
f(0, w) = 0 and 3zf(0, w) = 0, that transforms v = F(z, ~, u) into v = F(z, ~, u) such that 

f'~o = 0 ,  Y ~  = 0 .  

Proof. The proof of this lemma is a repetition of the proof of [i, Lemma 3.3], applied 
to the first coordinate, i.e., to the equation 

1 "~ =- f ~ (z, z ,  u ) .  

The transformations, preserving the point $ = (0, 0), ~ = {z = 0, v = 0}, the parameter 
u, and the form of Eq. (15), have the following form: z + P(w)z, w + w, where P is a matrix 
that depends holomorphically on w. The condition 

0 - e (u)  - ,  (--~:~ . o ' 
�9 " 

fixes P uniquely. The theorem is proved. 

i. 

2. 

3. 

4. 
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FINITE-GAP SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR INTEGRABLE EQUATIONS 

R. F. Bikbaev UDC 517.9 

Introduction. Recently, there has been a noticeable increase in the interest shown in 
boundary value problems for nonlinear equations integrable by the inverse problem method 
(IPM) [i]. This is connected, first of all, with the discovery [2] of nontrivial types of 
"integrable" boundary conditions, which lend themselves to the development of an analytical 
technique based on the introduction of an "ingredientU [3, 4] and which permit construction 
of an IMP analog for problems on a semiaxis and on an itnerval. 

The present study extends the investigations initiated in [4] connected with the con- 
struction of algebraic-geometric solutions of boundary value problems. As our basic model we 
consider the XXZ-equation of Landau-Lifshits, which describes dynamics of the magnetization 
vector S(x, t) in uniaxial ferromagnetics with an anisotropic "light plane" [5]: 

St  = [ S , S ~  + f S ] ,  I S  [ = t ,  1)  

S = ( S ~ , S ~ , S a ) ~ R  a, I = d i a g ( 0 , 0 ,  - -16s2) ,  e ~ O .  

The integrable boundary condition [2] at point x = 0 has the form 

(2i~oS_ - -  [S,  S~]_)[~=o = 0, % = c o n s t ~ R .  2 )  

By definition, S(_)+ -- S I (~) iS 2. Each of the terms in Eq. (2) has a physical meaning; there- 

fore, the boundary condition (2) can prove to be useful in describing boundary effects in the 
one-dimensional ferromagnetics (i). 

Our basic goal consists in constructing algebraic-geometric solutions of Eq. (i), which 
satisfy condition (2) at x = 0 and also the condition 

(2: a l S _ - - [ S  , S x ] ) [ x = l _  0 = 0, ( 3 )  

a t  x = l ,  ~1 = c o n s t ~ R .  
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We remark that a problem similarly formulated was solved in [4] for the nonlinear 
Schr6dinger (NS_) equation using the "ingredient" technique, the use of which has led to 
rather nontrivial calculations. In particular, the results obtained in [4] reestablished 
anew (and modernized) the algebraic-geometric construction of finite-gap solutions over the 
whole axis. 

In the present paper we employ a different approach, one based on a further reduction of 
the Baker-Akhiezer Y-function for "ordinary" finite-gap solutions over the whole axis, which 
substantially simplifies calculations, particularly in the case where finite-gap solutions 
of the equation in question are known, along with the corresponding Y-function. Specifically, 
for Eq. (I), instead of considering a problem with an "ingredient," we pose the problem of 
singling-out from the known [6, 7] smooth finite-gap solutions over the whole axis a special 
class of solutions preserving VI~R the boundary conditions (2) and (3). 

As we show below, this problem admits an effective solution. We remark that the results 
of our study agree with those which can be obtained using the "ingredient" ideology. 

I. Boundary Value Problem for the Landau-Lifshits Equation. I.i. Equation (I) may 
be represented (see [5]) in the form of the linear system compatibility condition 

~F~ = Uq~,q~t__~ = V q  r, 

U = - i Z~=, sj~,j~j, 

IV 2i ~ 3  , ,-1 = '~ j= l  5JlFlW2W3WJ ffJ - -  i E j  =13 [S, Sa, ] lvjoj, 

where w z = w 2 = r - e 2, w 3 = A; oj are Pauli matrices; ~ = (r r 7. 

From the form of the U-V pairs it is readily seen that to satisfy boundary condition 
(2) it is sufficient to require that the following equation be identically satisfied with 
respect to t (see Remark 4 of [4]): 

~ ( x  = O, t,  ~ = i a o )  = 0 Y r .  ( 4 )  

Actually, this condition implies the vanishing of an anti-diagonal element of the matrix 
V (x = 0, t, X = i~0), which is equivalent to boundary condition (2). 

This remark can serve as the basis for the derivation of integrable boundary conditions 
for other nonlinear equations (see [2]). The main item here is that with integrable bound- 
ary conditions we can reduce the problem on a semiaxis to a problem on the whole axis under 
special limitations on the initial data. The realization of this problem makes use of various 
technical methods depending on the class of functions in which a solution is sought. In the 
general case reliance on an effective use of remark (4) is difficult. Much more adequate 
is the "ingredient" approach [2] or its interpretation in the spirit of the Bicklund trans- 
formation (see the Conclusion). However, in the finite-gap class, where an explicit repre- 
sentation for the Baker-Akhiezer ~-function is known [6, 7], it is natural to use formula 
(4) to single-out solutions of the boundary value problem. 

1.2. We proceed to the details. To avoid excessive detail, we consider only one com- 
ponent, namely, the simplest component of finite-gap solutions corresponding to the case [6] 
in which i) the spectral curve F contains the points • as branch points; 2) all the other 
branch points X i are real; 3) the dynamics is bounded on the simplest real torus: A = 0 in 
formula (ii), which corresponds (see [8]) to boundedness for all x,t~R of the Baker-Akhiezer 
function. 

Let us recall the necessary facts from the finite-gap theory of Eq. (i). The spectral 
curve F is given by the equation 

I ]  ~z+' (~  - -  ki)(g: -- e=)~ gl ~ R. ( 5 ) 

Point P~F is specified by the pair P = (~, z); ~• are two infinitely distant points on F; 
the upper sign "+" indicates membership in the upper branch F +. 

On a canonical basis of cycles ai, bi, i = l,...,g, we define, in the standard way, a 

I P ~j 6~i ) holomorphic differentials, an Abelian mapping A (P) ~§ vector ~ of normalized ( a. = 

the Riemann B-matrix, and the theta-function of curve: @(x]B) -----~m~z zexp (~i(<Bm, m> + 2 <x, m>)). 
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t|Qj 0, i I, 2) Abelian integrals ~I(P) and ~2(P), having in a We define normalized ( "~ = = 

neighborhood of the points ~+ the behavior 

Q~ (P)  ~ =g (k "~'~ (P)  + O (1)),  P ~ ~-+, ;~ = I,  2. 

Expressions for the finite-gap solutions have the form 

S_ = 2 W B ' / R ,  S.+ .= 2CD/R,  S .  = (WD -- B'C) /R,  

W = 0 ( ~  + D ) ,  B '  = 0 ( ~  + D - - r ) ,  ( 6 )  

C=O(~+D+n), D = --O (~ + D -- r -~ n), 

(+, +) R = W D - -  B'C, n =  " " T  . . . . .  " 

Here  f~ = ( V ; x  - v m t ) / 2 ~ ,  V k i s  a v e c t o r  o f  b - p e r i o d s  of  t h e  i n t e g r a l  f~  (P), k = 1, 2; r = 

1~-(1) = ~.~ ~1~, w h e r e  c o n t o u r  "y d o e s  n o t  i n t e r s e c t  t h e  a - c y c l e s  on  c u r v e  F ( F i g ,  1 ) .  ~ o r  v e c t o r  

S t o  be r e a l ,  i t  i s  n e c e s s a r y  and  s u f f i c i e n t  t h a t  p h a s e  v e c t o r  D ~ - C  ~' be  s u c h  t h a t  

2 R e D  = - -  (r + n + A) = - -A ,  ( 7 )  

where A ~ Zz/2Z g is an arbitrary g-dimensional vector whose components can take on the values 
0 and i. We consider the simplest case 5 = (0, 0 ..... 0). We require the following formula 
for the ~-component of the Baker-Akhiezer function, which has the form 

l p ~ = f ( x , t )  OtAtP) q - f l+D)  
0 (A (P) -~ D) exp (i (f~]x A- ~)2t)), ( 8 ) 

whe re  f ( x ,  t )  i s  a n o n - v a n i s h i n g  f u n c t i o n .  

1.3. We proceed to consider the boundary value problems (2), (3). For satisfaction of 
requirement (4) it is sufficient to have vanishing of the theta-function: 

v2t 
O ( ( A ( P ~  "~-~ -~-D) IB)  = 0  Vt '  ( 9 )  

)~ (Po) = tote. 

We s h a l l  d e t e r m i n e  t h e  r e s t r i c t i o n s  t h a t  n e e d  t o  be  p l a c e d  on c u r v e  F a nd  t h e  p h a s e  v e c t o r  D 
i n  o r d e r  t h a t  i d e n t i t y  ( 9 )  be  s a t i s f i e d .  The r e s u l t s  o b t a i n e d  i n  [4]  f u r n i s h  t h e  m a i n  c o n -  
s i d e r a t i o n .  N a m e l y ,  i n  [4]  i t  was shown t h a t  f o r  a s o l u t i o n  o f  a b o u n d a r y  v a l u e  p r o b l e m  f o r  
NS_ u s i n g  t h e  " i n g r a d i e n t "  t e c h n i q u e  i t  i s  n e c e s s a r y  t h a t  c u r v e  F a d m i t  s y m m e t r y  o f  t h e  t y p e  
~: ~ ~ - k  and  be  o f  odd g e n u s  g > 1: g = 2k + 1, k = 0 ,  1 . . . . .  

We require that these conditions be satisfied in our case also. Let the sheets of F be 
permuted by the involution ~: ~ ~ -~. It is easy to see that 0 -+ and ~+ are fixed points of 
the involution T. We select a basis of cycles on F so that under the action of r it is 
transformed in the following way (see Fig. i) 

Xao = --ao, "raj = --a~+~, ( 1 0 )  
xbo = - - b  0, ~bj = --bj+~, j = t . . . . .  k. 

We note now that by virtue of the symmetry of curve r and the basis of cycles (I0) the theta- 
function O (x [B) reduces, according to a theorem of Fay [9], to combinations of theta-func- 
tions of dimensionality k and k + I: 

((')I) )I ) 0 z, B = Z  O [(6, 0), 01(( ~' + z, 2n 0 [~, o]((z~-- z,)l 2T). ( 11 ) 
zs 6~_ + zg/P.Z g \ \  z~ 

Here z I, z2 ~ C ~, z ---- (z~, z0, z~)T ~ C-~', and O [~, ~] (z) is a theta-function with characteristics 
~, ~; T is a matrix, immaterial for our purposes, of dimensions k • k. The matrices i] 
A([at (k-~ J, k ,~- I) and B ~ Mat (g, g) have the form 

B = 

{] t T U H i ] - - T  U 
2 If J~ Z 

Iloj 2Hoe 1]oj 

H U --  T U H<~ -- T U 
2 FIjo 2 

(12) 
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Formulas (ii) and (12) show that only the theta-function of dimension k on the left side of 
Eq. (9) depends on the variable t. 

Actually, by virtue of relations (i0) we have the identities 

d ~  (~P) = - - d ~  (P), d ~  (~P) = d~2 (P), (13)  
v} = = o, = 

from which it follows that in the representation (ii) the dynamics with respect to x and 
with respect to t "separates" into theta-functions of dimension k + i and k, respectively. 

We assume, by definition, each vector A~CJ; di=_A i + Ai+~, i = 1 .... ,k, g = 0,1,...,2k. 
To satisfy condition (9) it is sufficient to require that all theta-constants of dimension 
k + i in formula (ii) be zero, which leads to the conditions 

1 
[Ao(Po) + Do=-~-2 ~ ( ~  )o+ Mo, 
I 

(14) 
g 

N, M ~ Zg,'izg;, N O = t ,  Ni = Ni+~, Mi = Mi+ ~. 

Indeed, under these conditions these theta-constants have the form 

e~ = o [(6, o), o] , / ~,v ~ / 2 n ) ,  
= \ T / o  / / 

f r o m  w h i c h  i t  fol lows,  u p o n  t a k i n g  r e l a t i o n s  ( 1 2 )  i n t o  a c c o u n t ,  t h a t  06 = 0. 

The requirement of compatibility of the condition of reality (7) for A = 0 and the 
boundary conditions (14) on vector D have the form 

ReAo(Po)= t /2 ,  
Re Ai (P0) = 0 (rood 1), 

which will be automatically satisfied providing that 

l f e ~ ( P o )  = O, P o ~ r - .  ( 1 5 )  

Thus we have the following theorem. 

THEOREM. Let curve F, of odd genus g > i, be specified by Eq. (5) and admit the involu- 
tion z: % ~ -X. On vector D we impose restrictions (7) with A = 0 and conditions (14), where 
point P0 is chosen in accordance with provision (15). Formulas (6) then define finite-gap 
solutions of the boundary value problem on semiaxis R+ with coupling constant ~,,--(--i).%(Po). 

We consider only the boundary value problem (2), (3) on the interval [0, i]. Using the 
above described approach, we see that to satisfy the boundary condition at point x = 1 we 
must have 

aP1 (x = t ,  t, ~ = i ~ 1 )  = 0 Vt ,  

(9 A ( P 1 ) +  2a ~>~ " D B = 0 ,  

( 1 6 )  

where X(P I) = i~ I. 
done at x = 0. 

If we require joint satisfaction of conditions (14) and (16), we then arrive at con- 
straints on curve F: 

' 2.~ = - - 2 - - o '  

- (BMh, ( 17 ) ( P l )  - -  AS. ( P l )  2,% 

M ~ Zg/2Z g, M o = 0, M~ = Mi+u, Fie )~ (Pl)  = 0. 

These constraints are similar to those obtained in [4] for the NS_ model. (In this connec- 
tion, the following change should be made to correct a misprint in [4]: change the sign be- 
fore the vector in formula (28): b +-b.) 

Analysis of condition (16) is carried out in exactly the same way as was 

7 2 8  



Fig. i. Curve F. g = 3. Landau-Lifshits equa- 
t ion. 

~g 
31 

Fig. 2. Curve F. g = 3. Nonlinear SchrSdinger 
equation. 

Thus, if in addition to the conditions of the theorem we require satisfaction of the 
constraints (17), the formulas (6) then yield the solution of boundary value problem (2), (3) 
for the Landau-Lifshits equation (I). 

2. Nonlinear SchrSdin~er Equation (NS+). It is obvious that the approach described 
above can be applied for singling-out integrable boundary conditions in the class of finite- 
gap solutions of other integrable equations. We remark that in the case in which finite-gap 
solutions are constructed over a Riemann surface with complex branch points, there arises 
the additional technical problem of compatibility of real requirements of type (7) and bound- 
ary requirements of type (14). 

We illustrate these remarks by way of the NS+ model: 

ipt + p ~  + 8  IP [2p = O, (18)  

on the semiaxis x~0 with the following boundary condition [2] at x = 0: 

Px + 2aoP [~=o, ao = c o n s t ~ R .  (19)  

Formulas for the finite-gap solutions of model (18) and for the Baker-kkhiezer V-function 
are well known [i0] and can be easily reproduced in the framework of the scheme from [4] if 
in the corresponding formulas no account is taken of the "ingradient" effect. As is well 
known [i0], the reality constraint leads to the fact that the branch points %i of the spectral 
curve F must have a nonzero imaginary part. For simplicity (see Remark i) we consider the 
case when 

Re Li :# :0  , Im ~i=#:0. 

By analogy with [4], we select a curve F of odd genus g = 2k + I, k = 0, I,..., admitting two 
non-interchangeable branches of symmetry: an involution ~: % ~ -% and a complex conjugate 
anti-involution ~: ~ + %. 

We select a basis of cycles on F, transforming in the following way: 

Xao = - - a o ,  T a l  = - - a i + k ,  

~bo --be, ~bi --bi+~, i = t . . . . .  k, 
= = (20)  

~ a o  = - - a o ,  a a ~  = - - a j ,  ] = 1 ,  . . . ,  2k, 
g g 

abe = be + ~_j~ miaj, ab i = bj + ~_j~ nsas, 

where mj, nj are integral coefficients. Curve F, along with the basis of cycles, is shown 
in Fig. 2 for the case g = 3. It is not hard to see that for the differentials d~k(P), 
k = i, 2 we have the identities 
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d ~  (~P) = d~ t  (P), 

d ~  (~P) = dQ~ (P), dQ 2 (~P) = d g  2 (P), 

from which follows the reality of the winding vectors vk: 

V ~ = V ~, k = 1 , 2 ,  

and, in addition, fulfillment of the symmetries (13). 

In the indicated basis of cycles the "realness" requirement induces the following con- 
straint on the phase vector D (cf. with [4]): 

I m O  = 0, (21) 

and a "boundary" requirement of the type (4) again leads, as is readily verified from ex- 
plicit formulas for the ~-function, to constraints of the form (14). 

Thus we arrive at the compatibility conditions (21) and (14): 

2 Im A (Po) = I m  (BN)o, ( 2 2 )  
Im A (Po) = hn (BN)i, i = l . . . . .  k, 

where the vector , V ~ Z e / 2 Z  ~ has the same properties as in condition (14). By virtue of posi- 
tive definitenes of the matrix ImB the right side of relations (22) is nonzero. On the other 
hand, since the coupling constant ~0~R, it follows that 

R e ~ ( P o )  = 0 -  

We note now that if the point P0 = P~ is chosen on the upper branch F +, the condition 
(22) is then not satisfied. Actually, in this case the path of integration Z in the formula + 

A (P~)= qP0 0)= I can ~+ t~ be chosen so that z~ = ~s which leads, taking into account the iden- 

ties 
~o (~P) = - ~ o  (P),  ~ (+P) = --~ (P),  
~ o ( a P )  : - - ~ o ( P ) ,  & i ( a P )  : - - & i ( P ) ,  i : 1 , 2  . . . . .  k, ( 2 3 )  

to realness of the vector A(P~). 

Conversely, in case point P0 : P~ is chosen on the lower branch F-, then on the left 
side of relations (22) we have the vector Im R' =--Im (2r0, ?i)T, i = I ..... k; B'~C ~+I, r = 

Iv y. The contour of integration in this case can be selected so that y - ~7 = b0. Taking 

relations (23) into account, it is readily seen that 2 ImR=Iml (0 = ImBN, where N = 

- - ( i ,  O , . . . ,  O) ~ R g. 

Thus, choosing the special vector N = -(i, 0 ..... 0), we can satisfy requirement (22) and 
we can construct finite-gap solutions of boundary value problem (19) for model (18) of the 
NS+. We remark that to solve the problem on the interval [0, I] we again need to require 
satisfaction of the additional constraints (17). 

Remark i. If we consider the more general case of a spectral curve F with purely 
imaginary branch points kj, j = l,...,2m, Rekj = 0, we must then expect additional con- 
straints on the coupling constants s0, az, resulting from compatibility conditions of type 
(22). By analogy with the soliton case [2], we can assume that these constraints will have 

the form I ~,, [, I ~1 I < min l~j I, ] = I ..... 2m. 

Conclusion. In the present paper, on the basis of two fundamental models, we have shown 
how it is possible to single-out finite-gap solutions of integrable boundary value problems, 
staying within the scope of the traditional IPM technique (and not involving the "ingredient" 
technique). 

A similar idea can be employed to solve a Cauchy problem on the semiaxis x•0 with an 
integrable boundary condition at x = 0 and a condition of rapid decrease as x + +~. Con- 
straints on scattering data for a problem on the whole axis, which make it possible to pre- 
serve during evolution over time t a boundary condition at point x = 0, have a simple form 
and contain in explicit form the symmetry k + -k. The corresponding formulations were first 
obtained by V. O. Tarasov. We note also an observation of I. T. Khabibullin, which connects 
the deviation of the boundary condition with the possibility of introducing the symmetric 
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x ~ -x reduction in the BAcklund transformation, permitted by the initial equation. 

In all the schemes enumerated it is possible to reduce a problem on a semiaxis to a 
problem on the whole axis for integrable equations like the Landau-Lifshits equation, the 
nonlinear SchrSdinger equation, the sine -Gordon equation, and similar types, possessing 
the explicit symmetry x + -x. 

A problem which remains open is that of singling-out integrable boundary conditions for 
equations which do not possess a similar property, for example, for the Korteweg-de Vries 
equation. 
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UNIFORM RESOLVENT CONVERGENCE OF LINEAR OPERATORS UNDER PERTURBATIONS 

V. V. Borisov UDC 517.983.23 

In this paper, sufficient conditions for resolvent convergence of perturbed operators 
to a non-perturbed one are obtained. The problem of determining this convergence is closely 
connected with the investigation of the stability of eigenvalues under perturbations [i] and 
the behavior of solutions of singularly perturbed problems [2]. Sufficient conditions ob- 
tained here are different from those studied earlier for self-adjoint [i, 3, 4] and non- 
self-adjoint [4, 5] operators. They allow us to consider a new class of perturbations, 
mainly for non-self-adjoint operators. Also, for certain already investigated perturbations 
of self-adjoint operators, these conditions simplify verification of uniform resolvent con- 
vergence. 

Let H be a separable Kilbert space with the scalar product (., .) and the norm II.II. 
For any linear operator T in H, denote by D(T) its domain of definition, by P(T) the resol- 
vent set of the operator T and by O(T) the remainder of the spectrum (i.e., the set of all 
%~C such that the set of values of the operator T - IE is not dense in H). If the T oper- 
ator can be closed, we denote its closure by T. 

We shall consider a family of operators of the form T(s = T o +_s I, g > 0, where T o , 
T l are linear operators in H, O (T (e)) = D (T0) ~ O (T,) for r > 0 and D = H. 

We state the basic result. 
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