, E would 
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Fig. 9. Solution for f1(7) < [3 < f2(7) ; ) optimal paths; ...... isochrones. 

escape by continuing to run leftward and perpendicular to the left-turn 
barrier after arrival at an intersection with the right-turn barrier. 

The new barrier, like the previous barriers, is obtained by winding 
or unwinding (in this case unwinding) a string around the circle ~ or 
its left-hand image c~, (in this case c~,), the winding or unwinding 
depending on which side of the barrier E is striving to avoid. This is 
apparent from Fig. 10, where, for semipermeability, E's direction is 
perpendicular to the resulting relative motion, and the velocity triangle 
is seen to be congruent to, and rotated through 90 ° from, the triangle 
formed by E, Q', and the tangent from E to c6'. 

To the left of the left-turn barrier, the paths in Fig. 9 are somewhat 
as in Fig. 8, although the TURN-AWAY region is now only a.very 
narrow strip adjacent to the left-turn barrier along its entire length. This 
TURN-AWAY region is separated from the T U R N  region at its lower 
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E 

Fig. 10. Construction for all barriers. 

end by a short switch line (SL) across which isochrone directions are 
continuous. The SL is continued upwards by the P DL. Note that ~" and 
VT become infinitely large as we approach the left-turn barrier from the 
left: P finds it advantageous to get as close as possible to C2, where 
progress leftward along the barrier is infinitely slow. 

The justification for the figures in this section, as in the earlier 
sections, rests on the satisfaction of Isaacs' main equation at all points 
where isochrones have been constructed, as well as on the semiperme- 
ability of the barriers separating the remaining region, if any. This 
includes the composite closed barrier of Fig. 9. The indicated strategies 
are globally optimal for the game of degree, because P is crossing the 
isochrones as slowly as possible, and E as rapidly as possible. Dobbie's 
composite closed barrier in Fig. 9, as well as Dobbie's closed simple 
barriers in Figs. 3 and 4 constitute the solution to the game of kind. 
Without, however, some knowledge of the game of degree, we have no 
assurance that the game of kind has been solved. This knowledge should 
consist either of the complete solution to the game of degree as in Fig. 9, 
or else of some upper bound, guaranteeable by E but depending on 
position, to escape time from any position in the supposed ESCAPE 
region. Thus, it is possible to construct another composite barrier by 
means of a left-turn barrier ending at C1, where the turn switch- 
function also changes sign. The resulting SURVEILLANC E region 
is not the largest that P can maintain~ 

The rather complex figures in this paper have been obtained purely 
by graphical construction. Except in the case of the SE, whose geometrical 
construction must rest on a construction for the direction at each point, 
leading to a geometric integration which could introduce substantial 
error, the isochrones and paths retain reasonable geometric accuracy. 
The requirement, however, that the SE be in turn tangent to an FL  
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which is a circular arc through Q of known radius, preserves a good 
accuracy, not only for the SE but also for the direction of the FL at Q, 
which determines the rest of the figure to the right of Q. These figures 
were constructed using 7 ----- ½ and a few representative vaiues for/3, and 
the reader may trace a certain evolution with increasing/3, starting with 
Fig. 1 and proceeding with Figs. 5, 6, 8, 9, 4, and 2. Nevertheless, 
computer-aided experience (Refs. 3-4) with the homicidal chauffeur 
game suggests that it might be rash to assert that no further interesting 
variations can arise in the present game for some fi, 7'. 
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