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Summary. Constitutive modeling for the particle size effect on the strength of particulate-reinforced metal 
matrix composites is investigated. The approach is based on a gradient-dependent theory of plasticity that 
incorporates strain gradients into the expression of the flow stress of matrix materials, and a finite unit cell 
technique that is used to calculate the overall flow properties of composites. It is shown that the strain 
gradient term introduces a spatial length scale in the constitutive equations for composites, and the 
dependence of the flow stress on the particle size/spacing can be obtained. Moreover, a nondimensional 
analysis along with the numerical result yields an explicit relation for the strain gradient coefficient in terms 
of particle size, strain, and yield stress. Typical results for aluminum matrix composites with ellipsoidal 
particles are calculated and compare well with data measured experimentally. 

1 Introduction 

Experimental results have shown that the plastic behavior of  particulate-reinforced metal matrix 
composites (MMCs) is influenced significantly by the particle size/spacing (for example, Kamat  
et al. [1], [2]). One way to model this size/spacing effect is to use dislocation theoris. For example, 

the Orowan model has been applied to small particles (Brown [3]) and predicted that the flow 
stress is proportional to the inverse of the particle spacing, while in the Ashby model (Ashby [4]) 

this dependence is the inverse of the square root of the particle spacing. Recently, a bowed-out 
tilt-wall model based on the dislocation pile-up was proposed (Rhee et al. [5], [6]) where the flow 
stress is proportional to L -~ (L is the edge-edge particle spacing) together with a weak 

logarithmic dependence on L. 
Alternatively, this issue may be addressed within the framework of continuum mechanics. 

We mention, for example, the recent contributions of Li and Weng [7], Ju and Tseng [8], Ponte 
Castaneda [9], Lee and Mear [10], Bat  et al. [11], and Zbib and Zhi [12], who dealt with the 
effective nonlinear properties of  MMCs. However, when applying classical phenomenological 
constitutive theories to MMCs, they have difficulties describing the size dependence. This is 
because these theories, originally developed for conventional metals or metallic alloys, assume 
that the deformation field is homogeneous, and thus do not include a deformation length scale in 
the constitutive equations. 

In fact, classical continuum mechanics is local in character in that the stress at a material 
point is considered to be a functional of  past deformation history of that point only. Eringen and 
co-workers have extended classical continuum mechanics (see, for example, Eringen, [13] - [15]) 
to include nonlocal effects. The basic assumption of nonlocal continuum mechanics is that the 
stress at a point is a functional of the past deformation histories of  all materials points of the 
body, resulting in a spatial integral form of constitutive equations. Although difficult to use 
(especially when nonlinearities and finite domains are involved), the nonlocal theory is 
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important in dealing with microscopic phenomena, because it incorporates length scales into the 
constitutive equations and can account for the heterogeneity and long-range interactions within 
tile material. 

Plastic deformation is known to arise from the accumulation of dislocations. From the study 
of dislocation motion it is clear that the state of the body at a point is influenced appreciably by 
the distortions that take place at neighboring points. Therefore plastic deformation is generally 
nonlocal. An alternative approach within the framework of continuum mechanics to describe 
the material heterogeneity and nonlocal interactions of plastic deformation is the strain gradient 
theory. 

As suggested by Aifantis [16], [17] the strain gradient theory of plasticity introduces strain 
gradients into the constitutive equation for the flow stress, as opposed to the classical plasticity 
which usually assumes that the flow stress depends on the plastic strain alone. This is one way to 
account at a continuum level for presence of dislocations and their nonlocal interactions. In 
other words, the inclusion of strain gradient maybe viewed as modeling microscopic phenomena 
where the interactions between material points are not of the nearest neighbor (i.e. not contact 
forces) type. Dillon and Kratochvil [18] proposed a plasticity theory which included first and 
second strain gradients in the expression of free energy. Since the thermodynamics of plasticity is 
not well understood and, moreover, their expression of free energy had a special and complicated 
form, the results are probably limited in application. 

In the work of Zbib and Aifantis [19], [20] the gradient effects are incorporated into the 
theory by modifying the expression of the flow stress. In this approach, they assume that the flow 
stress depends on higher order strain gradients. This leads to the inclusion of a length scale into 
plasticity theory, providing a framework for modeling phenomena which have fine length scales, 
such as shear bands and strengthening in MMCs. 

Recently, a continuum model has been developed by the first two authors [12], [21] for the 
viscoplastic deformation in MMCs, utilizing a finite unit cell comprised of a rigid inclusion 
surrounded by a matrix metal. The model is capable of describing the influence of particle 
volume fraction, particle shape, and matrix properties on the overall strength of MMCs but no 
size effects. The main objective of the present work is to extend this model to account for the 
particle size effect on the flow strength of composites. Assuming a strain gradient-dependent 
flow stress in the matrix, the constitutive relation for MMCs is derived by a minimum principle. 
Then results are presented for MMCs with ellipsoidal particles, illustrating the dependence of 
flow stress on tile strain gradient coefficient and other microstructural parameters of the 
composite. Finally, the yield stresses predicted by the present gradient-dependent continuum 
model for typical aluminum matrix composites are compared with a discrete dislocation model, 
as well as with relevant experimental observations. 

2 Review of the unit cell model 

As in [12[, [21], we consider metal matrix composites reinforced by uniformly distributed 
particulates, represented by arrays of unit cells. Each unit cell contains one inclusion surrounded 
by a ductile matrix material. The matrix and the inclusions are assumed to be perfectly bonded. 

The matrix is characterized as an incompressible viscoplastic material obeying the power law 
hardening relation 

5 = ~o (1) 
\~o/  
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and the von Mises flow rule 

3 ~  
= ~- -~ a', (2) 

where ao, go, 6, and gate the reference stress, references strain rate, effective stress and effective 
strain rate respectively, m is the strain rate sensitivity parameter, a' is the deviatoric part of the 
microscopic Cauchy stress tensor a, and ~ is the microscopic strain rate tensor defined by the 
symmetric part of the microscopic velocity. 

The approach seeks an upper bound solution in which a kinematically admissible 
microscopic velocity field in the unit cell is assumed. Among all these admissible velocity fields 
that meet the incompressibility and appropriate boundary conditions, the actual one should 
minimize the total rate of plastic dissipation 

1 i fv= V ,,.e dV, (3) 
V 

where Vis the volume of the representative unit cell. Furthermore, the macroscopic stress tensor 
S can be obtained as the conjugate of rate of plastic work 

l?V-- S. D, (4) 

where D is defined as the volume average of ~, such that 

i f  D = ~ -  gdV. 

V 

( 5 )  

For the power law viscoplastic materials considered here, with I4 z being homogeneous of 
a degree m + 1 in D, the stress tensor, S, is obtained by 

s = - -  ( 6 )  
m + 1 0 D "  

A detailed derivation is given in [12], [21]. 
We consider two families of unit cells having the shapes of ellipsoids of revolution, which 

represent a wide range of inclusion shapes. One family is the prolate ellipsoids that extends 
vertically into whiskers. The other is oblate ellipsoids that extends horizontally into disc shapes. 

For plastically incompressible matrix materials under axisymmetric loading conditions, the 
velocity vector v can be derived from a stream function ~ such that v = V • (0, 0, ~). In [12], [21], 
the following form of ~ was adopted: 

co 

E Zc#sink~ 
2~ k = 2,4_. i = - o~ 

(7) 

under an ellipsoidal coordinate system (~, 0, r 
By using the velocity field derived from Eq. (7), applying the boundary conditions, and 

minimizing the total rate of plastic dissipation within the unit cell, the coefficient set {ck~} was 
determined and the overall constitutive relations for the composite were obtained. As 
demonstrated in [12], [21], this approach provides a model to assess the influence of particle 
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volume fraction, particle shape and matrix properties on the flow strength of particulate- 
reinforced metal matrix composites. In the next Section, this unit cell model, combined with 
a gradient-dependent theory of plasticity, will be used to analyze the particle size effect on the 
constitutive behavior of composites. 

3 S t r a i n  g r a d i e n t s  and  s i z e  e f f e c t  

In the work of Zbib and Aifantis [19], [20], the classic expression for the flow stress has been 
modified by adding linear terms of strain gradients V<2k)g(k = 1, 2 . . . .  ). Because of the isotropic 
assumption, the above linear gradient-dependence does not involve gradients of odd orders. It 
turns out that in many applications the V 2 g  term suffices to account for the heterogeneous 
evolution of deformation, yielding 

d = #H - -  c V 2 g ,  (8) 

where # and #n are the total and the homogeneous part of the effective flow stress, respectively, 
g is the effective plastic strain, and c is a force-like coefficient measuring the effect of strain 
gradients. This strain gradient plasticity has been applied to various problems where the size of 
the microstructure significantly affects the macroscopic mechanical properties of the material, 
such as shear banding problems in metals (see Zbib and Aifantis [22] and Zbib [23] as well as the 
recent articles by Aifantis [24], [25], [33] for an overview and other related applications in 
dislocation patterning, plastic flow, and failure). Now we extend the strain gradient plastic 
theory to the problem of size effect and plastic deformation in metal matrix composites. 

Similar to the unit cell model [12], [21] for MMCs with a viscoplastic matrix, we first 
examine the plastic dissipation at a point within the plastic matrix. To account for the 
inhomogeneous plastic deformation, we divide the variation of local dissipation co into two 
parts such that 

&o = &on + 6coc, (9) 

where eon is the dissipation corresponding to the homogeneous response of the matrix and coc is 
the inhomogeneous part. In view of the second term in (8), coc has the following quadratic form: 

c 
~oc = ~ r e ,  vg, (1o) 

as shown below. 
Moreover, an additional boundary condition arises from the higher order gradient, such that 

Vg �9 n = O, on outer cell boundary ( I I)  

which is deduced from a variational principle similar to that given by Zbib [23], Muhlhaus and 
Aifantis [26], and Vardoulakis and Aifantis [27]. Under the familiar assumption of the universal 
stress-strain curve, we can write the plastic work in the incremental form 

&o = g 6g = a " & .  (12) 
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The proof of Eq. (10) can also be deduced from taking the volume average of &o within 
a volume V, such that 

( 1 3 )  

V V 

which, by using Eqs. (9) and (10), can also be written as 

~W= ~- [&o. + cVg. V(&-)]dV. (14) 

V 

Since 

5o0. = c;~i 6g, (15) 

where 6 .  is the homogeneous part of the flow stress, and using the divergence theorem 

fVg. V(&-)dV=i3g og-~n.dS - fv2g6gdV, (16) 
V S v 

where the surface integral vanishes by the boundary condition (11), Eq. (14) becomes 

5W=-~ (5.-  cV2g)SgdV. (17) 

v 

Comparing (17) with (13) yields the expression of the flow stress (8). Thus, the total strain energy 
for the gradient dependent material can be expressed as 

;(c W= oz+~vg" V dV. (18) 

v 

Within the J2-deformation theory, Eq. (8) gives the following form of constitutive equation for 
the matrix material: 

25(e-) 2cV2g 
~r' = e - - -  e .  ( 1 9 )  

3g 3g 

For a power-law matrix 

5 .  = xg", (20) 

with the same averaging procedure and the upper bound solution as described by Zhu and Zbib 
[21], we obtain 

aw a(w. + we) 
s = , ( 2 1 )  

~E QE 
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where S is the macroscopic stress of the composite, E is the macroscopic strain, and Wis the 
plastic dissipation which should be minimized for all kinematically admissible deformation 
fields in the composite. The total dissipation Wconsists of two parts. One is the homogeneous 
part, which is obtained by integrating (15) with fin given by (20), 

n + l  

Wn = ~ \ 3 J V (8 . , ) ~ -  dV. (22) 

v 

the other is the inhomogeneous part related to the strain gradient 

t *  

c ~(v2 ~ ~dV. 
VV~= -2--V (23) 

d 
V 

By applying the integral relation (16) and the boundary condition (11), we obtain another 
form of W~, 

W~ = Vg. Vg dV. (24) 

V 

which is the form used in the calculation. Compared to (23), expression (24) reduces the order of 
derivative which vastly improves the accuracy and stability of numerical computations. 

After factorizing ~ such that 

s 
- 2(1 _fl/3)3 ~*, (25) 

applying (21) and following the procedure described by Zhu and Zbib [21] for an axisymmetric 
loading of an ellipsoidal unit cell, we obtain 

C 
g = zFn(n,f) Gu(n,f, K) ff~" + ~-i Fc(f) Gc(f, K) ff~, 

where g and s are the effective macroscopic stress and strain respectively, with 

Fn(m. f )  = 
(1 _flj3)~(,+l)' 

n + l  

1 2 

V 
and 

1 
Fc(f) - 2(1 __ f l / 3 ) 6 '  

dV, 

if, Q(y, K) = v ,   *I/Y I 2 dr,  

V 

(26) 

(27) 

(28) 

where V, is the nondimensional gradient operator with the coordinate ~ replaced by ~/b with 
b being the radius of the revolution of the ellipsoidal unit cell. f and K are particle volume 
fraction and aspect ratio, respectively. 
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Comparing Eq. (26) with the result without the strain gradient (i.e. c = 0) (Zbib and Zhu [12] 
and Zhu and Zbib [21]) we see that the strain gradient term in the flow stress of the matrix results 
in an additional term that further increases the flow stress of the composite. This stress increase is 
proportional to the strain gradient coefficient, and depends on the volume fraction and the shape 
of particles through a singular function Fc and a regular integral function Gc, which is similar to 
the homogeneous part. Most importantly, Eq. (26) shows that the strain gradient term naturally 
introduces a length scale into the constitutive equation for the composite, which allows us to 
analyze the size effect on the strength of the composite. 

As in [12], [21], we assume a solution for the displacement field, impose the boundary 
conditions, minimize the dissipation energy, and solve for the effective stress S for a given set of 
parameters x, n, c, K, and f as explained below. 

4 Calculations for composites with ellipsoidal particles 

We first look at the case of spherical particles where the simple geometry will enable us to 
examine the size effect more conveniently. By defining a characteristic length 

= c / c ,  (29) 1 

the constitutive equation (26) can be written in the following form: 

[ 1 g = ~ FHGHE n + 4 -~ FcGcE , (30) 

where D is the particle diameter. For a given volumen fraction f upon converting D to the 
particle edge-edge spacing L by (Kamat et al. [1]) 

L = [_\6fJ - D ,  (31) 

we obtain another form of the constitutive equation, 

= ~: FHGHff," + 4 - - ~  FcGcE . (32) 

Notice that for common A1 matrix materials, • is of order 10 z MPa and c is usually 1 ~ 10 
Newton (see [16], [17], [19], and [22]) which leads to values of / in  the range of 10 ~ 1 0  2 gm. This is 
of the same order of particle spacing as in many metal matrix composites. 

By defining a nondimensionalized coefficient of strain gradient 

4c 
C--  ~ D 2 ~ n _ l ,  (33) 

we can rewrite (30) as 

= 6~(FHGH + (FcGc), (34) 

where 

~n = ~E" (35) 

is the flow stress of the matrix. 
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Fig. I. Normalized flow stress of composites with 
linear matrix material and spherical particles 

Figure 1 shows the normalized stress S/ff/~ as a function of  volume fraction f values 
of  g in the case of  linear materials (n = 1). It can be seen from the figure that higher 

values of  g result in a higher flow stress of  the composite. For  a given matrix property 

z, this may be either due to a smaller particle size D (or smaller inter-particle spacing 
L) or a higher gradient sensitivity c of  the material. The former provides, at least qualitatively, 

an explanation for many experimental observations that composites with larger particles 

exhibit lower yield stress. Also plotted in Fig. 1 is an approximate expression representing 
the size effect predicted by the strain gradient model, which has the form 

S -  Sn 0.0185~(1 + 2 f +  60f2), (36) 
gn 

where Sn is the homogeneous part  of  flow stress (i.e. with c = 0), as discussed in [12], [21] and is 

given by 

;~n = fin [1 + fl(1 + 2"6re)f]( l+atfl/3+azf2/3+aaf)(1 __f l /3)3(m+l) /2  ' (37) 

where 
1 

fl = - 3.01 + 1.69K + 1.32 ~ ,  

al = - 1.34 - 1.56m, (38) 

a2 = - 0.32 + 2.37m, 

a3 = - 1.11 - 0.53m. 

It is seen that the simple expression (36) gives a very good approximation to the exact values 
predicted by the integral function (28). We remark that since Sn is derived from minimizing 
W with c = 0, the stress difference g - gn is not exactly linear in ~ as it appears in Eq. (30) or (32). 
This weak nonlinearity is shown in Fig. 2. A more accurate approximation is obtained by the 

following quadratic expression: 

S - SH 
- -  = 0.022C(1 - 0.023c-) (1 + 2 f  + 60f1). (39) 

For  non-spherical particles, calculations showed that the flow stresses o f  composites are much 
more sensitive to the strain gradient coefficient. Figure 3 plots the normalized stress S/6n versus 
the volume fraction f for various combinations of aspect ratio K and nondimensional gradient 
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Fig. 3. Normalized stress of composites with linear matrix 
material and ellipsoidal particles 

coefficient & The figure shows that as K increases, smaller values of  ~ are needed to obtain the 
same level o f  strength enhancement over the matrix. For example, comparing the flow stress of  
composites with K = 2, ? = 0.1 and K = 1.5, 6 = 0.3, the former has a lower value of?but  exibits 
a higher level of  stress. This is because as the particle shape deviates from the sphere, the 
deformation fields around particles develop more intense inhomogeneity and hence a higher 
strain gradient, which produces a higher flow stress by the present model. 

5 Comparison with dislocation theory and experiment 

In this Section, yield stresses predicted by the continuum model based on the strain gradient 
plasticity are compared with a dislocation model and experimental observations. For 
experimental data of  MMCs with particle spacing in the micrometer range, dislocation models 
of  Orowan type, which are suitable for particle spacing of  nanometer orders, would not be 
expected to be applicable. Recently, Rhee et al. [5] developed a tilt-wall dislocation which 
appears to give good descriptions of  yield stresses of  MMCs with large particle spacing (Rhee 
et al. [6]), where continuum models should be applicable. 

Figure 4 presents the yield strength (determined at 0.2% offset) obtained experimentally 
for the A1-Si-Mg composite model system described in Zhu et al. [28], and from theoretical 
models of  Rhee et al. [5], and the present continuum model with x = 285 MPa, n = 0.25, 
and K = 1. While the basic parameter in the dislocation model is L, the present model 
has three parameters, c and any two of  L, D, and f Using the relation (31), the parameter 
L in the dislocation model can be converted to two parameters, D and f Two curves 
from the dislocation model with f =  9.7%, 19.7% are plotted. As D increases, these 
two curves converge to a value, which is the yield stress of  the matrix. Also plotted 
in the figure are curves from the strain model with various values of  c and f The 
figure shows that curves produced by the strain gradient theory with different values 
of  f converge to different stresses as D increases. One of the differences between these 
two types of  model is that, while in the dislocation model particles infinitely apart denote 
the matrix material without particles, in the present continuum model this means that 
the strain gradient effect is ignored and only the homogeneous response is taken into 
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Fig. 4. Calculated yield stress (0.2% offset), with 
x=285  MPA, n=0.25, and K = I ,  versus 
particle size compared to the experimental data 
from an A1-Si-Mg composite mode system [12] 
and dislocation model [6] 

account. This homogeneous part depends on the volume fraction and, in general, the 

shape of  particles, as described in [12], [21]. 
In Fig. 5 the yield stresses calculated by the strain gradient theory, using • = 427 MPa, 

n = 0.25, and K = 1, and dislocation theory are plotted against particle spacing L together with 

the experimental results of  Kamat  et al. [2]. The materials are composites comprising of  2024 O 
aluminum alloy matrices and alumina particulate. The particles are roughly equiaxed with an 

average diameter of  5 gin. Figure 6 shows similar calculations on another series of  composites 

consisting of  an A1 alloy matrix reinforced by equiaxed TiB2 particles 1.3 gm in diameter (Aikin 

and Christodoulou [29]). The theoretically predicted dependence of  the yield stress on the 

particle spacing fits well with the observed data. 
Table 1 shows the values of  the gradient coefficient obtained by correlating c to flow stresses 

measured experimentally for some A1 matrix composites. For  these MMCs with A1 matrix, the 
values of  c are in the range 0.6 ~ 3 Newton, which are of  the same order as those calculated in 

shear banding problems [19], [22]. Based on these experimental data with 0.2% plastic strain and 

Eq. (33), the following relation between the value of  the gradient coefficient and material 
parameters, namely, the matrix property z and particle size D, can be postulated: 

c = e x D  2 , (40) 
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Fig. 5. Calculated yield stress (0.2% offset), 
with x = 427 MPA, n = 0.25 and K = 1, 
versus particle spacing for A1-A120 3 compo- 
sites compared to the experimental data [2] 
and dislocation model [6] 
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Fig. 6. Calculated yield stress (0.2% offset), with 
x = 1 135 MPA, n = 0.25 and K = 1, versus particle 
spacing for A1-TiBz composites compared to the experi- 
mental data [23] and dislocation model [6] 
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Table 1. Values of the gradient coefficient c for particulate-reinforced alumi- 
num-matrix composites 

Material ~ (MPa) n c (Newton) D,,g ([xm) 

A1-Si-Mg 285 0.25 0 .6-3  4.7-7.8 
A1-AlzO3 427 0.25 2.5 5 
A1-TiB/ 1 135 0.25 2.0 1.3 

where the nondimensional coefficient e falls in the range of  1 ~ 6. As demonstrated in our model, 

the strain gradient approach led to an evaluation of  size effect and heterogeneity of  deformation 

fields. An  interesting topic is to identify the value of  the gradient coefficient c for a given 

material. Equation (40) will help us to further investigate the nature of  c and its relation to the 

mechanical properties and microstructure of  a material. We mentioned that there are other 

models predicting a different dependence of  the yield stress on the particle size, each supported 

by some experimental observations. Therefore, understanding and modeling the size effect on 

the constitutive relation of  MMCs is an area requiring further investigation. 

In concluding, we point out that a summary of  the present results was included (by the 

authors) in a recent proceedings article [30]. In the same proceedings volume, the strain gradient 

theory was also used by Ning and Aifantis [31] to discuss size effects in short-fiber composites. 
A little earlier, it was shown by Aifantis [32] how the strain gradients can be used to account for 

size effects in twisted copper wires and statically deformed boreholes. 
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