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On Functions Whose Local Minima Are Global 

I .  ZANG 1 AND M .  AVRIEL 2 

Abstract .  In this paper, necessary and sufficient conditions for 
a local minimum to be global are derived. The main result is that a 
real function, defined on a subset of R ~, has the property that every 
local minimum is global if, and only if, its level sets are lower- 
semicontinuous point-to-set mappings. 
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1. I n t r o d u c t i o n  

The family of real functions on R ~ whose local minima are global 
is of considerable interest in optimization. The purpose of this work is to 
present characterizations of such functions by a property, called lower 
semicontinuity of their level sets. Semicontinuity of point-to-set 
mappings has been used in optimization theory for various purposes 
[see, for example, Dantzig, Fotkman, and Shapiro (Ref. 1) Meyer 
(Ref. 2), Hogan (Ref. 3), and Zangwill (Ref. 4)]. Here, we propose still 
another use of this concept. 

2. Def in i t ions  

Let f be a real function on a subset C of R ~ and let a be a real 
number. Consider the level sets of f 

r s 6 )  = {~: x ~ C,f(~) << 4 (1) 
and the set 

G = {~: ~ ~ R,  Zf(~) ~ ~}.  (2) 
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It  follows that Li(~ ) is a point-to-set mapping of points in G into subsets 
of R *~. We have then (Ref. 2) the following definition. 

D e f i n i t i o n  2.1. The  point-to-set mappingLl(~) is said to be lower 
semicontinuous (lsc) at a point c¢ ~ G if x E Li(oO, {ai} C G, {~i} -+  ~ imply 
the existence of a natural number  K and a sequence {x i} such that  

x ~ cL~(o~i), i = K,  K 4- 1,..., and {x i} --~ x. (3) 

IfL/(~) is lsc at every ~ c G, it is said to be lsc on G. 
Let  Bs(x)  C R ~ denote an open ball with radius 3 centered around x. 

De f in i t i on  2.2. A point ~ c C is a local min imum of f if there 
exists a 3 > 0 such that 

f (x )  > f ( ~ )  (4) 

for every x E C c~ B~(X), and it is a global min imum o f f  on C if (4) holds 
for every x ~ C. 

3 .  R e s u l t s  

T h e o r e m  3.1. Let  f be a real function on C C R  ~, and let 
a = f (2 ) ,  2 e C. Suppose thatLt(a)  is lsc at &. I f  ~ is a local min imum of f ,  
then it is also a global min imum o f f  on C. 

P r o o f .  Suppose that  the hypotheses hold and ~ is not a global 
minimum o f f  on C. Hence, there exists a point 2 ~ C such that 

Define the sequence {cJ} by 

f(2) < f ( g ) .  (5) 

Clearly, 

~i = [(1/i) f (~)  + (1 --  1/i) f(2)], i = 1, 2 ..... (6) 

1.im{~ i} = f ( ~ )  - -  & 

and ~ ~ Li(& ). F r o m  (5)  a n d  (6) ,  it follows that 

f(~) ~< ~i < f(~), i = 1, 2 ..... 

and 2 e Lt(o~i), i = 1, 2 ..... hence {o~ i} C G. 

(7) 

(8) 
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Since L1(a ) is assumed to be lsc at &, there exists a natural number  K 
and a sequence {x i} converging to 2 such that x i ~ L1(d ) for i = K,  
K + 1 . . . . .  Hence, 

f ( x  ~) <~ o~ ~, i = K, K + 1 . . . .  ; (9) 

and, by (8), 

f ( x  ~) < f(2) ,  i = K, K + 1,.... (t0) 

Since {x i} -+ 2, for a sufficiently small 8 > 0 there exists a natural number  
Ks such that x ~ ~ C c3 B,(2),  i -~ K s ,  Ks + 1,...; and, by  the hypotheses, 

f ( x  i) >~ f(~), i = K , ,  Ks + 1,..., (11) 

contradicting (10). [~ 

L e m m a  3.1. Let  f be a real function on C C R n, and let & ~ G, 
{~i} C G, {c~ ~} --+ &. If  f ( x )  < &, then there exists a natural number  K 
and a sequence {x ~} such that (3) holds. 

P r o o f .  S ince f (x )  < & and {c~ ~} --~ &, there is a natural number  K 
such that 

f (x)  ~< d,  i = K, K + 1 ..... (12) 

Hence,  the sequence {xi}, constructed by letting x i = x for all i, satisfies 
(3). 

Corollary 3.1. Let f and & be defined as in L e m m a  3.1. I f  
f ( x )  < ~ for every x ~ L1(&), then L](~) is lsc at &. 

P r o o f .  Follows directly from Definition 2.1 and Lemma 3.1. [] 

T h e o r e m  3.2. Let  f be a real function on C C R '~. If  every x ~ C 
satisfying f ( x )  = & is either a global min imum o f f  on C or it is not a 
local min imum of f ,  then L1(c~ ) is Isc at &. 

P r o o f .  We have to show that, for every x ~ L1(& ) and {~} ~ &, 
{~i} C G, there exists a sequence {x i} with the required properties for 
lower semicontinuity of L1(~ ) at &. The  existence of such a sequence for 
x ~LI(& ) such t h a t f ( x )  <: & is assured by  Lemma 3.1. Consider, there- 
fore, points satisfying 

= &. (13)  
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Suppose first that x is a global min imum o f f  on C. Then,  every sequence 
{ai} C G, {a ~} ~ &, must  satisfy 

c~ i />  &, i = 1, 2 ..... (14) 

Hence, we can construct the desired sequence {x i} by letting 

x i = x ,  i =  1,2 ..... (15) 

Suppose now that x is not a local minimum o f f  on C. Taking the sequence 
of  open balls Be(k)(x)  with radii 

8(k) = 1/k, k = 1, 2 ..... (16) 

it follows that there exists a sequence {kk} converging to x such that 

~k ~ C n B~(~)(x), k = 1, 2,..., (17) 

and 

f (~k)  < f ( x )  = S, k = 1, 2,.... (18) 

Now, from (18) and the convergence of {o~ ~} to & follows the existence of a 
K1 such that 

f(kl) ~ c~', i = / £ 1 , / £ 1  + 1,.... (19) 

For every o~ i, i = K1  + 1,..., of the sequence {ai}, let x i be defined in the 
following way: Choose k(i) such that 

~(i) = sup{k: f(~k) ~< ~} (20) 

if a finite supremum exists; otherwise, let 

k'(i) = k(i - -  1) + 1, (21) 

and let 

x' ~*' i = 1 ..... /£1, (22) 
= ~( i ) ,  i = K 1 + 1,.... 

Let  us show now that {x ~} converges to x; i.e., for any positive A, there 
exists a natural number  K(A) such that 

x ~ ~ Ba(x), i = K(A), K(A) -t- 1,.... (23) 

Define 

/~(A) --- t max{k: 8(k -- 1) = 1/(k - -  1) > )~} if h < 1, (24) 
~1 if ~ > 1 .  
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Then,  Bs(~C~))(x) C B a ( x ) ,  

f ( ~ a ) )  < a, (25) 

and we can find a K(h) /> K 1 such that 

f(.~(a)) ~< a,, i = K(A), K(h) + 1,.... (26) 

Consequently,  one of the following situations may occur. 

(i) There  exists an ~ >~ K(A) for which/~(~) is obtained by (20). Then,  
for i ~> ~, we get f rom (20), (21), and (26) that k(i) >/h(;~) and 

~(~) E B~(~(~))(x) C B~(~(~))(x) C B ~ ( x ) .  (27) 

Hence, 
x i ~ B a ( x ) ,  i = ~, i -t- 1 ..... (28) 

(ii) For all i >~ K'(A), the elements of the sequence {x ~} are chosen by 
(21) and (22). Clearly, for i / >  K(~), the x i are consecutively taken from 
the sequence {~k} which converges to x. 

In  both situations, therefore, {x i} converges to x and 

x ¢ ~ Ls(~), i = K~,/£1 + 1,.... (29) 

Let  us illustrate now, by a simple example, a function having a local 
min imum which is not gIobal and for which the above theorem fails to 
hold. The  function appearing in Fig. 1 has a nonglobal local min imum 
at k and a global min imum at x*. Also, note t h a t f ( k )  = f ( 2 )  = 0. Let  

= 0, and take the sequence {~i} whose elements are 

o~ ~ = ( 1 / i ) f ( x * ) ,  i -.-= 1, 2 ..... (30) 

f(x) 

> 
X 

Fig. 1. Function having a nonglobal local minimum. 
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Clearly, {a¢} C G and {~¢} ~ &. The  point ~ is contained in Ll(O); 
but, in every sequence {x ¢} such that x ¢ ~ LI(~  ) for sufficiently large i, one 
must  have x i > ~, and there is no such sequence which would converge 
to ~. HenceL](~) is not lsc at & 

C o r o l l a r y  3.2. L e t f  be a real function on C C R ~. If  every local 
minimum o f f  is a global minimum o f f  on C, then Lj(~) is lsc on G. 

From Theorems 3.1, 3.2 and Corollary 3.1, we immediately get the 
following characterization theorem of functions whose local minima 
are global. 

T h e o r e m  3.3. Let  f be a real function on C C R ~. Every local 
min imum of f is a global minimum of f on C iff L](o 0 is lower semi- 
continuous on G. 

The  above results also suggest an alternative characterization 
theorem. 

T h e o r e m  3.4. Let  f be a real function on C C R ~. Every local 
minimum of f is a global minimum of f on C iff, for any two points 
2 ~ C, 2 c  C such that f ( 2 )  < f ( g ) ,  there exists a sequence {x i} C C, 
{x ¢} --~ g satisfying 

f ( x  i) <~ [(1/i)f(;) + (1 -- 1/i)f(g)], i = 1, 2 ..... (31) 

P r o o f .  Suppose that every local minimum o f f  is a global one on C. 
By Corollary 3.2, it follows that LI(~ ) is Isc on G. Hence, for the sequence 
{o~ i} C G given by 

c~ = [(1/i)f(~) ~- (1 -- 1/i)f(~)], i = 1, 2 , . ,  (32) 

there exists a natural number  K and a sequence {~} C C such that 
f(~i)  <~ ai for i = K, K -+- 1 , . . . .  I t  follows that the sequence whose 
elements a r e x  i = ~ f o r i = l  .... , K - - 1  a n d x  i = k  i f o r i = K , K + l , . . .  
will satisfy (31). Conversely, let f ( 2 )  < f (2 ) ,  and suppose that a sequence 
{x i} C C, converging to ~ and satisfying (31), exists. Assume that ~ is a 
local minimum o f f  which is not global. Hence, there exists a 8 > 0 such 
that 

f(x) >~ f (2)  (33) 

for every x ~ C (3 B~(g). The  assumed sequence {x i} C C satisfying (31) 
also satisfies 

f ( x  ~) < f(~), i = 1, 2,.... (34) 

But, for sufficiently large i, we must  have x i ~ C c3 B~(2), contradicting 
(33). []  
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It  is well known that every local min imum of a convex function 
defined on a convex subset C C R n is a global one. Many generalizations 
of convex functions have been proposed which have this property. One 
of them is the family of strictly quasiconvex functions (Ref. 5) defined as 
follows: A real function f on a convex set C C R ~ is said to be strictly 
quasiconvex on C if 2 ~ C, ~ ~ C, f (2) < f (2) and 0 < ;~ < 1 imply that 

f(h2 %- (1 -- A)~) < f(2). (35) 

Let  us outline now a proof that, for a strictly quasiconvex function, Lt(c~ ) 
is lsc on G. 

T h e o r e m  3.5. Le t  f be a real strictly quasiconvex function on a 
convex set C C R ~. Then,  Lt(~ ) is lower semicontinuous on G. 

P r o o f .  Le t  & e G, {cJ} C G, {cJ} --* &. By Lemma 3.1, for every x 
such that f ( x )  < 5, there exists a sequence {x i} with the required 
properties. Let  us consider, therefore, only points ~ such t h a t f ( ~ )  = 5. 
I f  2 is a global min imum o f f  on C, then 

~i >/5, i = 1, 2,.... (36) 

Hence, we can take x t == ~" for all i. I f  2 is not a global minimum, then 
there is at least one point £ e C such that 

f(~) < f(~) = 5. (37) 

Since f is strictly quasiconvex, we have 

f(A2 -k (t -- A)g) < f(~) (38) 

for every 0 < h < 1. Since C is convex, we can take a sequence whose 
elements are 

~ -= [(1/k)~? %- (1 - -  1 / k ) g ] ,  k = 1,  2 . . . . .  ( 3 9 )  

Clearly, {&k} _~ ~ and, by (38), 

f[(1/k)~ %- (1 ....... l/k)2] : - f ( ~ )  < f(~) = 5, k = 1, 2,.... (40) 

The  rest of the proof is the same as in Theorem 3.2 and will not be 
repeated here. [] 
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