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Abstract. The solutions of .~ = F(x, t), and also .~ -- F(x, t), are developed in truncated series in time 
t whose coefficients are found empirically. The series ending in the t n term yields a position at a final 
prechosen time that is accurate through 9th order in the sequence size. This is achieved by using 
Gauss-Radau and Gauss-Lobatto spacings for the several substeps within each sequence. This time- 
series method is the same in principle as implicit Runge-Kutta  methods, and the present algorithm 
generates coefficients for families of implicit Runge-Kutta  forms, including some not described pre- 
viously. In some orders these methods are unconditionally stable (A-stable). In the time-series formu- 
lation the implicit system converges rapidly. For integrating a test orbit the method is found to be 
about twice as fast as high-order explicit Runge-Kutta-Nystr6m-Fehlberg methods at the same 
accuracies. Both the Cowell and the Encke equations are solved for the test orbit, the latter being 3 5 
faster. It is shown that the Encke equations are particularly well-adapted to treating close encounters 
when used with a single-sequence integrator (such as this one) provided that the reference orbit is 
re-initialized at the start of each sequence. This use of Encke equations is compared with the use of 
regularized Cowell equations. 

1. Introduction 

The method of integrating 2=F(x, t) and 2=F(x, t) described here was developed 

from time-series expansions as a practical and fast single-sequence integrator. Later 
this was found to be related to the implicit Runge-Kutta method, although the formu- 
lations and algorithms of the two methods are entirely different. 

From the time-series approach we are concerned with methods wherein the series is 
fitted to the function F at several computed points, and in particular to those cases 
where these points are not evenly spaced. Such methods have been developed by 
Wielen (1967) and Aarseth (1972). They fit an empirical polynomial in time through 
the forces found at several previous steps which can be unevenly spaced. Integrating 
this fitted curve they predict the position at the next step, determine the force there, 
and then correct this position. Theirs is a multi-step method with variable step size. 

Our method is similar in that we also integrate a time series found by fitting an 
empirical curve through forces at several unevenly-spaced points, but it is different in 
several respects : (1) It is self-starting. (2) All the points are at the current position or in 
advance of it. (3) Tlxere are several forward substeps taken during an integration 
sequence before the final corrected position is found. It is a single-sequence method. 

In the above respects our method has a pattern like that of Runge-Kutta integra- 
tions. In fact, the most extensive comparisons to be presented are with the high-order 
explicit Runge-Kutta-Nystr6m methods developed by Fehlberg (1972). 

An attractive aspect of our method is that one can obtain accuracies several orders 
higher than would be expected from the order of the fitting polynomial. This is achiev- 
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ed by adopting Gauss-Radau or Gauss-Lobatto spacings for the substeps. As in 
Butcher's (1964) implicit Runge-Kutta method and Beaudet's (1972) multi-off-grid 
method, we apply the principles of Gaussian quadratures to integrating differential 
equations. 

Section 2 below derives the equations fundamental to the method, and Section 3 
describes the integration procedure. Section 4 discusses Radau and Lobatto spacings, 
giving a detailed example of their applicability. There is also a discussion of why 
Gauss-Legendre spacings are not as useful here. Section 5 shows that the same proce- 
dures apply to both first- and second-order differential equations. An analysis shows 
that there is unconditional stability (A-stability) in the Lobatto cases when solving 
2 = F ( x ,  t). Section 6 considers the correspondence with implicit Runge-Kutta 
methods, showing that the present algorithm develops the coefficients for four 
families of such methods. One of these families is A-stable and another is the same as 
one described by Butcher (1964). Section 7 describes numerical tests and comparisons 
with other methods of orbit integration. Finally, Section 7 points out that single- 
sequence integrators are particularly suitable for solving the Encke orbit equations 
because they allow rectification at the start of every sequence. The advantage shows 
in the case of orbits involving close encounters, and this is compared with the alter- 
native of using regularized Cowell equations. 

2. Fundamental Equations 

The orbit equations of celestial mechanics are of the form 

5d = F ( x ,  y ,  z, xi,  Yi, zi, x j ,  y j ,  z j ,  . . . ,  t ) ,  (1) 

where the function F, which may be called the force, depends on time t and the posi- 
tion x, y, z of the body whose path is to be integrated, as well as the positions of other 
bodies, as identified by subscripts i, j, .... There are 3 such equations for each body. It 
is sufficient to treat the solution of the class IIS equation (S for special, since s is absent) 

Y =  F ( x , t ) ,  (2) 

since the extension to any number of simultaneous equations of the form of Equation 
(1) is a very well known procedure. The class I equation is treated in Section 5. 

At the start of a sequence we reset time tl =0,  and the initial position xl, velocity 2~, 
and force F~ are known. A time-series expansion of F about time zero is 

Y=F=F1 + Al t  + A2 t2 + A3 t3 + ... + ANt N (3) 

Integrating Equation (3) one has 

x = xl + ~1 t + Fat2/2 + Axta/6 + ' " +  ANtN+2/(( s + 1) (U + 2)), (4) 

Yc = .i'~ + Fxt + A~t2/2 + A2t3/3 + . . . +  AutN+a/(N + 1). (5) 

The truncated series of Equation (3) is not a Taylor series because the coefficients A 
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are not chosen to represent F as well as possible for all values of t, but instead, as will 
be shown in Section 4, they are chosen so that the truncated expressions in Equations 
(4) and (5) calculate x and ~ as accurately as possible at a particular prechosen time T. 

The only unknowns in the solution are the A-values. The overall pattern for finding 
these is that of a single-sequence method, somewhat analogous to Runge-Kutta 
procedures. One explores the value of the function F at several unequally-spaced 
substeps t2, t3, t4, ... ahead of t~ =0.  From this information the values A, are developed 
such that Equations (4) and (5) are accurate at time T, which is the end of the sequence. 

Let F, (x,, t,) be the force at one of the substeps where the time is t, and the position 
is x , ( t , ) .  To develop formulas for relating A-values to these F-values we need the 
auxiliary expansion 

F =  F 1 + al t  + a 2 t ( t -  tz) + a 3 t ( t -  t2) ( t -  t3) + . . . .  (6) 

This series and the expressions below are all terminated in a manner consistent with the 
number of terms kept in Equation (3). Equation (6) truncates short at each of the 

times t,. Thus F z = F l - b a l t 2 ,  and F 3 = F l - b a l t 3 W a z t 3 ( t 3 - t 2 )  , e tc .  Using the abbre- 
viation t , j=  t , -  tj, one finds 

al = (F2 - Fx)/t2, 

a2 = ((F3 - F~)/t3 -al)/t32, 
a3 = (((1:4 - Fx)/t4 - al)/t42 - a2)/t43, 

a4 = ((((F5 - E l ) I t s  - ax) / t52  - a z ) / t 5 3  - a 3 ) / t 5 4 .  

(7) 

Of course the a-values are divided differences. For  example, a3 = [0, t2, t3, t4]. The 
standard divided-difference notation would be cumbersome here, and the compact 
a-notation is used instead. Each new force adds another a-value without changing any 
of the previous a's. The relationship between the a-values and the A-values is found by 
equating like powers of t in Equations (3) and (6). The result is 

A1 --- a I + ( -  t2)  a2 + (t2t3) a3 +- '"  = C l l a l  71- c21a 2 + c31a3 

A2 = a2 + ( -  t2 - t3)a3 + " - =  czzaz + c32a3 + ' "  

A 3 = a 3 + ... = c33a3 +. - .  

' 0 0  

(8) 

The c-coefficients 
first kind. Thus, 

have the same recursion relationships as Stirling numbers of the 

Ci i  - -  1, 
O i l  - - ~  tici-1,1, 
C i j  - -  C i _ l , j _  1 

i >  1, 

t i c i - l , j ,  1 < j  < i. 

(9) 

They are also the coefficients 

cubic with roots t2, t3, t4 is 
of a polynomial expressed in terms of its roots. Thus a 

( -  t2t3t4) + (t2t3 +t3t4 + tgt2) t + ( -  t2 - t3 - t4) t 2 + (1) t a = 0, (10) 

where the quantities in parentheses are c41, c42, c43, and c44. 



38 EDGAR EVERHART 

In the integration to be described one a-value is found with each substep in a pass 
through a sequence. As each is found another A-value is known from Equation (8) 
and each previous A-value is corrected. 

3. Integration Algorithm 

3.1. PREDICTORS AND CORRECTORS 

To illustrate the procedure we consider integrating a sequence of 3 substeps at times 
tz, t3, t4 which, in general, are not uniformly spaced, and where the end of the se- 
quence T need not coincide with t4. At the starting time t~ =0  we know the initial 
values xl, 21, and F~. In this class IIS procedure there are three predictor equations, 
one for each substep, 

xz = xl + 21t2 + Flt2/2 + [AltO~6 + Azt'~/12 + A3t~/20], 

x3 = Xl + 21t3 + Flt~/2 + Alt]/6 + [Azt~/12 + A3t~/20], 

x4 = xl + 21t4 + Flt]/2 + Alt]/6 + Azt4/12 + [A3t~/20], 

(11) 
(12) 
(13) 

and two corrector equations for finding position and velocity at the end of the se- 
quence 

x(T)  = + 2tT+ F T2/2 + A T3/6 +A2T4/12 + A3TS/20, 

T2/2 + A 2 T3/3 + A3T4/4 2 ( T )  = 21 + F1T + A1 

(14) 

(15) 

This system is implicit because the terms in square brackets are not known when 
they are first needed. However, fairly good estimates can be made, because the e-values 
change slowly from one sequence to the next. Thus if we know e~ from the previous 
sequence and the second previous sequence, we can predict e~ for the current sequence 
fairly well. The sequence lengths T may all be different, but it is not difficult to fit a 
straight line through 2 back points (or a parabola through 3 back points) and extra- 
polate to the current sequence. In almost all cases, including the present 3-substep 
example, a linear extrapolation suffices for e~. For ea and e a one does no fitting; it is 
enough simply to use the corresponding a-value from the previous sequence in the 
current sequence until a new a-value is found. Approximate values for A1, A2, and 
A3 are found with the aid of Equation (8) from these estimated a-values. Thus in 
starting the iteration, reasonable values of the bracketed terms are in hand, and a fair 
initial prediction of Xa is obtained from Equation (11). 

Using this value of x2 one calculates F2 (x2, t2) and a new value of e~ from Equa- 
tion (7). At this time A~ can be improved as in Equation (8), discarding the contribu- 
tion from the extrapolated value of e1 and including the contribution from this 
newly-found value of el. 

Next x3 is found from Equation (12), using this considerably improved value of 
A~ and, as before, the estimated values of A2 and A3. Finding F3 from x3, one obtains 
e a with Equation (7). Then A2 is improved as in Equation (8), using this new ea in- 
stead of the old one, and retaining still the estimated value of e3. In like manner A1 is 
improved. 
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The same process with the next substep finds x, ,  F4, e3, and new value for A 3, and 
still further-improved values of A2 and A 1. 

3.2. ITERATION 

Usually it is profitable to iterate, passing through the sequence a second time. Of 
course the e- and A-values used in the predictors are far more accurate than they were 
in the first pass. At every substep all the A-values are immediately improved as each 
better e-value becomes available. Only rarely, as in an 1 l th order example to be 
discussed later, is it worthwhile to make 3 passes through the sequence. 

Finally, new values of position and velocity at the end of the sequence are found 
using Equations (14) and (15). 

The use of information from previous sequences in the first pass through the 
sequence makes possible a rapid solution of an implicit system. However, in the second 
(and final) pass one uses only values within the current sequence, and the method is 
basically of a single-sequence nature. 

3.3. STARTING 

In the case of the very first sequence, where extrapolated e-values from previous 
sequences are not available, these estimated e-values are taken as zero, which makes 
the bracketed terms in Equations (11)-(13) zero initially. High accuracy may be 
maintained by making 4 passes through the sequence in this case, or by taking a 
somewhat smaller sequence length T to start the integration. 

3.4. SEQUENCE SIZE CONTROL 

Sequence lengths T are controlled by monitoring the size of the highest-order term in 
the x-expansion. A control parameter C is established that is the desired size of this 

last term, which is A3TS/20 in the case above. Let H = ([A3xl + [A3r[ + [A3~])/20, as- 
suming a three-dimensional integration. The next sequence should be chosen of length 
T -  (C/H) 1/5 to achieve such a control. The subscript 3, the divisor 20, and the expo- 

nent 1/5 are changed appropriately in other cases. 

3.5. PRELIMINARY TESTS 

Later in this paper we describe the test problem and explain how the error is evaluated. 
However, for now, regard Figure 1 as plotting the relative integration error in position 
vs computation time for an integration requiring very many sequences. A line is traced 
out on this figure using a range of controls C on the sizes T of the sequences. 

Line (1) on the figure is the result of a test integration where the substeps were taken 
equally spaced within the sequence, with t 2 = T/3, t3 = 27'/3, t 4 - - T .  For line (1) only a 
single pass was made through each sequence and no use was made of estimated values 
from previous sequences, that is, the bracketed terms in Equations (11)-(13) were 
deleted. The slope of the line is a rough measure of integration order. It is desirable 
for the slope to be high and for the line to lie as far as possible towards the lower left 

part of the figure. Evidently line (1) shows a poor result. 
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Fig. 1. Relative error Ar in position vs computing time for a test orbit using present method with 
3 substeps per sequence. (1) Uniform substeps, no alpha prediction, single pass. (2) Uniform substeps, 
with alpha prediction, single pass. (3) Uniform substeps, with alpha prediction, double pass. (4) Radau 
spacings, with alpha prediction, single pass. (5) Radau spacings, with alpha prediction, double pass. 

Line (2) on the figure is the same single-pass procedure as in line (1), except that full 
use was made of estimated values of the bracketed terms, extrapolating the a-values 

This takes almost no extra computation and improves the from previous sequences. 
accuracy considerable. 

Line (3) is the same as line (2), except that there are two passes through each 
sequence. The second pass adds 40% to the computation time per sequence, and we see 
that line (3) is not as good as line (2). This means that sufficiently high accuracy has 
been reached in the first pass, and the second pass, though it improves the accuracy 
per sequence, is not worth the additional computation time. In other words, at the 
same accuracy it is more efficient to take slightly smaller sequences in a single pass 
than to take larger sequences and pass twice through each. With even spacings of the 
substeps in this 5th-order integration, one pass per sequence is optimum. 

However, it is possible to improve the results in this 3-substep case remarkably, as in 
lines (4) and (5) of Figure 1, by choosing a special spacing for the substeps, as described 
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, the next section. A single pass through each sequence then results in line (4). Two 
passes, which together take 1409/o as long as a single pass, improve the convergence. 
There is a large net gain, as seen by line (5), which indicates 7th-order accuracy. When 
3 passes were tried (taking 1809/o of the computation time per sequence of the single 
*)ass time), the result was not as good as line (5), the slight additional accuracy not 
,eing worth the extra computation time. Thus two passes per sequence are optimum 

fith the special spacings in this case. 

4. Gauss-Radau and Gauss-Lobatto Spacings 

As in quadratures, much higher orders of accuracy may be obtained with a given 
number of function evaluations by adopting Gaussian spacings for the substeps. 
When the first force evaluation is at the fixed point t = 0  and the last evaluation is at 
the optimum position, then the appropriate spacings are Gauss-Radau. These corre- 
spond to odd orders of integration accuracy. When the first evaluation is at t - 0  and 
the last is at t = T, then Gauss-Lobatto spacings are appropriate, and the integration 
order is even. The classical justification for this is well known for quadratures, but is 
certainly less familiar for integrating second-order differential equations. Such a case is 
discussed next. A side light is that the proof illustrates the connection between the roots 

of Hilbert matrices and Legendre polynomials. 

4.1. SEVENTH-ORDER EXAMPLE INTEGRATING .~-- F(x,t) 

The example of the preceding section, Equations (11)-(14), appears to be of the 5th 
order in t. Without adding more terms we shall find spacings for t2, t3, t4 such that the 
results for both x and 2 are accurate through 7th order. 

Suppose that two more evaluations of force were to be made at any two additional 
times t5 and t 6 and that ~4 and ~5 were determined from these. We can calculate the 
improvements in x and 2 that would result from this additional information. Two 
additional orders of accuracy are achieved by finding values for t2, t3, t 4 such that 
these improvements are zero. With these spacings there is no need to carry out the 

two additional force evaluations. 
If ~4 and c~ 5 were known, we could calculate, using Equations (8), new values A~, 

f ! f t and A5 and also improve the three A-values in hand to get A3, A2, and A~. Here 
primes identify the 'improved' values. 

The improved x-value would be described by a series in primed A-values ending 
with the term A~ T7/42. Subtracting the old x-value (as in Equation (14)) from this 

improved value we find the improvement Ax in position. Thus, 

A x  = (A'~ - A a )  T 3 / 6  + (A'2 - A2) T4/12 + (A~ - 

+ A'4T6/30 + A'sT7/42. 

A3)TS/20 

(16) 

This equation is to undergo several steps of manipulation. First, using Equations (8) 

suitably extended, it is expressed in terms of the s-values and c41, ..., c4a, c51, ..., c54. 
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Then the recurs/on relationships, Equations (9), are used to reduce the terms in c51,. 
c54 t o  expressions involving only c41, c4z, c43. A third step introduces dimensionle 

h2 = t2/T, h3 =t3/T,  . . . ,  (17) 
; ) '  

times 

and a fourth step introduces dimensionless c-values indentified by primes. Thus 
e4~ = - t z t 3 t 4 ,  then e;,~ = -h2h3h4  with the same recursion relationships. The resin 
of all the manipulation is that Equation (16) can be written 

Ax - -  (0~ 4 -- t50~5) Z 6 [c4~/6 + c~,2/12 + c43/20 + 1/30] 

+ esT 7 [c;,1/12 + c~,2/20 + c~,3/30 + 1/42]. 

One notes that Ax  can be set equal to zero regardless of the unknown values of c~ 4, ~5 
and ts, Two condition equations are 

c'4~/6 + c[2/12 + c43/20 + 

c4~/12 + c~2/20 + c43/30 + 

1 / 3 0 = 0 ,  (18) 

1/42 = 0. (19) 

A similar development shows that the improvement in velocity A2 is zero to three 
more orders with the three conditions 

c41/2 + c'4z/3 + c'4a/4 + 1/5 - 0, 
l t 

c4~/3 + c42/4 + c'43/5 + 1/6 = 0. 
? t / 

c4~/4 + C42/5 -~- Cir + 1/7 = 0. 

(20) 

(21) 

(22) 

Equation (18) is redundant, being the difference between Equations (21) and (22), and 
Equation (19) is likewise redundant. The condition on the c'-values is 

1/2 1/3 
1/3 1/4 
1/4 1/5 

 c:1) 
1/5 [c42 = 1 / 6 ,  
1/6 \c~,3 1/7 

(23) 

which is recognized as one of the Hilbert matrix forms. The solution is 

' - 4 / 3 5  h2h3h4, C 4 1  = = - -  

! 

C42 = 6/7 = h2h 3 + h3h 4 + h2h 4 
l 

c 4 3  = - 1 2 / 7  = -  h 2 - h 3 - h 4 ,  

(24) 

and the polynomial in the form of Equation (10) whose roots give the spacings is 

( -  4/35) + (6/7) h + ( -  12/7) h 2 + h 3 

The roots are 

= 0 .  (25) 

hz = t2/T = 0.21234 05382 39 ... 
h 3 = t 3 / T - 0 . 5 9 0 5 3  31355 59... 
h 4 = ta/T - 0.91141 20404 88 .... 

(26) 
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iv i th  these spacings the integration should be accurate through 7th order for both x 
ad ~. The practical demonstration is seen in Figure 1. Line (4) is the result of 

adopting these spacings in a single pass through each sequence. However, with a 

double pass through each sequence the accuracy at constant computation time is 
-nproved by another factor of 100, as seen by line (5) on the figure. The steepness of 

~,ae line indicates that 7th order is achieved in practice. The computation time per 
~equence is the same for lines (3) and (5). As mentioned already, two passes/sequence 

s optimum in this case. 
For Radau quadratures Abramowitz and Stegun (1964) give an equation involving 

C, egendre polynomials, P4(u)-i-P3(u)=u+ 1, whose roots are the Gauss-Radau 
,~spacings (for the appropriate order to compare with our case). Divided by u + 1 this 
is a polynomial in u, and the roots are within the range - 1 to + 1. Since the range in 
h is 0 to + 1, one must substitute u-- 2 h -  1. When this is done the resulting polynomial 
in h is the same as Equation (25); hence Equations (26) are the Radau spacings. The 
demonstration that even orders of integration require Lobatto spacings is similar. 

Although Hilbert matrices are ill-conditioned, their roots are rational fractions, and 
no difficulty was experienced in finding these fractions exactly. Indeed, as seen above, 
an alternative way of finding these fractions exactly is through the coefficients of 
Legendre polynomials. 

4.2. TABULATED SPACINGS 

Table I gives the spacings h for integration of Y=F(x, t) from orders 5th through 
15th. In certain cases the polynomial in the form of Equation (25) can be solved in 
terms of quadratic surds, and the exact spacing can be given. Much more extensive 
tables of Radau and Lobatto spacings are given by Stroud and Secrest (1966), except 
in the range - 1 to + 1, instead of the range 0 to + 1 as used here. 

4.3. PRACTICAL CONSIDERATIONS 

The odd orders of integration are more simply programmed than the even orders. An 
8th-order method with Lobatto spacings and a 9th-order method with Radau spacings 
both require four a-determinations in each of the two passes through a sequence. 
These a-determinations and the attendant updating of the A-values become more com- 
plicated in quantum jumps as another a-value is added to the sequence. One might as 
well use the higher order for a given number of a-determinations, and this recommends 
the odd-order cases. In all cases, even and odd, the number of force calculations in a 
double pass through a sequence is the same as the order of the integration. 

When looking for programming errors with this method it is useful to examine the 

a-values. The sequence c~1, c~2, c~3,.., should generally be decreasing in size. An in- 
correct equation or procedural error causes large erratic fluctuations in such a se- 
quence. In practical programming, one would nest the series in Equations (11)-(15). 

4.4. THE GAUSS-LEGENDRE CASE 

By avoiding the force evaluation at t=0 ,  one could adopt Gauss-Legendre spacings 
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T A B L E  I 

Spacings for substeps hn--tn/T within sequences of length T for 
integrat ion with accuracies th rough  the orders given. All these 
apply to integrat ion of Yc=F(x, t) and  . ~ = F ( t ) ,  and  for orders  
of  5th or higher they apply to 2=F(x, t). Where  they are known,  
analytic expression are given in brackets.  In  every case hi = 0 .  
Except  that  the numbers  here are fitted to the range 0 to + 1, these 
spacings are the same as those for G a u s s - R a d a u  and  Gauss-  
L oba t t o  quadra tures  

Order  hn 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

ha = 0.66667 

ha = 0.5 
h 3 =  1. 

[hzh3 = (6 • 61/2)/10] 
ha = 0.35505 10257 
h3 = 0.84494 89743 

[h2h3 = (5 • 51/2)/10] 
ha = 0.27639 32022 50 
h3 = 0.72360 67977 50 
h 4 =  1. 

ha --  0.21234 05382 39153 
h3 -- 0.59053 31355 59265 
ha = 0.91141 20404 87296 

[h2h4 = (7 i 211/2)/14] 
ha = 0.17267 31646 46011 
h3 = 0.5 
h4 = 0.82732 68353 53989 
h5 = 1. 

ha - 0.13975 98643 43780 55 
h3 -- 0.41640 95676 31083 18 
h4 -- 0.72315 69863 61876 17 
h5 - 0.94289 58038 85482 32 

[hg, h3, h4, h s -  1/2-4-((7-4-71/22)/84) 1/2] 

ha = 0.11747 23380 35267 65 
h 3 = 0 . 3 5 7 3 8  42417 59677 45 
h 4 = 0 . 6 4 2 6 1  57582 40322 55 
h5 - 0.88252 76619 64732 35 
h 6 =  1. 

ha = 0.09853 50857 98826 42612 
h3 = 0.30453 57266 46363 90549 
h4 -- 0.56202 51897 52613 85599 
h5 - 0.80198 65821 26391 82746 
h6 - 0.96019 01429 48531 25766 

[ha, h3, hs, h 6 =  1/2-r  z] 
ha - 0.08488 80518 60716 53506 
h3 --  0.26557 56032 64642 89310 
h 4 - - 0 . 5  
h5 = 0 . 7 3 4 4 2  43967 35357 10690 
h6 -- 0.91511 19481 39283 46494 
h7 = 1. 
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Table I (Continued) 

Order hn 

13 

14 

15 

h2 = 0 . 0 7 3 0 5  43286 80258 38515 
h8 = 0.23076 61379 69945 49908 
h4 = 0 A 4 1 3 2  84812 28449 86792 
h5 = 0 . 6 6 3 0 1  53097 18845 70090 
h6 = 0.85192 14003 31515 70815 
h7 = 0.97068 35728 40215 10803 

h2 = 0.06412 99257 45196 69233 12771 
h3 -- 0.20414 99092 83428 84892 77446 
h4 = 0.39535 03910 48760 56561 56714 
h5 -- 0.60464 96089 51239 43438 43286 
h6 = 0 .7958500907 16571 15107 22554 
h 7  - -  0.93587 00742 54803 30766 87229 
h8 = 1. 

h2 -- 0.05626 25605 26922 14646 56522 
h3 -- 0.18024 06917 36892 36498 75799 
h4 -- 0.35262 47171 13169 63737 39078 
h5 --  0.54715 36263 30555 38300 14486 
h6 = 0.73421 01772 15410 53152 32106 
h7 = 0.88532 09468 39095 76809 03598 
h8 = 0.97752 06135 61287 50189 11745 

and, in principle, achieve a given order of accuracy with one less force evaluation. The 
disadvantage is that F1 would not appear as an explicit factor in Equations (11)-(15), 
its place being taken by an implicit quantity Ao, whose value depends on the forces at 
every substep. This would enlarge by one low-order term each of the bracketed ex- 
pressions that are subject to iterative improvement in the predictors. The accuracy of 
the predictors would be decreased. The additional force evaluation at t = 0  (which is 
not repeated in the iteration) avoids this difficulty. Butcher (1964) discusses Gauss- 
Legendre spacings in comparison to Gauss-Radau in his implicit Runge-Kutta 
methods, and he also points out the advantage of the latter in reducing the number of 
implicit terms for a given accuracy. 

5. First-Order Differential Equation and Stability 

Application to solve 2 = F(x, t), the class I equation, is illustrated in a 3-substep case 
that permits 7th-order integration. The set of predictor equations is 

X 2 - - X  1 

X 3  - -  X 1  

X 4  - -  X 1  

+ Flt2 + [Alt22/2 + A2t32/3 + A3t4/43, 
+ Fit3 + AltO~2 + [Azt3/3 + A3t~/43, 
+ Fit4 + AltO~2 + A2t3/3 + [A3t~/4], 

(27) 

and the final position at time T is obtained with an error O ( T 8) from 

x ( T )  = xl + FIT + AIT2/2 + AzT3/3 + A3T4/4. (28) 
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The integration procedure is the same as that described in Section 3, and the spacings 
for 7th order should be used in Table I. 

With the test equation ~ = 2x, a stability analyis was made, adapting the methods in 
Section 3.6.2. of Lapidus and Seinfeld (1971). Assuming iteration to convergence our 
4th-order method yields x(T)=x~(1  +2T/2+(2T)2/12)/(1-2T/2+(2T)2/12). The 
fraction is the (2, 2) Pad6 approximant to e AT, as listed in Table 3.2 by Lapidus and 
Seinfeld. The characteristic root is less than unit magnitude for all negative 2T, and 
the method is unconditionally stable (A-stable). The 6th-order gave the (3, 3) Pad6 
approximant, again with the same stability. Thus the even-order methods (Lobatto 
class I) appear to be A-stable. Tests with the 3rd- and 5th-order versions developed 
the (2, 1) and (3, 2) Pad6 approximants, and the 7th-order version would be expected 
to yield the (4, 3) Pad6 approximant. The regions of stability are of the form 0 > 2T> S, 
where S =  - 6 ,  - 11.84, and - 19.1, respectively, in the 3 cases. Evidently the Radau 
class I methods are conditionally stable, but with very large regions for stability, par- 
ticularly in the higher orders. Stability in the class IIS differential equation has not been 
studied. 

Note added in proof. Preliminary tests with standard test equations of class I show a 
favorable comparison with other single-sequence methods. However, when the 
problem can be solved directly as class II without reducing to first order, the results are 
up to 106 times more accurate at the same number of function evaluations. For the 
class II equation it is profitable to use integration to orders at least as high as 15th. 

The method of this paper is found to be adapted to solving any number of simul- 
taneous 2nd-order differential equations of the form A/= F(~, x, t) without reduction 
to first order. The modification involves adding velocity predictors to the algorithm 
as in Equations (11)-(15) and using these in the evaluation of the function F at each 
substep. Practical tests are most encouraging. Apparently the method can be extended 
to solving simultaneous nonlinear differential equations of any order with no restric- 
tions on the lower-order derivatives appearing in the force function. 

6. Implicit Runge-Kutta Methods 

We show how the present algorithm generates coefficients for implicit Runge-Kutta 
integrators. 

6.1. CLASS I FAMILIES 

Butcher (1964) described several families of implicit Runge-Kutta procedmes. For his 
5th-order Radau version (his type I), he found F~ (x~, 0), Fz (x2, h2 T) and F3 (x3, h3 T), 
where 

X 2 = X 1 -k- T ( a z 1 F  1 -+- [azzF2 + az3F3]), 
x3 = xl + T(a31F, + a32F2 + [a33F3]). 

Then 
(29) 
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determines the final position. These implicit equations require iterative solution. (The 
explicit Runge-Kutta version would delete the bracketed terms, but then is only of 3rd 
order.) 

The same form can be developed from our 5th-order Radau case for :c=F(x, t). 
Using Equations (7) and (8), one evaluates F x + A1T/2 + AzT2/3 in terms of F1, Fz,/73 
and equates this to w~Fa + wzF2 + w3F3. This determines the w-values. Similar evalu- 
ations of hnF 1 +hZA1T/2+h3nAzT2/3 are set equal to anlF1 +anzFz+an3F3 to find the 
a-matrix. The coefficients so found for this 5th-order case are the same as those al- 
ready given by Butcher (1964). For this 'type I' he lists members up through 5th order 
for this Radau class I family. The next member is of 7th order, and the coefficients 
(developed by the time-series algorithm described above) are given here as the second 
set in Table II. This Radau class I family has a large region for stability, as noted 
already. High order members of this family have been tabulated by Glasmacher and 
Sommer (1966). 

When applied to the Lobatto class I method of 6th order, the same process generates 
the implicit Runge-Kutta coefficients listed as the first set in Table II. Besides this 
example, we have examined the coefficients of the 4th- and 8th-order members. Unlike 
Butcher's Lobatto family, which is different in form, all members of the present 
Lobatto class I family are A-stable. This is pointed out by Chipman (1971) and Ehle 
(1969), who have already discussed the first entry in Table II. 

The implicit Legendre family of Butcher is also A-stable and this family is extended 
by the work of Glasmacher and Sommer (1966). We did not investigate Gauss- 
Legendre spacings for the reasons discussed in Section 4.4. 

6.2. CLASS IIS FAMILIES 

An analogous procedure generates implicit Runge-Kutta coefficients for solving the 
special 2nd-order differential equation directly. The forces Fn (x,, h,,T) are evaluated at 

Then 

and 

x,, = xx + 2,hnT + T 2 (anlF x + anzF 2 + . . . ) .  

x ( r )  = Xx + + + + . . . )  

= + 7(u F  + + . . . )  

(3o) 

determine the final position and velocity. The coefficients a, w, and u are found by 
comparing these equations with Equations (11)-(15). The lowest order of the Lobatto 
class IIS family is the 6th-order member shown in Table II. For the Radau class IIS 
family there is a 5th-order member, but the 7th-order member is shown in Table II. 
The 8th- or 9th-order cases of all four families, Lobatto and Radau, class I and class IIS, 
were also worked out in testing the program that generates the coefficients. 

6.3. DISCUSSION 

A by-product of this comparison is a criterion for choosing sequence sizes for implicit 
Runge-Kutta integrators. For example, in the 6th-order Lobatto class I case one 
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TABLE II 

Coefficients for implicit Runge-Kutta  integrators. The 6th- or 7th- order member is given each family - cla~ 
Lobatto and Radau, class IIS Lobatto and Radau. Horizontal sums equal hn for class I and hn2/2 for class II 

Class I, Lobatto 6th Order. A-stable 

h i =  0 0 
ha = ( 5  -- V'5)/lO (11 4- "V'5)/120 
h8 -- (5 4- #'5)/10 (11 -- %/5)/120 
h4 = 1 1/12 

W 

0 
(25 -- -V'5)/120 

(25 4- 13 ,v/5)/120 
5/12 

0 
(25 -- 13 ,V'5)/120 

(25 4- ,v/5)/120 
5/12 

0 
( - -  1 4- ,v/5)/12( 
( -  1 -- V'5)/12( 

1/12 

1/12 5/12 5/12 1/12 

Control:  A 3 T 4 / 4  - -  5 T(F4 --  F1 4- a~ 5 (Fg. --  F3))/4 

Class I, Radau 7th Order. Stable for 0 >  2 T >  -- 19.1. Obtain numerical values for ha, h3, h4 from Table I 

hi  

hg. 
h3 
h4 

W 

Control:  

0.0 
0.08668 21048 99833 
0.04645 25771 93484 
0.07240 46765 07266 

0.0 
0.13980 78018 10003 
0.37670 1'!,/!,80 28600 
0.30304 19425 59723 

0.0 
0.01792 97950 24201 
0.18130 08949 07813 
0.42850 26895 66694 

0.0 
0.00378 04265 53518 

--0.01392 17845 70632 
0.10746 27318 53612 

0.06250 00000 00000 0.32884 43199 80060 0.38819 34688 43172 0.22046 22111 76768 

A3T4/4  --  T ( - -  2.1875 F1 4- 4.453202790 F2 -- 3.488522645 F3 4- 1.222819855 F4) 

Class IIS, Lobatto 6th Order 

hi  = 0 

ha = (5 -- V'5)/10 
h~=(5+V5)/lO 
h 4 - -  1 

0 
(125 -- 27 V'5)/3000 
(125 4- 27 V'5)/3000 

1/12 

0 
1/5o 

(53 4- 25 ~/5)/600 
(5 4- V'5)/24 

0 
(53 -- 25 V 5)/600 

1/5o 
(5 -- V'5)/24 

0 
,V'5/15( 

-V5/15c 
0 

W 

U 

1/12 (5 4- ,v/5)/24 (5 -- "V'5)/24 
1/12 5/12 5/12 

0 
1/12 

Control:  A s T S / 2 0  -- T2(F4 -- F1 4- V'5 (F2 -- F3))/4 

Class IIS, Radau 7th Order. Obtain numerical values for h2, hs, h4 from Table I 

hi  

h2 
h3 
h4 

0.0 0.0 
0.01292 89608 95268 0.01115 
0.03754 00899 66293 0.12188 
0.05636 14364 35399 0.23145 

01356 03964 
77209 19233 
03384 08384 

0.0 
0.00195 38089 83474 
0.01612 02500 91054 
0.12214 15033 99353 

0.0 
0.00041 89645 74088 

--0.00118 33688 79851 
0.00538 26755 29472 

W 

// 

Control:  

0.06250 00000 00000 
0.06250 00000 00000 

0.25901 73400 78606 
0.32884 43199 80060 

0.15895 23624 83586 
0.38819 34688 43172 

0.01953 02974 37809 
0.22046 22111 76768 

A3TS /20  --  T2(--0 .4375 F1 +0.890640558 Fg. -- 0.697704529 F3 +0.244563971 F4) 

finds that A3T4/4=5T[F4-Fx+x/5(F2-F3)]/4. This is the highest-order term 
retained in the time-series expansion and is useful for a sequence-size control, as 
discussed in Section 3.4. Table II lists these controls. 

Lapidus and Seinfeld describe tests indicating that implicit Runge-Kutta methods 
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may not converge rapidly enough to compete with explicit methods. However, the 
four families of implicit Runge-Kutta discussed here are basically equivalent to the 
time-series method and should converge just as rapidly. Thus extrapolated e-values 
could be used in Equation (6) to predict the F-values, and so on. 

Two points in favor of the time-series formulation may be mentioned. First, there 
is an efficient algorithm such that the iteration converges accurately in two passes. The 
time trials to be described in the next section are most encouraging. Second, the 
values of hn in Table I are sufficient for integration to any order up through 15th of 
either the lst- or 2nd-order differential equation. Changing only the h-values and a few 
indices one can write a general program for integrating either equation to any order. 
In contrast, the implicit Runge-Kutta versions require a far more numerous set of 
coefficients, which are different for each equation order and each integration order. 

6.4. MULTI-OFF-GRID INTEGRATION 

Beaudet (1972) has described a system of integration, developed from multi-step 
predictor-corrector forms, that uses spacings analogous to Gauss-Legendre for sub- 
steps within each sequence. It is a multi-sequence method where each sequence is the 
same length. The predictors and correctors use information from previous sequences. 
His system is explicit. It is not self-starting, and there is no freedom to change sequence 
size each time. The point of contact with our system is the use of Gaussian-type spa- 
cings to achieve enhanced accuracy with few function evaluations in solving lst- and 
2nd-order differential equations. 

7. Tests and Comparisons 

7.1. TIlE DIFFERENTIAL EQUATIONS 

The test orbit was that of a hypothetical asteroid revolving about the Sun between or 
near the orbits of Jupiter and Saturn, being perturbed by these planets. Two systems of 
equations were used: 

The Cowell equations are of the form 

5d = -  l~x/r z + f ~ ,  (31) 

where r (x, y, z) is the position of the asteroid, and # is the mass factor. The first term 
is the direct force due to the primary mass (Sun) at the center of coordinates, and 

A "- Z mj r ( x j -  - x j l r ~ ]  
J 

(32) 

is the x-component of the perturbational force due to all other masses mj at positions 
rj(xj, yj, Zj). Here ~ j - - [ r j - r [ .  

The Encke differential equations calculate the difference between the actual orbit r 
and a conic reference orbit R (X, Y, Z). Let ~ be the x-component of this difference. 
Then 

= 2 -  J f  = ( - # x / r  3 + p X / R 3 ) + f x ,  (33) 
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where the term in parentheses may be called the 'Encke force'. The Encke force and f~ 
are both small. In our application the reference R is rectified (re-fitted) at the start of 
every sequence. The Encke equations are discussed more fully in Section 8. The 
system is complicated, but it does allow for large sequence lengths. 

7.2. THE TEST PROBLEM 

The hypothetical asteroid is started in a circular orbit outside Jupiter's orbit. It is 
orbit No. 96 from our recent study of random orbits in the solar system, Everhart 
(1973). The initial inclination is 6.9 ~ and the initial circular radius is 6.05 AU (atronom- 
ical units). Jupiter and Saturn are placed in unchanging elliptical orbits that are 
found analytically. Only the asteroid's orbit is integrated. The path is followed for 
68.23 years, which is more than 4 orbit revolutions for the asteroid. During this time it 
makes two approaches to Jupiter with 1.0 AU and one to Saturn within 3.0 AU. At the 
end of this time the integration is stopped and the asteroid's orbital elements are deter- 
mined. Then the asteroid's velocity vector is reversed, as are the directions of the two 
planets. The integration is restarted and carried back for precisely the same length of 
time to the starting point. The errors in closure Ax, Ay, Az are evaluated as 

Ar = (Ax 2 + Ay 2 + A z 2 )  1/2 . (34) 

In the unit system employed r (x, y, z) happened to have nearly unit magnitude, so 
that Ar is approximately the relative error in closure of position. The relative error in 
closure for velocity is found to be comparable with Ar. 

7.3. DISCUSSION OF ERROR CRITERIA 

It may be questioned whether the reversibility test is appropriate. In the case of a sym- 
metric integrator that retraces its steps one might expect a small error of closure, 
whereas the error might be large at the reversal point. However, the Gauss-Radau 
spacings used in most of the tests are not symmetric, and the nature of the restarting 
and sequence-size control is such that the return sequencies do not fall on the outbound 
sequences. In the test problem the correct values at the reversal point are known to 
high accuracy, and the error there was printed out and compared with the error of 
closure. In every case the error at the reversal point was comparable to the error of 
closure (both in position and velocity) within a factor usually less than 3, neither 
systematically higher or lower. The same rough equivalence between the two error 
criteria holds for the Runge-Kutta-Nystr~Sm-Fehlberg methods to be described later. 
Changing the error criterion would not change the figures significantly. 

7.4. TESTS USING THE ENCKE EQUATION 

The tests shown in Figure 1 used the Encke equations in the 3-substep case. The rela- 
tive error Ar is plotted vs the computation time measured on a CDC 6600 computer in 
single precision (14 decimal digits). Line (5) of Figure 1 results from using Radau 
spacings and passing through the sequence twice. 
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Fig. 2. Error vs computation time plots for present methods. Solid lines 5E, 6E, 7E, and 9E solve 
the Encke equation to orders 5, 6, 7, and 9. Dashed lines 7C, 9C, and 11C solve the Cowell equation to 
orders 7, 9, and 11. All these are for two passes through the sequence, except 11 C, which is for three 
passes. The dotted line marked (11 C)-2 is as in 11 C, except with two passes in the sequence. The above 
cases use the appropriate Radau or Lobatto spacings for the substeps. The dotted line ' ( l lC)-Even '  

is the same program as for 11C except with evenly spaced substeps. 

The solid lines 5E, 6E, 7E, and 9E on Figure 2 are the result of integrating the 
Encke equation to nominal orders 5, 6, 7, and 9. Order 7 is about optimum. The slope 
of the lines on the figure depends on the effective order of the integration, which may 
not be the same as the nominal order. The lines become steeper as the effective inte- 
gration order increases. The curvature at the lower ends is caused by round-off error. 

7.5. TESTS USING THE COWELL EQUATION 

The dashed lines 7C, 9C, and 11C of Figure 2 describe tests integrating the Cowell 
equation to nominal orders 7, 9, and 11. Generally, 9th order is best. There are several 
lines for nominal 1 lth order on the figure. The dotted line (11 C)-2 is for the usual 2 
passes per sequence. With a slope intermediate between 7C and 9C, the effective order 
is about 8. The dashed line 11C is the result of 3 passes through the sequence. Although 
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each sequence then takes 35~ more time, there is a large net gain. Method 11C is 
limited by round-off error near A r - 1 0  -~a, this being due to the 14-digit precision. 

Finally, the dotted line marked '(11C)-Even' on Figure 2 is for the same program as 
11C (including the 3 pass per sequence) except that the substeps were evenly spaced. 
At a computation time of i-s there is an advantage inaccuracy of 2�89 orders of magni- 
tude in using the Radau spacings. 

7.6. COMPARISONS WITH OTHER METHODS 

On Figure 3 three of the best of the present methods are drawn again. Here 7E is the 
Encke solution of 7th order, and 9C and 11C are the Cowell solutions of 9th and 1 l th 
order. 

We believe that the new high-order explicit Runge-Kutta-Nystr6m-Fehlberg 
methods are among the best of other single-sequence procedures. They also solve the 
equation 5d-F(x, t) directly without reducing to first order, and the necessary 
coefficients and sequence-size control have been worked out by Fehlberg (1972). They 
are delightfully easy to program. The line marked FE6 is Fehlberg's 6th-order method 
RKN6(7) applied to the Encke equation, and FC8 in his 8th-order method RKN8(9) 
applied to the Cowell equation. Among his methods we find these orders to be opti- 
mum for the present test. Fehlberg's 4th-order method RKN4(5) in the Encke case, 
FE4, and the Cowell case, FC4, are also shown. Methods 7E and 9C are twice as fast 
as FE6 and FC8 at the same accuracies in these tests. 

The line marked XC6 is for a time series method of 6th order solving the Cowell 
equation. It has a similar structure to methods developed by Wielen (1967) and Aarseth 
(1972) for N-body integrations. The line YE5 is for a 5th-order time-series method we 
used in a study of the evolution of orbits in the solar system, Everhart (1973). It solves 
the Encke equation. The perturbational force is fitted empirically as in the Wielen- 
Aarseth method, and the Encke force is expanded analytically. 

8. Encke Equations and Close Encounters 

The Encke formulation is not often chosen by celestial mechanicians. In its classical 
form it is more complicated and generally slower than the Cowell method. In multi- 
step methods it is particularly cumbersome, since the integration must be restarted 
every time the reference orbit is rectified. In single-step (single-sequence)methods, 
where there is no difficulty in starting, some advantages appear if the reference orbit 
is rectified anew at the start of each sequence, redefining R = r  and f l = f  at t a - 0 .  
Under this circumstance the two terms - # x / r  3 and #X/R 3 in Equation (33) very 
nearly cancel, and their sum is less than fx- The right side of Equation (33) is much 
smaller than the right side of the Cowell Equation (31), which has the large term 
- l a x /  r 3.  

Even with these advantages, which do, in fact, allow larger sequence lengths, the 
Encke equations are no obvious improvement over the simpler Cowell system, be- 
cause the reference orbit position and velocity involve substantial additional pro- 
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Fig. 3. Comparisons of error vs computing time for several methods integrating the same test orbit. 
Numbers refer to the nominal order of the integration. Methods solving the Encke equation are solid 
lines and include an 'E'  in the label, and those solving the Cowell equation are dashed lines with a 'C'. 
Lines 7E, 9C, and 11C are for the present method, FE6, FE4, FC8, and FC4 are Fehlberg's high order 
Runge-Kutta-Nystr6m methods, and XC6 and YE5 are time-series methods described in the text. 

gramming. The best method to handle the reference is to use the universal variables 
introduced by Stumpff (1947) and developed further by Herrick (1965), since they 
allow the reference to be projected ahead easily in rectangular coordinates. The most 
efficient notation and formulation, in our opinion, are those by Goodyear (1965) and 
Pitkin (1966). Only with these methods (and ingenuity in avoiding solving Kepler's 
equation in carrying the reference along) do Encke's equations show an improvement 
over Cowell's. The improvement, a 35% decrease in computation time in the present 
tests, is marginal justification for all the complications. 

It may be that the significant advantage of Encke's equations compared to Cowell's 
is concerned with close encounters and regularization. Whenever the path of a comet 
brings it near the Sun, the term - p x / r  3 becomes large, and whenever it passes near 
Jupiter the term -rnjx/o 3 dominates enormously. These are 1/r 2 poles in the differen- 
tial equation that causes difficulties. The way to remove such a pole in the Cowell 
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equations is to regularize them. Usually time is transformed by dO = dt/r, where ~ is a 
pseudo-time and r is the distance to the troublesome pole. Frequently the coordinates 
are transformed as well, using a transformation such as that of Kustaanheimo and 
Stiefel. Regularization and its advantages are reviewed by Bettis and Szebehely (1972). 

In the Encke formulation the 1/r 2 pole in the reference orbit is handled analytically. 
This is best done in a regularized manner with universal variables, so that one does use 
regularization in that sense. However, the C-equation, which is integrated numerically, 
is concerned only with perturbations and small departures from the reference, and it 
does not require regularization. In order to show this we expand the right side of 
Equation (33) in a Maclaurin time series about tl = 0  (using subscript 1 for initial 
values). Expanding the te rms - l g x / r 3 - t  - f x  in such a series is considerably more 
complicated than the expansion of -iAx/r 3 alone because of the interaction of the fx 
term. To the result we add the expansion of + IAX/R 3, and all terms that do not 
depend on the perturbation force f disappear. Through terms in t 2 one finds 

= (P/r3) [ - f x l  + 3xlfl" rl/r 2-] t2/2 +""  

+ + L i t  + ff'~lt2/2 + " ' .  (35) 

The second series is the perturbational force, and the first series, of which only the 
leading term is shown, is the Encke force. This term includes the constant factor 
#/r 3 that is large when rl is small. However, the factor in square brackets has the 
dimension and magnitude of ttie perturbing force, a quantity that is ordinarily small. 
The factor t2/2 is always very small when rectification is carried out at the start of 
every sequence. We see that the Encke force under these conditions is always small. 

The Encke formulation requires a transformation when the integration path passes 
near one of the secondary masses. When a comet is about to pass very near Jupiter, 
one should transform to Jovicentric coordinates, identifying Jupiter, temporarily, as 
the primary mass. The reference conic is then referred to Jupiter. 

There are certain advantages in this Encke system compared to the regularized 
Cowell system. First, with the Encke equations one can solve the orbit with 3N 
second-order differential equations of the form of Equation (1), where N is the number 
of bodies whose path is integrated. However, in regularizing the Cowell equations, 
first derivatives are introduced, and the system is usually solved as 6N first-order 
equations. Since one second-order differential equation is solved just as easily as one 
first-order equation (at least by the present method), it would appear that regulariza- 
tion doubles the work in this respect. Second, in the Encke formulation, time can be 
retained as the independent variable for all bodies. In the regularized Cowell case, one 
or more pseudo-times ~ must be related to time by integrating additional first-order 
equations of the form ~b = 1/r (tp, t). 

The author's experience in Monte Carlo studies of the interaction of comets and 
asteroids with the solar system, Everhart (1972, 1973), have involved calculation of 
more than a million orbits by the Encke method using single-sequence integrators. 
The method has proved to be fast and accurate in handling close encounters. 
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