On Functions Whose Local Minima Are Global

I. Zang¹ and M. $Avriel^2$

Abstract. In this paper, necessary and sufficient conditions for a local minimum to be global are derived. The main result is that a real function, defined on a subset of R^n , has the property that every local minimum is global if, and only if, its level sets are lower-semicontinuous point-to-set mappings.

Key Words. Global optimality, nonconvex programming, pointto-set maps, mathematical programming, nonlinear optimization.

1. Introduction

The family of real functions on \mathbb{R}^n whose local minima are global is of considerable interest in optimization. The purpose of this work is to present characterizations of such functions by a property, called lower semicontinuity of their level sets. Semicontinuity of point-to-set mappings has been used in optimization theory for various purposes [see, for example, Dantzig, Folkman, and Shapiro (Ref. 1) Meyer (Ref. 2), Hogan (Ref. 3), and Zangwill (Ref. 4)]. Here, we propose still another use of this concept.

2. Definitions

Let f be a real function on a subset C of \mathbb{R}^n and let α be a real number. Consider the *level sets* of f

$$L_f(\alpha) = \{x \colon x \in C, f(x) \leqslant \alpha\}$$
(1)

and the set

$$G = \{ \alpha \colon \alpha \in R, L_f(\alpha) \neq \emptyset \}.$$
(2)

¹ Instructor, Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, Israel.

² Research Associate, Center for Operations Research and Econometrics, University of Louvain, Heverlee, Belgium; and Department of Chemical Engineering, Technion, Israel Institute of Technology, Haifa, Israel.

^{© 1975} Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission of the publisher.

It follows that $L_f(\alpha)$ is a point-to-set mapping of points in G into subsets of \mathbb{R}^n . We have then (Ref. 2) the following definition.

Definition 2.1. The point-to-set mapping $L_f(\alpha)$ is said to be lower semicontinuous (lsc) at a point $\alpha \in G$ if $x \in L_f(\alpha)$, $\{\alpha^i\} \subset G, \{\alpha^i\} \rightarrow \alpha$ imply the existence of a natural number K and a sequence $\{x^i\}$ such that

 $x^i \in L_f(\alpha^i), \quad i = K, K+1, \dots, \quad \text{and} \quad \{x^i\} \to x.$ (3)

If $L_{f}(\alpha)$ is lsc at every $\alpha \in G$, it is said to be lsc on G.

Let $B_{\delta}(x) \subset \mathbb{R}^n$ denote an open ball with radius δ centered around x.

Definition 2.2. A point $\overline{x} \in C$ is a local minimum of f if there exists a $\delta > 0$ such that

$$f(x) \ge f(\bar{x}) \tag{4}$$

for every $x \in C \cap B_{\delta}(\overline{x})$, and it is a global minimum of f on C if (4) holds for every $x \in C$.

3. Results

Theorem 3.1. Let f be a real function on $C \subseteq \mathbb{R}^n$, and let $\bar{\alpha} = f(\bar{x}), \bar{x} \in C$. Suppose that $L_f(\alpha)$ is lsc at $\bar{\alpha}$. If \bar{x} is a local minimum of f, then it is also a global minimum of f on C.

Proof. Suppose that the hypotheses hold and \overline{x} is not a global minimum of f on C. Hence, there exists a point $\tilde{x} \in C$ such that

$$f(\tilde{x}) < f(\bar{x}). \tag{5}$$

Define the sequence $\{\alpha^i\}$ by

$$\alpha^{i} = [(1/i) f(\tilde{x}) + (1 - 1/i) f(\bar{x})], \quad i = 1, 2, \dots .$$
 (6)

Clearly,

$$\lim_{i \to \infty} \{\alpha^i\} = f(\bar{x}) = \bar{\alpha} \tag{7}$$

and $\bar{x} \in L_t(\bar{\alpha})$. From (5) and (6), it follows that

$$f(\tilde{x}) \leqslant \alpha^{i} < f(\bar{x}), \qquad i = 1, 2, ...,$$
(8)

and $\tilde{x} \in L_j(\alpha^i)$, $i = 1, 2, ..., hence {\alpha^i} \subset G$.

Since $L_f(\alpha)$ is assumed to be lsc at $\bar{\alpha}$, there exists a natural number K and a sequence $\{x^i\}$ converging to \bar{x} such that $x^i \in L_f(\alpha^i)$ for i = K, $K + 1, \ldots$. Hence,

$$f(x^i) \leqslant \alpha^i, \qquad i = K, K+1, \dots; \tag{9}$$

185

 \Box

and, by (8),

$$f(x^i) < f(\bar{x}), \quad i = K, K+1, \dots$$
 (10)

Since $\{x^i\} \to \bar{x}$, for a sufficiently small $\delta > 0$ there exists a natural number K_δ such that $x^i \in C \cap B_\delta(\bar{x})$, $i = K_\delta$, $K_\delta + 1,...$; and, by the hypotheses,

$$f(x^i) \geqslant f(\bar{x}), \quad i = K_\delta, K_\delta + 1, ...,$$
 (11)

contradicting (10).

Lemma 3.1. Let f be a real function on $C \subset \mathbb{R}^n$, and let $\bar{\alpha} \in G$, $\{\alpha^i\} \subset G, \{\alpha^i\} \to \bar{\alpha}$. If $f(x) < \bar{\alpha}$, then there exists a natural number K and a sequence $\{x^i\}$ such that (3) holds.

Proof. Since $f(x) < \bar{\alpha}$ and $\{\alpha^i\} \rightarrow \bar{\alpha}$, there is a natural number K such that

$$f(x) \leqslant \alpha^{i}, \qquad i = K, K + 1, \dots$$
 (12)

Hence, the sequence $\{x^i\}$, constructed by letting $x^i = x$ for all *i*, satisfies (3). \triangleleft

Corollary 3.1. Let f and $\bar{\alpha}$ be defined as in Lemma 3.1. If $f(x) < \bar{\alpha}$ for every $x \in L_t(\bar{\alpha})$, then $L_t(\alpha)$ is lsc at $\bar{\alpha}$.

Proof. Follows directly from Definition 2.1 and Lemma 3.1.

Theorem 3.2. Let f be a real function on $C \subset \mathbb{R}^n$. If every $x \in C$ satisfying $f(x) = \bar{\alpha}$ is either a global minimum of f on C or it is not a local minimum of f, then $L_t(\alpha)$ is lsc at $\bar{\alpha}$.

Proof. We have to show that, for every $x \in L_f(\bar{\alpha})$ and $\{\alpha^i\} \to \bar{\alpha}, \{\alpha^i\} \subset G$, there exists a sequence $\{x^i\}$ with the required properties for lower semicontinuity of $L_f(\alpha)$ at $\bar{\alpha}$. The existence of such a sequence for $x \in L_f(\bar{\alpha})$ such that $f(x) < \bar{\alpha}$ is assured by Lemma 3.1. Consider, therefore, points satisfying

$$f(x) = \bar{\alpha}. \tag{13}$$

Suppose first that x is a global minimum of f on C. Then, every sequence $\{\alpha^i\} \subset G, \ \{\alpha^i\} \rightarrow \bar{\alpha}, \ \text{must satisfy}$

$$\alpha^i \geqslant \bar{\alpha}, \quad i = 1, 2, \dots.$$
 (14)

Hence, we can construct the desired sequence $\{x^i\}$ by letting

$$x^i = x, \quad i = 1, 2, \dots$$
 (15)

Suppose now that x is not a local minimum of f on C. Taking the sequence of open balls $B_{\delta(k)}(x)$ with radii

$$\delta(k) = 1/k, \quad k = 1, 2, ...,$$
 (16)

it follows that there exists a sequence $\{\hat{x}^k\}$ converging to x such that

$$\hat{x}^k \in C \cap B_{\delta(k)}(x), \quad k = 1, 2, ...,$$
 (17)

and

$$f(\hat{x}^k) < f(x) = \bar{\alpha}, \qquad k = 1, 2, \dots.$$
 (18)

Now, from (18) and the convergence of $\{\alpha^i\}$ to $\bar{\alpha}$ follows the existence of a K_1 such that

$$f(\hat{x}^1) \leq \alpha^i, \quad i = K_1, K_1 + 1, \dots.$$
 (19)

For every α^i , $i = K_1 + 1,...$, of the sequence $\{\alpha^i\}$, let x^i be defined in the following way: Choose $\bar{k}(i)$ such that

$$\bar{k}(i) = \sup\{k: f(\hat{x}^k) \leqslant \alpha^i\}$$
(20)

if a finite supremum exists; otherwise, let

$$\bar{k}(i) = \bar{k}(i-1) + 1,$$
 (21)

and let

$$x^{i} = \begin{cases} \hat{x}^{1}, & i = 1, \dots, K_{1}, \\ \hat{x}^{k(i)}, & i = K_{1} + 1, \dots \end{cases}$$
(22)

Let us show now that $\{x^i\}$ converges to x; i.e., for any positive λ , there exists a natural number $K(\lambda)$ such that

$$x^i \in B_\lambda(x), \quad i = K(\lambda), K(\lambda) + 1, \dots$$
 (23)

Define

$$\hat{k}(\lambda) = \begin{cases} \max\{k: \,\delta(k-1) = 1/(k-1) > \lambda\} & \text{if } \lambda < 1, \\ 1 & \text{if } \lambda \ge 1. \end{cases}$$
(24)

Then, $B_{\delta(k(\lambda))}(x) \subset B_{\lambda}(x)$,

$$f(\hat{x}^{\hat{k}(\lambda)}) < \bar{\alpha}, \tag{25}$$

and we can find a $\overline{K}(\lambda) \geqslant K_1$ such that

 $f(\hat{x}^{\hat{k}(\lambda)}) \leqslant \alpha^{i}, \quad i = \overline{K}(\lambda), \, \overline{K}(\lambda) + 1, \dots.$ (26)

Consequently, one of the following situations may occur.

(i) There exists an $i \ge \overline{K}(\lambda)$ for which $\overline{k}(i)$ is obtained by (20). Then, for $i \ge \overline{i}$, we get from (20), (21), and (26) that $\overline{k}(i) \ge \hat{k}(\lambda)$ and

$$\hat{x}^{\bar{k}(i)} \in B_{\delta(\bar{k}(i))}(x) \subset B_{\delta(\bar{k}(\lambda))}(x) \subset B_{\lambda}(x).$$
(27)

Hence,

 $x^{i} \in B_{\lambda}(x), \quad i = i, i + 1,$ (28)

(ii) For all $i \ge \overline{K}(\lambda)$, the elements of the sequence $\{x^i\}$ are chosen by (21) and (22). Clearly, for $i \ge \overline{K}(\lambda)$, the x^i are consecutively taken from the sequence $\{\hat{x}^k\}$ which converges to x.

In both situations, therefore, $\{x^i\}$ converges to x and

$$x^i \in L_f(\alpha^i), \quad i = K_1, K_1 + 1, \dots.$$
 (29)

Let us illustrate now, by a simple example, a function having a local minimum which is not global and for which the above theorem fails to hold. The function appearing in Fig. 1 has a nonglobal local minimum at \hat{x} and a global minimum at x^* . Also, note that $f(\hat{x}) = f(\bar{x}) = 0$. Let $\bar{\alpha} = 0$, and take the sequence $\{\alpha^i\}$ whose elements are

$$\alpha^{i} = (1/i) f(x^{*}), \qquad i = 1, 2, \dots$$
 (30)

Fig. 1. Function having a nonglobal local minimum.

Clearly, $\{\alpha^i\} \subset G$ and $\{\alpha^i\} \to \bar{\alpha}$. The point \hat{x} is contained in $L_i(0)$; but, in every sequence $\{x^i\}$ such that $x^i \in L_f(\alpha^i)$ for sufficiently large *i*, one must have $x^i > \bar{x}$, and there is no such sequence which would converge to \hat{x} . Hence $L_f(\alpha)$ is not lsc at $\bar{\alpha}$.

Corollary 3.2. Let f be a real function on $C \subseteq \mathbb{R}^n$. If every local minimum of f is a global minimum of f on C, then $L_f(\alpha)$ is lsc on G.

From Theorems 3.1, 3.2 and Corollary 3.1, we immediately get the following characterization theorem of functions whose local minima are global.

Theorem 3.3. Let f be a real function on $C \subseteq \mathbb{R}^n$. Every local minimum of f is a global minimum of f on C iff $L_j(\alpha)$ is lower semicontinuous on G.

The above results also suggest an alternative characterization theorem.

Theorem 3.4. Let f be a real function on $C \subseteq \mathbb{R}^n$. Every local minimum of f is a global minimum of f on C iff, for any two points $\tilde{x} \in C$, $\bar{x} \in C$ such that $f(\tilde{x}) < f(\bar{x})$, there exists a sequence $\{x^i\} \subseteq C$, $\{x^i\} \to \bar{x}$ satisfying

$$f(x^i) \leq [(1/i) f(\tilde{x}) + (1 - 1/i) f(\tilde{x})], \quad i = 1, 2, \dots.$$
 (31)

Proof. Suppose that every local minimum of f is a global one on C. By Corollary 3.2, it follows that $L_f(\alpha)$ is lsc on G. Hence, for the sequence $\{\alpha^i\} \subset G$ given by

$$\alpha^{i} = [(1/i) f(\tilde{x}) + (1 - 1/i) f(\bar{x})], \quad i = 1, 2, ...,$$
 (32)

there exists a natural number K and a sequence $\{\hat{x}^i\} \subset C$ such that $f(\hat{x}^i) \leq \alpha^i$ for i = K, K + 1,.... It follows that the sequence whose elements are $x^i = \tilde{x}$ for i = 1,..., K - 1 and $x^i = \hat{x}^i$ for i = K, K + 1,... will satisfy (31). Conversely, let $f(\tilde{x}) < f(\bar{x})$, and suppose that a sequence $\{x^i\} \subset C$, converging to \bar{x} and satisfying (31), exists. Assume that \bar{x} is a local minimum of f which is not global. Hence, there exists a $\delta > 0$ such that

$$f(x) \ge f(\bar{x}) \tag{33}$$

for every $x \in C \cap B_{\delta}(\overline{x})$. The assumed sequence $\{x^i\} \subset C$ satisfying (31) also satisfies

$$f(x^i) < f(\bar{x}), \quad i = 1, 2, \dots$$
 (34)

But, for sufficiently large *i*, we must have $x^i \in C \cap B_{\delta}(\bar{x})$, contradicting (33).

It is well known that every local minimum of a convex function defined on a convex subset $C \subset \mathbb{R}^n$ is a global one. Many generalizations of convex functions have been proposed which have this property. One of them is the family of strictly quasiconvex functions (Ref. 5) defined as follows: A real function f on a convex set $C \subset \mathbb{R}^n$ is said to be *strictly quasiconvex on* C if $\tilde{x} \in C$, $\bar{x} \in C$, $f(\tilde{x}) < f(\bar{x})$ and $0 < \lambda < 1$ imply that

$$f(\lambda \tilde{x} + (1 - \lambda)\bar{x}) < f(\bar{x}).$$
(35)

Let us outline now a proof that, for a strictly quasiconvex function, $L_f(\alpha)$ is lsc on G.

Theorem 3.5. Let f be a real strictly quasiconvex function on a convex set $C \subset \mathbb{R}^n$. Then, $L_t(\alpha)$ is lower semicontinuous on G.

Proof. Let $\bar{\alpha} \in G$, $\{\alpha^i\} \subset G$, $\{\alpha^i\} \to \bar{\alpha}$. By Lemma 3.1, for every x such that $f(x) < \bar{\alpha}$, there exists a sequence $\{x^i\}$ with the required properties. Let us consider, therefore, only points \bar{x} such that $f(\bar{x}) = \bar{\alpha}$. If \bar{x} is a global minimum of f on C, then

$$\alpha^i \geqslant \bar{\alpha}, \qquad i = 1, 2, \dots.$$
 (36)

Hence, we can take $x^i = \bar{x}$ for all *i*. If \bar{x} is not a global minimum, then there is at least one point $\tilde{x} \in C$ such that

$$f(\tilde{x}) < f(\bar{x}) = \bar{\alpha}.$$
(37)

Since *f* is strictly quasiconvex, we have

$$f(\lambda \tilde{x} + (1 - \lambda)\bar{x}) < f(\bar{x})$$
(38)

for every $0 < \lambda < 1$. Since C is convex, we can take a sequence whose elements are

$$\hat{x}^k = [(1/k)\tilde{x} + (1 - 1/k)\bar{x}], \quad k = 1, 2, \dots.$$
 (39)

Clearly, $\{\hat{x}^k\} \rightarrow \bar{x}$ and, by (38),

$$f[(1/k)\tilde{x} + (1 - 1/k)\bar{x}] = f(\hat{x}^k) < f(\bar{x}) = \bar{\alpha}, \qquad k = 1, 2, \dots.$$
(40)

The rest of the proof is the same as in Theorem 3.2 and will not be repeated here. $\hfill \Box$

References

- 1. DANTZIG, G. B., FOLKMAN, J., and SHAPIRO, N. Z., On the Continuity of the Minimum Set of a Continuous Function, Journal of Mathematical Analysis and Applications, Vol. 17, pp. 519-548, 1967.
- 2. MEYER, R., The Validity of a Family of Optimization Methods, SIAM Journal on Control, Vol. 8, pp. 41-54, 1970.
- 3. HOGAN, W. W., Point-to-Set Maps in Mathematical Programming, SIAM Review, Vol. 15, pp. 591-603, 1973.
- 4. ZANGWILL, W. I., Nonlinear Programming: A Unified Approach, Prentice-Hall, Englewood Cliffs, New Jersey, 1969.
- 5. MANGASARIAN, O. L., Nonlinear Programming, McGraw-Hill Book Company, New York, New York, 1969.