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On Functions Whose Local Minima Are Global

I. ZanGg' ANpD M. AvripL?

Abstract. In this paper, necessary and sufficient conditions for
2 local minimum to be global are derived. The main result is that a
real function, defined on a subset of R”, has the property that every
local minimum is global if, and only if, its level sets are lower-
semicontinuous point-to-set mappings.
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1. Introduction

The family of real functions on R® whose local minima are global
is of considerable interest in optimization. The purpose of this work is to
present characterizations of such functions by a property, called lower
semicontinuity of their level sets. Semicontinuity of point-to-set
mappings has been used in optimization theory for various purposes
[see, for example, Dantzig, Folkman, and Shapiro (Ref. 1) Meyer
(Ref. 2), Hogan (Ref. 3), and Zangwill (Ref. 4)]. Here, we propose still
another use of this concept.

2. Definitions

Let f be a real function on a subset C of R® and let « be a real
number. Consider the level sets of f

L(2) = {x:xe C, f(x) < of (H
and the set
G={a:ae R Lia) # o). (2)
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It follows that L(«) is a point-to-set mapping of points in G into subsets
of R*. We have then (Ref. 2) the following definition.

Definition 2.1. The point-to-set mapping L/(«) is said to be lower
semicontinuous (Isc) at a point o € G if x € L{«), {o'} C G, {o*} — « imply
the existence of a natural number K and a sequence {#%} such that

velfd), i=KK11l., ad {}—>ax 3)

If L («) is Isc at every a € G, it is said to be Isc on G.
Let By(x) C R" denote an open ball with radius 6 centered around x.

Definition 2.2. A point ¥€ C is a local minimum of f if there
exists 2 8 > 0 such that

f(x) = (%) @

for every x € C " By(%), and it is a global minimum of f on C if (4) holds
for every x € C.

3. Results

Theorem 3.1. Let f be a real function on CCR*, and let
& = f(¥), ¥ € C. Suppose that L («) is Isc at &. If #is a local minimum of £,
then it is also a global minimum of f on C.

Proof. Suppose that the hypotheses hold and & is not a global
minimum of fon C. Hence, there exists a point & € C such that

F(®) < f(®). (3)
Define the sequence {a?} by
of = (1) @ + (1 — ) f@E], =12 (6)
Clearly,
lim{e’} = f(¥) = & ()
and % € L (7). From (5) and (6), it follows that
F® <o <f@, i=12. (®)

and & e L{a?), i = 1, 2,..., hence {o*} C G.
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Since L) is assumed to be Isc at &, there exists a natural number K
and a sequence {x’} converging to ¥ such that x* e L(of) for i = K,
K J-1,.... Hence,

f) < o i=KK+1..; ©

and, by (8),
fo) < f@®, i=KEK-+1.. (10)
Since {x?} — &, for a sufficiently small § > 0 there exists a natural number
K,suchthat x* € C N By(%), 7 = K, K; -+ 1,...; and, by the hypotheses,
@) = f(7), i=K,,Ky+ L (11)

contradicting (10). 4

Lemma 3.1. Let f be a real function on C C R”, and let a € G,
{o'} C G, {o*} - & If f(x) < & then there exists a natural number K
and a sequence {x%} such that (3) holds.

Proof. Since f(x) < & and {o’} — &, there is a natural number K
such that

) <of, i=KK+1,.. (12)

Hence, the sequence {x'}, constructed by letting x* = x for all 7, satisfies
(3). <

Corollary 3.1. Let f and & be defined as in Lemma 3.1. If
f(x) < afor every x € L(&), then L{«) is Isc at &

Proof. Follows directly from Definition 2.1 and Lemma 3.1. O

Theorem 3.2. Let f be a real function on C C R* If every x € C
satisfying f(x) = & is either a global minimum of f on C or it is not a
local minimum of £, then L{«) is Isc at a.

Proof. We have to show that, for every x € L(a) and {o'} — &,
{a®} C G, there exists a sequence {x%} with the required properties for
lower semicontinuity of L(«) at & The existence of such a sequence for
x € L{&) such that f(x) < & is assured by Lemma 3.1. Consider, there-
fore, points satisfying

S =a. (13)
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Suppose first that x is a global minimum of f on C. Then, every sequence
{o} C G, {o’} — &, must satisfy

o Za, i=1,2,.. (14)
Hence, we can construct the desired sequence {x?} by letting
W=, =1, 2. (15)

Suppose now that «x is not a local minimum of f on C. Taking the sequence
of open balls B,,(x) with radii

S(B) = 1k, k=1,2,., (16)
it follows that there exists a sequence {£*} converging to x such that

£ e C M Byp(x), k=1,2,.., an
and
@) < fx)=a, k=12... (18)
Now, from (18) and the convergence of {o?} to & follows the existence of a
K, such that
@ <o, i=K,6K+1,... (19)

For every of, 7 = K, + 1,..., of the sequence {o’}, let &% be defined in the
following way: Choose k() such that

k(i) = sup{k: f(£*) < of} (20
if a finite supremum exists; otherwise, let
Ky — ki —1) + 1, @1
and let
: 92’1, 1 == Is"-) K}. s
YT, =K +1,. (22)

Let us show now that {x’} converges to x; i.e., for any positive A, there
exists a natural number K(}) such that

x% € By(x), i = K@), K(A) + 1,.... (23)
Define

max{k: 8k — 1) = 1/(k — 1) > A} if A <1,

MO=1""% a1,

(24)
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Then, Ba(;;()‘))(x) C B,\(x),
fEW) <a, (25)

and we can find a K(2) > K, such that
FEO) <o, i = KO, RO) 4 Lo . (26)

Consequently, one of the following situations may occur.

() There exists ani >> K(X) for which &(z) is obtained by (20). Then,
for i > 1, we get from (20), (21), and (26) that k(i) > k(}) and

# € Byian(x) C Bagan(x) C Baf#). (27)
Hence,

®eByx), =121+ 1. (28)

(i) Forall/ > K()), the elements of the sequence {x%} are chosen by
(21) and (22). Clearly, for 7 > K(}), the &* are consecutively taken from
the sequence {#*} which converges to x.

In both situations, therefore, {x’} converges to x and

delfd), =K, Ky +1,.. (29)

Let us illustrate now, by a simple example, a function having a local
minimum which is not global and for which the above theorem fails to
hold. The function appearing in Fig. 1 has a nonglobal local minimum

at £ and a global minimum at x*. Also, note that f(£) = f(#) = 0. Let
& = 0, and take the sequence {o’} whose elements are

of = (1) f(x®), i=1,2.. (30)

£{x)

SN\

£ x x* S

Fig. 1. Function having a nonglobal local minimum.
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Clearly, {o*} C G and {o?} — &. The point £ is contained in L,0);
but, in every sequence {x%} such that x* € L (o) for sufficiently large 7, one
must have ¥* > ¥, and there is no such sequence which would converge
to £. Hence L/(«) is not Isc at &.

Corollary 3.2. Let f be a real function on C C R». If every local
minimum of fis a global minimum of f on C, then Ly«) is Isc on G.

From Theorems 3.1, 3.2 and Corollary 3.1, we immediately get the
following characterization theorem of functions whose local minima
are global.

Theorem 3.3. Let f be a real function on C C R Every local
minimum of f is a global minimum of f on C iff L(«) is lower semi-
continuous on G.

The above results also suggest an alternative characterization
theorem.

Theorem 3.4. Let f be a real function on C C R”. Every local
minimum of f is a global minimum of f on C iff, for any two points
#eC, ¥e C such that f(#) < f(X), there exists a sequence {x%} C C,
{x*} — & satisfying

JO) <A fE + A =1/ &), i=12... (1)

Proof. Suppose that every local minimum of fis a global one on C.
By Corollary 3.2, it follows that L/(«) is Isc on G. Hence, for the sequence
{of} C G given by

o = [ f®) + (1 — 1) f@ =12 (32)

there exists a natural number K and a sequence {£#} C C such that
f(&) < of for i = K, K + 1,... . It follows that the sequence whose
elements are x* = £fori=1,..., K~ land x* =& for7 = K, K 4 1,...
will satisfy (31). Conversely, let f(&) << f (%), and suppose that a sequence
{x*} C C, converging to ¥ and satisfying (31), exists. Assume that ¥ is a
local minimum of f which is not global. Hence, there exists a § > 0 such
that

£5) = £®) (33)

for every x € C N By(x). The assumed sequence {x’} C C satisfying (31)
also satisfies

) <f(®), i=12.. (34)

But, {or sufficiently large 4, we must have x? € C N By(X), contradicting
(33). 0
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It is well known that every local minimum of a convex function
defined on a convex subset C C R” is a global one. Many generalizations
of convex functions have been proposed which have this property. One
of them is the family of strictly quasiconvex functions (Ref. 5) defined as
follows: A real function f on a convex set C C R" is said to be strictly
quasiconvex on C'if §e C, ke C, f(&) < f(¥)and 0 < A < 1 imply that

fO& + (1 —)F) < f(®). (35

Let us outline now a proof that, for a strictly quasiconvex function, L («)
is Isc on G.

Theorem 3.5. Let f be a real strictly quasiconvex function on a
convex set C C R”. Then, L(«) is lower semicontinuous on G.

Proof. Let ae G, {«} C G, {o'} - & By Lemma 3.1, for every x
such that f(x) < &, there exists a sequence {x'} with the required
properties. Let us consider, therefore, only points # such that /(%) = &
If % is a global minimum of f on C, then

o =a  i=12... (36)

Hence, we can take x° == & for all 7. If & is not a global minimum, then
there is at least one point # € C such that

(8) < f®) =& (37)
Since f is strictly quasiconvex, we have
FOF -+ (1 — VF) < () (38)

for every 0 << A < 1. Since C is convex, we can take a sequence whose
elements are

& = [(RF + (1 — UR)E], k=12,.. (39)
Clearly, {#*} — ¥ and, by (38),
FIJRE + (1 — UR)E] = f(#) < f®) =&, k=1,2.. (40)

The rest of the proof is the same as in Theorem 3.2 and will not be
repeated here. [:]
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