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Summary. The aerodynamic forces and flow structures of a wing of relatively small aspect ratio in some 
unsteady rotational motions at low Reynolds number (Re = 100) are studied by numerically solving the 
Navier-Stokes equations. These motions include a wing in constant-speed rotation after a fast start, wing 
accelerating and decelerating from one rotational speed to another, and wing rapidly pitching-up in con- 
stant speed rotation. When a wing performs a constant-speed rotation at small Reynolds number after 
started from rest at large angle of attack (c~ = 35~ a large lift coefficient can be maintained. The mechan- 
ism for the large lift coefficient is that for a rotating wing: the variation of the relative velocity along the 
wing-span causes a pressure gradient and hence a spanwise flow which can prevent the dynamic stall 
vortex from shedding. When a wing is rapidly accelerating or decelerating from one rotational speed to 
another, or rapidly pitching-up during constant speed rotation, even if the aspect ratio of the wing is 
small and the flow Reynolds number is low, a large aerodynamic force can be obtained. During these 
rapid unsteady motions, new layers of strong vorticity are formed near the wing surfaces in very short 
time, resulting in a large time rate of change of the fluid impulse which is responsible for the generation of 
the large aerodynamic force. 

1 Introduction 

The flight mechanism of  a small insect is gaining more attention than before due to possible 

applications in micromachines. Insects use their wings to provide lifting, propulsion and con- 

trol forces for their flight. For  these purposes the wings must frequently change direction, 

speed and orientation. Ellington [1] in a comprehensive review showed that conventional 

aerodynamic theory could not explain the generation of  the required lift for insect flight and 
that an unsteady effect must play a major role in the force generation process. Since then~ 

much work has been done for understanding the unsteady aerodynamics of  insect flight (e,g, 

[2]-[5]). 
Recently, Hamdani  and Sun [6] studied the aerodynamic forces and flow structures of  an 

airfoil performing some typical unsteady motions by numerically solving the Navier-Stokes 

equations (Re = 100). The motions were rapid acceleration and deceleration from one transla- 
tion speed to another and rapidly pitching-up during translational motion. These motions 
were studied because some of  them occurred during maneuvering flight, e.g., an insect might 

make fast turning by modulating the relative time of  pitching-up of  its two wings [7]. More- 
over, even when insects were in normal forward or hovering flight, in order to provide both 
lifting and propulsion force, their wings must perform a flapping motion (alternating up- 
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strokes and downstrokes), which was a combination of the above simple motions. An analysis 
of the motions would provide the basis and insights for explaining the aerodynamics of the 
flapping motion. It was shown that in these fast unsteady motions very large aerodynamic 
forces were produced, and that the airfoil in small Reynolds number flow could produce a 
large aerodynamic force as effective as in large Reynolds number flow, or the effect of 
unsteady motion dominated the Reynolds number effect. 

In the present study, we extend the above work to the case of a wing of relative small 
aspect ratio performing typical unsteady rotational motions. These motions include: wing in 
constant speed rotation after a fast start (similar to an insect wing in upstroke or downstroke 
motion, as sketched in Fig. 1), wing accelerating and decelerating from one rotational speed 
to another, and wing rapidly pitching-up during constant speed rotation. The wing considered 
in the present study is a rectangular wing with elliptical sections of 12 percent thickness. In 
most cases considered, the wing aspect-ratio is 2, and in some of the cases considered the 
aspect-ratio is 3.6 (for small insects, the wing aspect-ratio is between 2 ~ 3.5). 

2 The computational method 

The Navier-Stokes equations for incompressible flow are numerically solved in the present 
study. For flow past a body in arbitrary motion, the governing equations can be cast in an 
inertial frame of reference using a general time-dependent coordinate transformation to 
account for the motion of the body. The inertial frame (oxyz) is shown in Fig. 1. Also shown 
is a frame attached to the wing (o'z'y'E), which is used in the grid-generation and in the 
description of the calculated results. 

The Navier-Stokes equations are solved using the algorithm developed by Rogers et al. [8]. 
The algorithm is based on the method of artificial compressibility and uses a third-order flux- 
difference splitting technique for the convective terms and the second-order central difference 
for the viscous terms. Time accuracy in the numerical solutions is achieved by subiterating the 
equations in pseudotime for each physical time step. 

At the inflow boundary, the velocity components are specified as freestream conditions 
while the pressure is extrapolated from the interior. At the outflow boundary, the pressure is 
set equal to the free-stream static pressure, and the velocity is extrapolated from the interior. 
On the wing surface, impermeable wall and no-slip boundary conditions were applied, and 
the pressure on the boundary is obtained through the normal component of the momentum 

equation. 
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Fig. 1. A sketch of the wing and refer- 
ence frames 
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Fig. 2. Mesh used for the wing 
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A body-fi t ted grid is generated by using a Poisson solver based on the work o f  Hilgenstock 

[9]. The grid topology used in this work  was an O-H grid. Some por t ions  of  the grid used fi)r 

the wing are shown in Fig. 2, 

3 Results and discussion 

3.1 Evaluation of  solution accuracy 

As with any numerical  analysis, great care must  be taken to insure the accuracy of  the com- 

puted results. In order  to verify the code, the flow around  an elliptical airfoil of  6% thickness 

at zero angle of  a t tack was calculated for Re = 10 ~ 1 000, and the drag coefficient was com- 

pared with the analytical  solution of  a flat plate [10], Fig. 3. The agreement with the analytical  

solution is very good. The code was also val idated by measured pressure distr ibut ions on a 

wing at c~ = 11.8 ~ and Re = 2 x 106 [11] (the turbulence model  of  Baldwin-Lomax was used 
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Fig. 3. Comparison between numerical calcu- 
lation and analytical solution for the drag 
coefficients of a flat plate 
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Fig. 4. Comparison between numerical calcu- 
lation and experiment for surface pressure 
coefficients at two spanwise sections of a wing 
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in the calculation). A comparison between the computed and experimental results is shown in 
Fig. 4, and it is seen that they are in good agreement. 

Grid sensitivity and the effect of  the far-field boundary position were considered and will 
be discussed together with the calculated results in the next part of  the paper. 

3.2 Wing in constant-speed rotation after a fast start 

The motion is sketched in Fig. 1, the wing rotates about the y-axis with constant speed after 

an initial acceleration motion from rest. This motion resembles that of  an insect-wing in a 

upstroke or downstroke motion. In this paper, ~ denotes the rotational speed and .~0 the con- 

stant rotational speed after the initial acceleration. In the initial acceleration, ~ is prescribed 

a s  

= o.5 & + (1  - , 0 < < (1 )  

In the above equation, @- = @c/U, ~o + ~oc/U, r = tU/e, where c is the chord length of  the 

wing and U is a reference velocity, and re is the time taken for accelerating the wing from rest 

to a rotational speed of  ~0 +. The reference velocity is taken as U = r0~0, where r0 is deter- 

mined by r0 = ( f r 2 d A / A ) 1 / 2 ,  where r is the radial distance and A is the wing area. For  a 
\ A  / 

rectangular wing, r0 = 0.64l, where 1 is the length of  the wing-span plus the distance between 

the wing-root to the rotational axis (Fig. 1). The Reynolds number is defined as Re = eU/v 
(v is the kinematic viscosity) and is set equal to 100. Two cases of  different wing aspect-ratio 

are considered in this section. The aspect-ratio is noted by A. In the first case, A = 2 and 
1/e = 2.5, and in the second case A = 3.6 and l/c = 4.5. In the rotation, the angle of  attack, c,, 

of  the wing is set equal to 35 ~ From our preliminary calculation, it was known that when c~ is 

between 30 ~ and 60 ~ the lift is relatively large and does not vary significantly with c~. There- 

fore 35 ~ is considered in this study. In the calculation of  this section, r~ is set equal to 1. 

Figure 5 gives the force and moment  coefficients vs. r for the case of  3, =- 2 (in this paper, 

CL, Cd and C,,~ denote respectively the lift, drag and moment  coefficients, and the moment  is 

taken with respect to 0.25 chord location). In the figure, solid lines represent the results calcu- 
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lated with a grid size of 45 x 101 • 79, in the normal direction, around the wing section and 
in the spanwise direction, respectively (the distance between the first grid-line and the wing 
surface is 0.002c). Dashed lines represent the results calculated using a grid size of 
75 • 161 x 95 (the distance between the first grid-line and the wing surface is 0.001c). The 
outer boundary for both the two grids was set at 10 chord lengths away from the wing. II is 
seen that there is no difference between the results calculated using the two grids. The cak:u- 
lation was also conducted using a larger computational domain. In order to isolate the effect 
of domain size, the outer boundary was made farther away from the wing by adding more 
grid points in the normal direction to the first grid mentioned above. The calculated results 
showed that there was no need to put the outer boundary farther than 10 chord lengths from 
the wing. From the above discussion, it was concluded that the grid size of 45 x 101 x 79 was 

proper for the present study. 
It should be mentioned that at 7- = 4 the wing of A = 2 has rotated about 120 ~ and at 

~- = 6 the wing of A = 3.6 would have rotated about 120 ~ The stroke angle of an insect wing 

is of the order of 120 ~ Therefore, the calculation in this section is carried out up to 7- = 8. 

As can be seen in Fig. 5, in the acceleration phase (T = 0 ~ 1), a large force and a large 
moment appear (the behavior of the force and the moment during acceleration or deceleration 
will be discussed in detail in the next section). An interesting point in the results in Fig. 5 is 
that during the constant-speed rotation (~- > 1) Cz reaches a value of about 1 in a short time 
and then keeps almost constant, and Cd and C~ behave similarly. For comparison, the calcu- 

lation was done for the wing in translating motion at the same c~. The speed at r0 of the rotat- 
ing wing was taken as the speed of the translating wing. The results are also included in Fig. 5 
(dash-dot-lines). It is seen that in the constant speed phase of the translation (7- > 1) CL 
increases to a value of about 1 at ~-~ 2 and then starts to decrease (decreasing to a value 
about 0.6 at ~- = 8). The above results show that the effect of wing rotation can keep the Cz at 

some large value. 
The force exerted on a body moving in incompressible viscous fluid is related to the 

motion of vorticity around the body [12]. In order to explain the above behavior of the aero- 
dynamic forces, contours of the spanwise component of the vorticity, c~e, are plotted at two 
spanwise locations. These two spanwise locations, called "section A" and "section B" in this 
paper, are 25% and 75% of the wing-span from the wing root, respectively (Fig. 1). Figure 6 
shows the vorticity plots for the wing in rotation. It is seen that from ~- = 2 to ~- = 8 the vorti- 
city-plots do not vary with time, and the dynamic stall vortex on the upper surface of the wing 
does not shed, which explains why CL and Cd do not vary with time during the constant- 
speed rotation. Figure 7 shows the velocity field in a spanwise plane (at 75% chord length 
from the leading edge). It is seen that there is a spanwise flow, and the direction of the flow is 
from the wing-root to the wing-tip. This spanwise flow might have stabilized the dynamic stall 
vortex and kept it from shedding. For a rotating wing, the suction pressure at the upper sur- 
face near the wing-tip where the relative velocity is high is stronger than that near the wing- 
root where the relative velocity is low. Therefore, there must be a pressure gradient in the 
spanwise direction, which is responsible for the spanwise flow mentioned above. Figure 8 
gives pressure contours on the upper surface of the wing, showing that there is a pressure gra- 

dient directing from wing-root to the tip. 
Figure 9 gives the vorticity contours in the symmetry plane of the wing in translation. It is 

seen that the vorticity on the upper surface of the wing moves downstream as time is increas- 
ing and is much more diffused than that of the rotating wing. The downstream motion of the 
vorticity is relatively fast between ~- = 2 and 7- = 4 and slower afterwards. This is consistent 
with the CL variation during this time period (see Fig. 5). From the calculated velocity field of 
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the translating wing (not shown here), it was seen that there was no spanwise flow above the 
upper surface directing from wing-root to wing-tip like in the case of  the rotating wing. 

For the case of  ~ = 3.6, the force and moment  coefficients vs. ~- and vorticity plots are 
shown in Figs. 1 0 -  12. The qualitative behavior of  the lift coefficient and its explanation by 

vorticity mot ion are similar to that of  the case of  A = 2. 
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Fig. 11. Vorticity plots on the section A - B of the wing in rotation, A = 3.6 

3.3 Wing in rotational acceleration and deceleration 

In this section, we consider the cases of  a wing accelerating from rest to a constant  ro ta t ional  

speed ~0 + and decelerating from constant  speed rota t ion to rest. The aspect ratio of  the wing 

is 2, and during the motions  the angle of  a t tack of  the wing is 35 ~ . 

Fo r  acceleration from rest, t~ is given by Eq. (1), in which ~-~ determines the acceleration. 

Three values of  ~-~ (0.5, 1 and 1.6), including the one used in the last section, are considered. 

The force and moment  coefficients during the acceleration for ~-a = 1.0 were already shown in 

Fig. 5 (between ~ = 0 and r = 1). Figure 13 gives the results for % = 0.5 and 1.6. F r o m  Fig. 5 

and Fig. 13 it is seen that  for the fast accelerating wing ('Ca = 0.5) the variat ion of  the force 

and moment  coefficients with time closely follows that  of  the accelerat ion (their peaks almost  

coincide with that  of  the acceleration). When the acceleration becomes smaller (~y = 1.0, 1.6), 

force and moment  coefficients become smaller, and the var ia t ion with time becomes less simi- 

lar to that  of  the acceleration (e.g., for the case of  % = 1.6, the force and moment  coefficients 

reach their peaks at about  ~- = 1.3, much later than the acceleration with peak  at  ~- = 0.8). 
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From Sect. 3.2, it was known that a short time after the wing was in constant speed rota- 
tion, the flow field (seen from the wing) stopped varying with time. Using this flow field as 

initial condition, the wing is decelerated from constant speed rotation to rest. The rotation 

velocity in the deceleration is given by 

r 2 4 7  = 0.5r § (1 + cos ( ~ / ~ d ) ) ,  0 < ~ < ~d, (2) 

where ~-d is the time-duration of  the deceleration. Figure 14 shows the force and moment  coef- 
ficients vs. ~- for ~-d = 0.5 and 1.0. It is seen that the force coefficient behavior is approximately 

a mirror image of  the acceleration case, Cr  and Cd being negative. 
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Fig. 16. Vorticity plots on section A during the deceleration, ), = 2, ~-e = 0.5 

The above results show that during fast acceleration and deceleration large aerodynamic 

forces and a large moment are produced, even if the aspect ratio is small and the flow Rey- 

nolds number (based on the constant speed after the acceleration or before the deceleration) is 

low. The reason for the large forces and the large moment  is that large vorticity is generated 
in a short time by the wing during the fast acceleration or deceleration process, giving a large 

time rate of  change of  impulse to the fluid. Figures 15 and 16 give some samples of  the vorti- 

city plots for the cases of  fast acceleration and deceleration, respectively. For  the case of  fast 

acceleration (T~ = 0.5), from the vorticity plot at the end of  the acceleration (Fig. 15), it is 
seen that during the acceleration a negative vorticity layer forms around the leading edge and 
on the upper surface of  the wing, and a positive vorticity layer forms on the lower surface, 

and part of it extends beyond the trailing edge to form the starting vortex. These vorticity 
layers are very strong and produced in a short time. For  the case of  fast deceleration 
(Td = 0.5), from the vorticity-plot at the end of  the deceleration, Fig. 16b, it is seen that during 
the deceleration new positive and negative vorticity-layers of  large strength form on the upper 
and lower wing surfaces, respectively (under the previously existing vorticity regions). The for- 
mation of  the new positive and negative vorticity layers is opposite to that of  the acceleration 
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case (compare Fig. 16b with Fig. 15). It is the interchanging of  newly formed vorticity regions 

near the wing surface that causes the force and moment coefficients to behave in a reverse 
manner to that of  the acceleration case. 

3.4 Wing rapidly pitching during constant speed rotation 

During constant speed rotation, the wing of  A = 2 is pitched up from c~ = 0 ~ with angular 

velocity, X?, given by 

~+ = 0.bS?0 + (1 - cos (2*?0+T)), (3) 

where f2 + = ,(?c/U; ~?0 + represents the maximum value of t2 + (at ~- = 0 or c~ = 0, f2 + is zero, 
at T = 7r/2X?0 + or ~ = ~r/4, f2 + takes its maximum value, and at ~- = ~r/~?0 + or c~ = 7c/2, f2 + 

becomes zero). The pitch-axis is at 0.25c from the leading edge of  the wing. Three pitching 

rates, X?0 + = 1,2,3, are considered (according to Ref. [7], X? + above 3 is common for small 
insects in their flight). 

Figure 17 gives the force and moment  coefficients vs. a. It is seen that even if the wing is 

of  small aspect ratio and the Reynolds number is low, the aerodynamic forces are of  very 

large values and the higher the pitching rate, the larger the force and moment  coefficients. 

Before a is about 30 ~ Cc is much larger than Ca, and after c~ is about 45 ~ Ca becomes close 

to or larger than CL. For the case of  the highest pitching rate considered (f20 + = 3), CL is 
over 10 in a large range of  c~. Even for the case of a relatively small pitching rate considered 

(f20 + = 1), CL is over 2 in a large range of  a. Based on our calculation, for a wing in con- 

stant-speed rotation at fixed a, CL is not  more than 1.2. Figure 18 gives vorticity plots at var- 

ious angles c~ during the pitching motion for the case of  n0 + = 3. It is seen that before the 
pitching starts (a  = 0), very thick negative and positive vorticity layers exist around the wing. 

As the wing pitches up, new vorticity layers are generated, and a part  of  the newly generated 

positive vorticity layer at the lower surface of  the wing moves downstream, forming the start- 

ing vortex. Since the pitching rate is high, the time taken for the generation and movement of  

the new vorticity is very short, resulting in a large time rate of  change of the fluid impulse or 

large aerodynamic forces. 

4 Conclusion 

At a small Reynolds number (Re = 100), when a wing is performing constant-speed rotation 

after started from rest at a large angle of  attack (a =- 35~ a large lift coefficient can be main- 
tained. The mechanism for the large lift coefficient is that for a rotating wing the variation of  

the relative velocity along the wing-span causes a pressure gradient and hence a spanwise flow 
which can prevent the dynamic stall vortex from shedding. When a wing is rapidly accelerat- 

ing or decelerating from one rotational speed to another, or rapidly pitching-up during con- 
stant-speed rotation, even if the aspect ratio of  the wing is small and the flow Reynolds num- 
ber is low, a large aerodynamic force can be obtained. During these rapid unsteady motions, 
new layers of  strong vorticity are formed near the wing surfaces in very short time, resulting 

in a large time rate of  change of the fluid impulse which is responsible for the generation of  
the large aerodynamic force. 



Aerodynamic properties of a wing 147 

Acknowledgements 

This research was supported by the National Natural Science Foundation of China, Grant No. 19725210. 

References 

[1] Ellington, C. P.: The aerodynamics of hovering flight. III. Kinematics. Phil. Trans. R. Soc. London 
305, 41-78 (1981), 

[2] Dickinson, M. H., Gotz, K. G.: Unsteady aerodynamic performance of model wings at low Reynolds 
numbers. J. Exp. Biology 174, 45-64 (1993). 

[3] Dickinson, M. H.: The effects of wing rotation on unsteady aerodynamic performance at low 
Reynolds numbers. J. Exp. Biology 192, 179-206 (1994). 

[4] Dickinson, M. H., Gotz, K. G.: The wake dynamics and flight forces of the fruit fly drosophila 
melanogaster. J. Exp. Biology 199, 2085-2104 (1996). 

[5] Liu, H., Ellington, C. P., Kawachi, K., Van den Berg, C,  Willmott, A. P.: A computational fluid 
dynamic study of hawkmoth hovering. J. Exp. Biology 201,461-477 (1998). 

[6] Hamdani, H., Sun, M.: Aerodynamic forces and flow structures of an airfoil in some unsteady 
motions at small Reynolds number. Acta Mech. (forthcoming). 

[7] Dickinson, M. H., Lehmann, F. O., Gotz, K. G.: The active control of wing rotation by Drosophila. 
J. Exp. Biology 182, 173-189 (1993). 

[8] Rogers, S. E,, Kwak, D., Kiris, C.: Numerical solution of the incompressible Navier-Stokes equa- 
tions for steady-state and time-dependent problems. AIAA J. 29, 603-610 (1991). 

[9] Hilgenstock, A.: A fast method for the elliptic generation of three dimensional grids with full 
boundary control. Num. Grid Generation in CFM'88, pp. 137-146. Pineridge Press 1988. 

[10] Schlichting, H.: Boundary layer theory, p. 148. McGraw-Hill 1979. 
[11] Spivey, W. A., Moorhouse, G, G.: New insigths into the design of swept-tip rotor blades. Presented 

at the 26th Annual National Forum of the American Helicopter Society, Washington, D.C., June 
1970. 

[12] Wu, J. C.: Theory for aerodynamic force and moment in viscous flows. AIAA J. 19, 432-441 (1981). 

Authors' address: S. L. Lan and M. Sun, Institute of Fluid Mechanics, Beijing University of Aeronautics 
and Astronautics, Beijing 1000/83, P.R. China 


