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ABSTRACT. We state a localization principle for expansions in eigenfunctions of a self-adjoint second order 
elliptic operator and we prove an equiconvergence result between eigenfunction expansions and trigonometric 
expansions. We then study the Gibbs phenomenon for eigenfunction expansions of piecewise smooth functions 
on two-dimensional manifolds. 

Two of the most elementary but basic results in harmonic analysis are the theorem of Dirichlet 
on the convergence of Fourier series and the localization principle of Riemann. The Riemann 
localization principle states that the behavior of the partial sums of a Fourier series at a given point 
depends only on the behavior of the function in an arbitrary small neighborhood of this point. The 
Dirichlet theorem, originally stated for functions with a finite number of maxima and minima, when 
applied to piecewise smooth functions guarantees the convergence at every point of the partial sums 
of Fourier series to the function expanded. At a discontinuity the convergence is to the midpoint of 
the jump but, as it was observed by Wilbraham and later by Michelson and Gibbs, in a neighborhood 
of the discontinuities, the partial sums have wild oscillations and overshoot the target by about 9% 
of the value of the jump. 

The classical trigonometric series is a quite faithful model for more general one-dimensional 
expansions. After suitable changes of variables, a regular Sturm-Liouville problem can be put in a 
canonical form: 

d 2 
-2-~xY(X)+(Q(x) -Z2)y(x)=O,  if 0 < x < l ,  

Ot~xY(O ) + fly(O) = y d y ( 1 )  + By(l) = O. 

.21+eo Moreover, if oty ~ 0 and if n ~ +oo, the sequences of eigenvalues {A n In=0 and normalized 
x +cr eigenfunctions {~bn ( )}n=0 admit asymptotic expansions, 

Zn = zrn +an -1 + O(n -2) , 

q~n(X) = ~/~cosQrnx) + n-lA(x)  sin(zrnx) + O(n -2) 
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for a suitable constant a and function A(x) independent of n. Using these formulas, Haar [8] proved x +c~ that Fourier series with respect to the system of eigenfunctions {~bn ( )}n=0 are equiconvergent with 

F~ur~rserieswithre~pe~tt~thetrig~n~metr~s~stem~x/2~s(~rnx)~n+~thatisf~revery~tegrab~e 
function f(x) on [0, 1] one has 

kn__~0 (f01 ) ~(f01 ) lim f(t)q)n(t)dt d?n(X) - f(t)~/2cos(rcnt)dt q'2cos(zrnx) = 0 .  n-~+oo k=0 
The idea of the proof is indeed very simple. By the asymptotic formula for eigenfunctions, 

the difference between the Dirichlet kernels )--~=0 ~n( t)d/)n (x) and 2 ~ = 0  cos(zrnt)cos(zrnx) is 
uniformly bounded. It then follows that 

~=o(folf(t)q)n(t)dt)qhn(X)-~=o(folf(t)~c~176 

= n(t n(X)- cos(zrnt cosQrnx t)dt 
= k=0 

/o' < c If(t)ldt.  

Norm boundedness and convergence to zero for a dense class of functions imply the con- 
vergence to zero for every integrable function. In particular, for these Sturm-Liouville expansions 
we have an exact analogue of the Dirichlet convergence theorem and of the Riemann localization 
principle. 

We shall try to prove something similar for expansions in eigenfunctions of a second-order 
self-adjoint elliptic Dirichlet problem on an N-dimensional domain; however, since an asymptotic 
expansion of eigenfunctions is not available, as a tool we shall use the wave equation. In particular, we 
shall synthesize the Dirichlet kernel, or spectral function, using the fundamental solution of the wave 
equation and we shall control the errors using estimates on restriction of Fourier transform to spheres 
and approximation results of Jackson-Bernstein type. For technical reasons, the most precise results 
will be obtained for expansions on two-dimensional manifolds without boundary. In this case, we 
shall prove the pointwise convergence for eigenfunction expansions of piecewise smooth functions 
and the associated Gibbs phenomenon in a neighborhood of the discontinuities. This is related 
to some results obtained by Weyl [25], who studied the Gibbs phenomenon for spherical harmonic 
expansions on the two-dimensional sphere {x 2 + y2 + z 2 = 1 }. Another two-dimensional manifold 
is the torus {0 < x, y < 1} and in this case the expansions in eigenfunctions of the Laplacian are the 
classical two-dimensional trigonometric Fourier series. When applied to this case, our results give a 
new proof of an identity stated by Voronoi and proved by Hardy [9] for the number of integer points 
in a disk of the plane. 

We want to mention that expansions in eigenfunctions of elliptic operators have been ex- 
tensively studied (see, e.g., the survey by Alimov-II'in-Nikishin [1] and the references there). In 
particular, these authors proved definitive results for localization and pointwise convergence of ex- 
pansions of functions in Sobolev spaces. However, the piecewise smooth functions considered in this 
paper are just in the critical spaces and, as far as we know, the results we have found in the literature 
do not immediately imply ours. As we said, the method of proof is based on the wave equation, 
restriction theorems for Fourier transforms, and approximation results of Jackson-Bernstein type. 
A curious feature is that in order to prove a pointwise result for piecewise smooth functions, we use 
L p norms with 1 < p < 2 since p = 1, 2 are not enough. 

The index of our exposition is the following. In order to illustrate the methods used in the 
paper on simple model cases, in Section 1 we state an extension of the classical Riemann localization 
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principle to multiple Fourier integrals and in Section 2 we study localization and convergence of 
expansions in eigenfunctions of  the Dirichlet problem in bounded open sets in N N with smooth 
boundary. It turns out that trigonometric and eigenfunction expansions are related via an equicon- 
vergence theorem that is an analog of Haar 's  result for Sturm-Liouville expansions. In Section 3, 
which is the motivation of our work and perhaps the most original part of  the paper, we restrict our 
attention to smooth two-dimensional manifolds without boundary and we study the convergence of 
eigenfunction expansions of piecewise smooth functions and the associated Gibbs phenomenon. In 
Section 4 we give a new proof of the identity of  Hardy for the number of  integer points in a disc of  
the plane. 

1. Localization for Fourier Integrals in R N 

For functions in 1L, 1 + L2(IR N) we consider the Fourier transform and the associated Fourier 
expansion 

IF f(~) = f~u f(Y) exp( -2zr i~  �9 y)dy, f (x)  = f~N ~ f(~) exp(27rix �9 ~ ) d ~ .  

The classical Riemann localization principle states that the behavior of  the partial sums of a one- 
dimensional Fourier series or integral at a given point depends only on the behavior of  the function 
in an arbitrary small neighborhood of this point. It was shown by Tonelli [23] for multiple Fourier 
series and by Bochner [4] for multiple Fourier integrals that localization may not hold when N > 1. 
See also [1]. The idea is that the spherical partial sum operators can be expressed as convolutions 
against kernels which are unbounded even outside the origin. Indeed, see Stein-Weiss [21], IV, 

f{ ]Ff(~) exp(2rrix �9 ~)d~ = f f ( x  - y)A N IAyl -N/2 JN/2(27r IAyl)dy. 
I~I_<A} JRN 

Let us fix x and consider the space of continuous functions on N N with supports 
{~ _< l Y - x [ _< ~ }. The above integrals are linear functionals on this space, but since Bessel functions 
have asymptotic expansion, for z --~ +cx~, 

,F Ja(z) = cos z -t- O(Z -3/2) 
v rcz 2 4 ' 

these functionals have norms of the order of A (N- 1)/2. Hence, they are not uniformly bounded and, by 
the Banach-Steinhaus theorem, there exists a continuous function with support in {e < lY - x l < 3} 
for which the above integrals do not converge at x. A simple explicit example of  this lack of 
localization is given by the spherical partial sums of a characteristic function of a ball in IR 3 at its 
center, 

f{l~l_<A } ]FX{Ixl<-l}(~)d~ 
P 

= [ A 3 IAxt -3/2 J3/2(2rr IAxl)dx 
J{ Ixl_<l} 

f01 (s in(2zrAt)  ) 2 
= 4A \ 2zrAt cos(2~rAt) dt ,-~ 1 - --zr s in(2zrA).  

In order to recover the localization, one can introduce suitable means of the Fourier integrals, 
or one can require appropriate Tauberian conditions on the function expanded. In particular, we shall 
see that localization holds when the Fourier transform is suitably small and spread out. 

Let m (s) be a bounded even function on - e ~  < s < + c ~  and for A > 0 let m a  (s) = m (s /A) .  
For functions in L 1 + L2(~;~ N) define the operator NIA by 

f mA(2rr I~I )Ff (~)  exp(23rix �9 ~)d~ I~A f ( x )  = N 



434 Luca Brandolini and Leonardo Colzani 

Since the multiplier m(2zr 1~ [) is bounded, the means NIA f ( x )  are tempered distributions. If 
mh (2zr I~ I)Ff(~) is square integrable, then these means are defined at least almost everywhere as 
functions in L2(NN). However, here we are interested in pointwise localization and convergence, 
so that in order to have means which are also defined pointwise, in the sequel we shall require 
that re(s) has compact support, or sufficiently rapid decay at infinity. Under this assumption, the 
operators NIL map the space L 1 + L2(R N) into a suitable space of test functions. For example, the 
characteristic functions m^ (s) = X[-^,^I (s), which define the partial sums operators, give rise to 
absolutely convergent integrals and IVlIAf(x) are entire functions. Other classical examples are the 

Bochner-Riesz means of order ~ defined by m ^ ( s ) =  (I - (s/A)2)~+ and one is interested in the 
behavior of these means as A -+ +c~. 

Let ~(s) be an even test function on - o c  < s < +c~ with cosine Fourier transform ~(t)  = 
2 f : c ~  ~--- -y gt(s) cos(ts)ds vanishing for I tl >_ e and with f+_~ 7t(s)ds 1. For the application we 

have in mind, it is convenient to choose e small and also to assume that f + ~  ~ ( s ) sJds  = 0 for 
j = 1, 2 . . . . .  even if these assumptions are not always necessary. The convolution mA * ~(s) = 
f + ~  mA(s  - t ) ~ ( t ) d t  can be seen as an approximation o f m ^ ( s )  and f~N m^ �9 7t (27r I~I)Ff(~) 
exp(2zr ix �9 ~)d~ as an approximation of 1VIIz f ( x ) .  Under these assumptions we have the following 
localization results. 

T h e o r e m  1. 

1) The value o f  the means 

s mA * ~(27r I~l)1Ff(~)exp(2Jrix. ~)ds e 
N 

at a point x depends only on the values o f f ( y )  at points lY - xl < e. 

2) Assume that 

lim fR (ma(2Zr I~1) - - m h  * ~(2zr I~[ ) )F f (~ )exp (2z r i x .  ~)d~ = O. 
A--++~ N 

Then the behavior as A --+ +oo of  the means 

N mh (2zr I~ I)Ff(~) exp(2zrix �9 ~)d~ 

at x depends only on the values o f  f (y) at points lY - xl < e. In particular i f  f (y) = g(y)  for  
l Y - x l < e and both f ( y )  and g(y)  satisfy the above Tauberian condition, then the means o f f ( y )  
and g(y)  are equiconvergent at the point x, 

/ .  f 
lim ] m^(2zr I~[)Ff(~)exp(2zrix. ~)d~ - ] ma(2zr [~l)IFg(~)exp(2~rix. ~)d~ 0 .  

A---~+~ ,.]~N JRN 

3)If 

limsup f (mh(2zt I~l) - mA * @(2~r [~ l ) )Ff (~)exp(2Jr ix  �9 ~)d~ > O, 
A--++c~ .]~N 

then the behavior o f  the means fl~u ma  (2rr I~ I)IFf(~) exp(2Jrix . ~)d~ as A --+ + ~  depends also 
on points lY - xl > e. In this case there is no localization. 

Proof .  The idea, by now quite classical, is to synthesize the operators 1V~A by means of the 
fundamental solution of the wave equation cos(t ~/'A). 
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Lemma 1. 
Let cos(t v ~ )  f (x) be the solution of the Cauchy problem for the wave equation in R x ]R N, 

02 N "02 
~ u ( t , x )  -- F~ ,7:r~u(t,x) = O,  

j = l  

u(O,x) = f ( x ) ,  

~u(O,x) = 0 .  

Then in the distribution sense we have the equalities 

fo mA(2zr I~ l) 1Ff(~) exp(2zri~ �9 x)d~ = N'~A(t) cos(tvF~)f(x)dt, 
N 

s f0 mA * ~(2zr I~ I) F f (~ )  exp(2Jri~ �9 x)d~ = Jr ~ ( t ) ~ ( t )  cos(t ,JA)f(x)dt.  
N 

If re(s) has compact support, or sufficiently rapid decay at infinity, then for every f (x) in 
L 1 + L2(R N) the above distributions can be identified with smooth functions. 

Proof .  In the distribution sense F (cos(t.v/A)I~ (~) = cos(2zr I~l t)Ff(~) and we have 
\ / 

f~u (2zr I~ I) lFf(~) exp(2zri~ �9 x)d~ mA 

= f~N (fo+~176 l~l t)dt) F f(~)exp(2Jri~ " x)d~ 

=fo+~176163 

fo +~ ~"s (t ) cos(t v/-A) f (x )dt . 

The interchange in the order of integration can be justified as in the proof of Fourier inversion 
formula. This proves the first equality and the proof of the second issimilar. It only uses the formula 
for the Fourier transform of a convolution (mA * ~)^(t) = rrN~s (t). If f (x)  is in L 1 + L 2 (RN), 
then ]Ff(~) is in L 2 + L ~ ( N  N) and if re(s) has a rapid decay at infinity, then the integral on the 
left-hand side of the equality is absolutely convergent and defines a smooth function. [ ]  

Now recall that waves propagate with finite speed. In particular, the distribution kernel of 
cos(t~/-A) has support in ~y - xl < t} and cos(t~/-~)f(x) depends only on the values of f (y)  at 
points lY - xl < t. Since ~( t )  = 0 i f t  > e, then 1) follows. 

2) and 3) are immediate consequences of 1). [ ]  

If the function m(s) is smooth with compact support or, more generally, if m(s) is smooth 
with rapidly decaying derivatives and if the function 9 (s) is suitably chosen, then for every positive 
integer h and k, 

ImA * ~p(s) - m^(s)l = . f + 2  (mA(s - t) - mA(s)) ~(t)dt 

S;2 ( h-i dJ " "(-t)J~ 
= m A ( s - - t ) - - E ' ~ - f s j m ^ l ' s ' - ~ ' )  



436 Luca Brandolini and Leonardo Colzani 

A-h  f +~ d h 

< h! J _ ~  
Ot) /A)  -~sh m((s ta~(t)  dt 

< cA -h (1 + ( s / A ) 2 )  -* . 

Hence, ImA(s) - mA * ~(s) l  vanishes so fast as A ~ + ~  that for every function in L 1 + 
L2(RN), 

, , I  

lim [ ImA(Zzr ]~l) - m A  * ~(2zr I~l)[ I~ ' f (~) ld~  = 0 .  
A-++e~ JRN 

Therefore, for these means localization holds. Of  course, this result is well known and imme- 
diately follows from the fact that smooth multipliers have fast decaying kernels. 

Let us now consider the case of  the spherical partial sums which are associated to the discon- 
tinuous multipliers mA (s) = X[-A,A](S). In this case, localization does not hold for every function, 
but we have the following. 

Corollary 1. 
Let f (x) be in L 1 + L2(1R N) and assume that 

lim f I IFf(~)ld~ = 0 .  
A---~ +c~ J{A<27rI~I<A+l} 

Then for the spherical partial sums of f (x ) localization holds. In particular, if this function 
is smooth in an open set, then for all points x in this open set we have 

lim f IF f (~ )exp(2J r ix .  ~)d~ = f ( x ) .  
A--++cx~ d{27rl~l<A} 

Proof. I fmA(s )  = X[_A,M(s), it is not difficult to see that ImA(s) - m ^  * ap(s)l is essentially a 
bump around A of height and width one. Indeed, for every k, 

[mA(s) - mA * 7t(s)l < c(1 + IA - Isll) - k  . 

Because of the assumptions on the Fourier transform, as A ~ + o 0  we have 

i~n (mA (2~r [~ l) - m A  * ~(2zr I~ ] ) ) ]Ff (~)exp(2zr ix .  ~)d~ 

< c  f ( l + l A - - 2 J r l ~ l l ) - k l l F f ( ~ ) l d ~ - +  O. [] 
JR N 

It follows from the Riemann-Lebesgue lemma and the Plancherel equality that for N = 1 and 
f ( x )  in L 1 + L2(~)  the assumptions in the corollary are automatically satisfied. When N > 1 the 
hypotheses of  the corollary are not automatic and we want to present some classes of  functions for 
which these hypotheses hold. 

A first natural candidate is the Sobolev space W 2 (~N) defined by the norm 

The following result, also contained in [1], easily follows from the previous arguments. 

Corollary 2. 
For spherical partial sums of functions in W2([R N) localization holds when o~ >_ (N - 1)/2 

and this index is best possible. 
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Proof .  If  f (x )  is in W2(RN), then 

When ot _> (N - 1)/2 the above quantity tends to zero as A ~ +oo. In order to prove that the 
index (N - 1)/2 is best possible, it suffices to construct a function in W2(R N) with u < (N - 1)/2 
and such that 

l imsup f (mA(2Jr I~l) -- mA * 9(27r I~l))~f(*)exp(2Jrix. r = +o0. 
A--+ +oo JR N 

Since ] m A ( S )  - -  m A  * ~ ( S ) ]  is essentially a bump around A of height and width one and 
since W2(R N) is defined in terms of the modulus of the Fourier transform, for a fixed x and every 
A there exists a function fA(Y) of norm one in W2(]~N), with ~ f^ (~ )  supported in an annulus 
{ A - 1  <2~r]~] < A + l } a n d  

fNN (mA (2rr I~ 1) -- * , (2zr  I~ I))N f ^  (~)exp(2rrix.  ~)d~ > c A_(N-1)/2-a mA D 

x--,+c~ k-2 ,c Then f (y) = z~k=l a 2k (Y) has the required properties. [ ]  

In order to apply the above results to other classes of functions, we introduce a class of 
piecewise smooth functions in several variables. Let K be a compact subset of R N with piecewise 
smooth boundary and let f (x )  be a real function which is smooth in K and vanishes outside K. It is 
convenient to normalize this function on the boundary a K by dividing its values by two, or by u/2zr 
if at x the boundary has an angle of or. Linear combinations of such functions generate the space of 
piecewise smooth functions. 

The example of characteristic functions of balls shows that for spherical partial sums of piece- 
wise smooth functions, the localization may fail at least in dimension N > 3. However, in dimension 
two we have not only localization, but also convergence. This result is already contained in [ 15, 16, 5], 
but the following proof is different and the technique, which combines the wave equation with re- 
striction for Fourier transforms and approximation with functions of exponential type, will be used 
throughout the paper. 

Corollary 3. 
For spherical partial sums of piecewise smooth functions of two variables localization holds. 

Moreover, at every point of continuity, 

lira f F f ( r  �9 ~)dr = f ( x ) .  
A---~ +oo ,]{2zr [~l<A} 

Proof .  It is enough to show that for piecewise smooth functions of two variables, 

lim f I~f (~) ld~  = 0 .  
A--~ +oo d{A<27r [~I_<A+I} 

If this is true, by the previous corollary localization holds and from localization one can deduce 
convergence in every open set where the function is smooth. 

By the restriction theorem for the Fourier transform, see Stein [20], VIII, if 1 < p < 2N+2 - -  - -  N + 3  ' 

{ f{l~l=l} ']F f (~ )12 d~ } l/2 < c l ~N ' f (x)'P dx } lip " 



438 Luca Brandolini and Leonardo Colzani 

Hence, integrating in polar coordinates and rescaling, 

{A_<2~rl~l_<A+l} [~'f(~)l d~ 

< {f{A<2rrl~l<A+l}d~}l/2[[ (A+l,/2~r d~)rN- ldr}  1/2 

jl'  f;7>" -< c { f{A<2Jrl~l<A+l} d~ { ( f R u r - N f ( r - l x )  Pdx)2/PrN- 'dr l  

{f. }1,. < c(1 + A )  N/p-1  I f ( x ) l  p dx N 

These estimates can be improved by replacing f (x)  with an appropriate function whose Fourier 
transform agrees with F f ( ~ )  when A < I~1 -< A + 1 but with smaller norm. In particular, subtracting 
from f (x)  any function h(x) with I?h(~) = 0 for I~1 > A one obtains 

~A<_2~l~l<_A+,ilFf(~)ld~<c(l+A)N/P-'{fNNlf(x)-h(x)lPdx} l/p , 

and one has the freedom to choose an h(x) that makes the right-hand side of  this inequality small. 
Let 

{f, 11'' w(s) = inf N I f ( x )  - h(x)[ p dx , 

where the infimum is taken over all h(x) of exponential type s -1 . By the theorems of Jackson and 
Bernstein, see Nikol 'skii [ 14], o) (s) is a measure of  the smoothness of f (x)  in L p (RN). In particular, 
for a piecewise smooth function, 

{/o }1,. w(s) < c sup If(x + y) - f ( x ) [  p dx < cs l/p . 
lyl<s N 

When N = 2 and  p = 6 / 5 ,  we thus obtain 

f A  I F f ( ~ ) l d ~  < c(1 + A )  -1/6 . [ ]  
<2rrl~l_<A+l} 

Observe that piecewise smooth functions are in W 2 (R u)  for ot < 1/2 but not in W12/2 (RN), 
so that in the above arguments we cannot use p = 2. Similarly, we cannot use p = 1. Also observe 
that the above corollary holds not only for piecewise smooth functions, but also for any function in 
L P ( ~  N) with modulus of continuity w(s) <_ cs 1/p. It is not too difficult to see that convergence 
holds even at points on the lines of  discontinuity. A proof of this fact with a discussion of Gibbs 
phenomenon is contained in Colzani-Vignati [5]. 

We want to mention that a different proof, based on a result in Varchenko [24], suggests for 
the Fourier transform of a piecewise smooth function an average decay 

~ ^  I~f (~) l  d~ < c(1 + A)  (N-3)/2 . 
<2~rlr 

When N ---- 2 this quantity tends to zero and when N = 3 it stays bounded, so that, even if 
localization may fail in dimension three, at least the spherical partial sums are not unbounded. See 
also Pinsky [15] and Kahane [12]. 
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2. Localization and Equiconvergence of Eigenfunction 
Expansions 

Let f2 be a bounded open set in R N with smooth boundary and let {)2} and {~ox(x)} be the 
eigenvalues and an orthonormal system of eigenfunctions of the Dirichlet problem for the Laplace 

" o21@ operator A = - Z j = I  

N 32 
- j~--l'= ~x-~ qgx(x)' = ;,2~ox(x) if x e f2, 

~ox(x) = 0 if x e Of2. 

To every function f ( x )  in L2(~) we can associate a Fourier transform and an eigenfunction 
expansion 

.~ f()~) = 1-  f(y)~ox(y)dy, f ( x )  = ~ . , ~  f()Oqgx(x) . 

As in the previous section, the operator .kit, is defined by 

A4Af(x) = ~ mA(~.).~f(k)gox(x) . 
k 

If we extend f ( x )  to all R u by putting f ( x )  = 0 outside f2, we can also consider the classical 
trigonometric Fourier integral expansion. We want to compare B/IA f (x) with 1VIlA f (x). In particular, 
we want to show that under appropriate Tauberian conditions these two means are equiconvergent. 
This allows us to transfer results for Fourier integrals to eigenfunction expansions. 

If we approximate .Ma f (x) with Y]x m^ �9 ~0 (L).~f (~.)~0~. (x), we have the following. 

Theorem 2. 
1) If  the point x varies in a compact set K in g2 and if the diameter of the support of ~p (t) is 

smaller than the distance of K from the boundary Of 2, then 

Y]. mh * ~()05rf(k)qgx(x) = [ mA * ~(2rr I~l)lFf(~)exp(Zzrix. ~)d~.  
dR N 

k 

In particular, the value of the means ~ x  m A * lp ( L ) U f (k)~ox (x) at a point x depends only on 
the values o f f ( y )  at points lY - xl <_ e. 

2) Assume that 

lim [ ~  (m^(~.) - m A  * ~p(k)) 5rf(X)~0x(X) = 0,  
A--~+oo 

lim ]fRN (mA(2Zr Ill) -- m^ �9 ~(2zr I~l))lFf(~)exp(2~rix. ~)d~ I = 0.  
A--++oo 

Then the eigenfunction expansions and the trigonometric Fourier integrals are equiconvergent, 

lim ~xm^(L).Tf(~.)~ox(x) - fl~ mA(27r I~[)IFf(~)exp(2rcix. ~)d~ -- 0 .  
A - + + o o  N 

Moreover, the behavior as A ~ +oo of the means Y]x mA ()O~ f (L)~ox (x) at x depends only 
on the values o f f ( y )  at points [y - x[ < e. 
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Proof .  We have 

E ma * ~(~,).T'f(~,)~0~.(x) 
x 

(f7 ) = E (ma * ~p)^(t)cos()~t)dt Yrf(L)~oz(x) 
L 

= Jr ~-~A(t)~(t) cos(t~v/A)f(x)dt, 

where cos(t~,/A)f(x) solves the wave equation in R x a ,  

N ~j2 ~)2 
~ u ( t , x ) -  ~ u ( t , x ) = O  if t � 9  and x � 9  f2 

j = l  ~ ' 

u(t, x) = 0 if t � 9  and x � 9  

u(0, x) = f ( x )  if x �9 f2, 

~ u ( O , x )  = 0 if  x �9 f2. 

Similarly, 

/S mA * ~(2~  1~ [)IF/(~) exp(2~ix �9 ~)d~ = lr N'~A(t)~(t) cos(t~/-A)f(x)dt 
N ' 

where this time cos(t~v/-A)f(x) solves the wave equation in 1R x R N. Since waves propagate with 
finite speed, for small times t the solutions of the wave equation in IR N and in a compact subset of 
f2 are the same. Since ~( t )  ~= 0 only for small t, 1) follows. 

2) is an immediate consequence of 1). [ ]  

As in the previous section, it is not difficult to see that when the multiplier m(s) is smooth, 
the Tauberian conditions in the theorem are automatically satisfied. To see this, recall that if the 
function re(s) has rapidly decaying derivatives, then for every h and k, lmA(s) -- mA * ~k(S)[ < 

cA -h (1 q-- (s/A)2) -k. Moreover, by Sobolev imbedding theorems, the size of the eigenfunctions 
I~ox (x)[ is at most of polynomial growth in ~. and by Weyl estimates on the eigenvalues of a Dirichlet 
problem the number of eigenvalues ~. < A grows at a polynomial rate in A. Hence, for every 
integrable function f ( x )  also the Fourier transform I.Tf(~.)l has at most polynomial growth in ), and 
for some p, 

I)rf(~)l  I~0x(x)l < cn p �9 
n--l<~.<n 

Of course it is possible to be more precise, but these estimates already imply that if m(s) is 
suitably smooth, then 

lim E [rnA(~,) -- ma  * ~(~,)t ])rf(~.)[ [~0x(X)[ = 0 .  
A---~+OQ 

L 

Hence, the assumptions in the above theorem are satisfied and this implies that the means of the 
eigenfunction expansions are equiconvergent with the classical trigonometric expansions. Indeed, 
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for a smooth multiplier it is also possible to compare the size of I AA ̂  f (x) - f (x)l with the one of 
IMI^ f ( x )  - f (x ) l  and the result is that, for every q, 

IA/taf(x) - f (x ) l  < IMAf(x) -- f (x ) l  + c A - q  . 

In particular, in the next section we shall need an approximation theorem of Jackson type for 
eigenfunction expansions and this can be obtained from the Euclidean case using this method. See 
also Taylor [22], XII. 

Finally, let us briefly consider the spherical partial sums which are associated to the multipliers 
mA(s)  = X[-A,A](S). In this case, 

~ (mA(Z) - mA * ~(Z)) ~'f(~)~0x(x) 

< Im^(X) - mA * ~(Z)l kox(x)l 2 Imh(k) -- mA * ~P(X)I I~'f(k)l  2 

Recall that ImA(k) - mA * aP(k)l is essentially a bump of height and width one around A. 
Also, it follows from the asymptotic behavior of the spectral function that, for x in f2 and n = 1, 2 . . . . .  

I~ox(x)l 2 < cn(N-1)/2 , 

n -  5n  

where the constant c may depend on the distance of x from 0 f2. See, for example, H6rmander [ 10] 
or Theorem 17.5.7 in [11]. Hence, ly]x (mh(Z) - m^ * 7t().))Uf().)~0x(x)[ is roughly speaking 

controlled by A (N-1)/2 {)--]h-l_<~_<^+l I~'f(X)12} 1/2. If we define the Sobolev spaces W~ (f2) by 
means of the norm 

I ,f(x l 2 < 

then for functions in W~ (~) N W~ (R N) with oe > (N - 1)/2 the Tauberian conditions hold and we 
can conclude that for functions in these spaces we have localization. 

We conclude this section by observing that the results stated for expansions in eigenfunctions 
of a Dirichlet problem are of local nature and the boundary plays no particular role; hence, there are 
analogous results for expansions in eigenfunctions of other boundary value problems. 

3. Partial Sums of Eigenfunction Expansions on 
Two-Dimensional Manifolds 

In a series of papers on the Gibbs phenomenon, Weyl [25] studied the convergence of spher- 
ical harmonic expansions on the two-dimensional sphere {X 2 --[- y2 + Z 2 ~. 1 }. Motivated by these 
results, Colzani and Vignati studied the summability of Fourier integrals of piecewise smooth func- 
tions and the associated Gibbs phenomenon in a neighborhood of the discontinuities, see [5]. Similar 
problems have also been the subject of a series of papers by Pinsky, Gray, Stanton, Trapa, Taylor, 
Kahane, De Michele, and Roux, see [ 15, 16, 7, 17, 18, 12, 6]. Here we want to study the convergence 
of expansions in eigenfunctions on a manifold and we start with an explicit example. 

The spherical harmonic expansions of radial functions on a three-dimensional sphere reduce 
to expansions into Tchebichef polynomials of second kind 

{ sin((n + 1)O) } +~  

sin(O) n=0 
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which area complete orthonormal system in L 2 ([0, zr], 2si-~'~ In particular, for the charac- 
/ 

teristic function of the interval 0 < 0 < a < zc one has 

+~ {sin(na) - sin (na + 2a) 2 sin(na) "~ sin ((n + 1)O) 
x(o<_o<_al(o) = + 

n=0 ~rn (n + 2) ] sin(O) 

It is clear that this series converges for every 0 < 0 < zr, but not for O = 0 and O = rr. When 
translated to the three-dimensional sphere, this result implies that the spherical harmonic expansion 
of the characteristic function of a spherical cap diverges at the center of the cap and at the antipodal 
point. 

In general, when the manifold has dimension greater than two, the spherical partial sums of 
eigenfunction expansions may exhibit a lack of localization. This fact and other technical difficulties 
force us to consider only the case of dimension two. 

In this section we switch from a domain in R N to a two-dimensional manifold 1VII, smooth, 
compact, without boundary. Let A be a second order positive elliptic operator on 1V/I, with smooth 
real coefficients and self adjoint with respect to some positive smooth density d/z. As before, let {)~2 } 

and {~o~ (x)} be the eigenvalues and a system of eigenfunctions of A orthonormal in L 2 (1VII, d/z). To 
every function f ( x )  in L2(1VL d/z) we can associate a Fourier transform {Srf(Z)} with respect to the 
system {~ox(x)} and an eigenfunction expansion Y~x Yf()O~ox(x). We want to study the pointwise 
convergence, as A -+ +oo, of the partial sums ~_<A Yf()~)~ox(x) when the function f ( x )  is 
piecewise smooth. 

Let K be a compact subset oflV[ with smooth boundary and let f ( x )  be a real function which is 
smooth in K and vanishes outside K. It is convenient to normalize this function on the boundary 0 K 
by dividing its values by two. Linear combinations of such functions generate the space of piecewise 
smooth functions. 

Theorem 3. 
1) The partial sums { S A f(x)}a>0 of the eigenfunction expansion of a piecewise smooth func- 

tion converge to f (x ) at every point. 
2) Assume that the point x is on a line of discontinuity and at x the function has a jump of 2J. 

Then, if A --+ 4-oo and if y ---> x along lines not tangent to the discontinuities, 

limsup^~+~ f ( x )  - ~.T'f(~.)goz(y) = j 2  f0 Jr sin(t) dt " 
y-->x )~ <A  ~ t 

2 We recall that -y f o  ~ d t  ~ 1.179. In particular, exactly as for the classical Fourier series 
there is a Gibbs phenomenon: in a neighborhood of the lines of discontinuity, the partial sums 
overshoot the target by about 9% the value of the jump. For two-dimensional spherical harmonic 
expansions, this result is due to Weyl and the analogous result in three dimensions may fail. 

Proof .  As in the previous section, the idea is to show that the eigenfunction expansion is equicon- 
vergent with a trigonometric Fourier integral expansion. Let mA (S) = X[-A,M (S) and write 

y~. .~ f ()Q~oz (x ) 
~ < A  

---- E mh * ~()0.%'f(L)~o;~(x) -4- Z (mA(s -- mA * ~P()Q) .T'f()Oq~;~(X). 

We first consider the remainder ~ z  (mA(~-) -- mA * ~(L)) .Uf()O~ox(x) and we prove that 
this is uniformly small. 
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]_,emma 2. 
I f  f (x) is piecewise smooth, then for  every x we have 

(mA(L) -- mh * fff(L)).~f(L)~ox(x) = lim 0 .  
A---~+c~ "7" 

Proof. 

F (mA(k) -- mA * gr(k)) Yf (k )~ox (x )  

< ImA(X) -- ma  * gr(L)l lYf (x ) l  2 ImA (k) - mA * ff/(k)l [q)x(x)l 2 �9 

For every k we have Ira^ (~.) - mA * aP()~)l < c (1 + IA - I~.11) -k and, by the sharp form for 
the remainder of  the spectral function, see HSrmander [10], for every n = 1, 2 . . . . .  

{~n- l<X<n I~~ 1/2 <- cnl/2" Hence, 

Im^ 0.) - m A  * ~t(~, ) l  I~0x(x)l 2 ___ c A  1/2 �9 

By the restriction theorem for eigenfunction expansions, see Sogge [19], 

1/2 

cn 2/p-3/2 I f ( x ) l P d l z ( x )  if 1 < p < 6 / 5 ,  

cn (2-p)/4p I f ( x ) lPd l~(x )  if 6/5 < p < 2 ,  

but these estimates can be improved using the smoothness of the function. Let 

w(s)  = inf I f ( x )  - h(x)[ p dtz(x)  , 

where the infimum is taken over all h(x)  of the form ~ cx~ox(x). By the theorems of  Jackson 
k<lls 

and Bernstein, w(s) is a measure of the smoothness of f ( x ) .  See Nikol'skii [14] for the Euclidean 
case, the extension to a manifold can be achieved using the techniques in the preceding section or in 
Taylor [22], XII. Introducing f ( x )  - h(x)  in the restriction theorem we have 

lYf(X)l 2 < cn~'o)(n - t )  , 
[ n -  l_~ ,<n  

with y the appropriate exponent in the restriction theorem. In particular, for a piecewise smooth 
function, w(s)  < cs 1/p and with p = 6/5 we obtain 

{ / Ima(L) - mA * ~()~)1 lY/(~-)I 2 < c A-2/3 �9 [ ]  
L 
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In order to consider the main term Y-~x m^  �9 ~(~0~'f(L)~ox(x),  we recall the Hadamard 
construction ofa  parametrix of  the Cauchy problem for the wave equation, see HSrmander [ 11 ] 17.4.3, 
or [2] and [3]. 

We recall that by taking the trigonometric Fourier integral transform of cos (2Jr t I~ I) one obtains 
the fundamental solution of the wave equation on R N, 

(t 2 - Ix - y12) + (N+I)/2 
Zr(l-N)/2 t 

r ( ( 1  - N ) / 2 )  ' 

where the distributions t+a/F(1 - or) are defined for every ot recursively by 

fo +c~ t - ~  fo +~ t 1-a d P(1 - ot--~ f ( t )dt  = - P ~  7 ot) ~ f ( t )d t .  

It is natural to conjecture a relation between the fundamental solutions of the wave equations 
on the manifold M and on the Euclidean space 1~2, at least for small times. Indeed, for t small, 
- e < t  < e ,  onehas  

cos( t~/A)(x,  y) = E cos(t)O~ox(x)~ox(y) 

-- t t 2 - d ( x , y )  2 U ( x , y ) + t V ( t , x , y ) .  
2zr 

The series Y]z cos(t)O~ox(x)~ox(y) converges in the topology of distributions, d(x, y) denotes 
the distance between x and y with respect to the Riemannian metric associated to the principal part 
of the differential operator A, the function U(x, y) is smooth and V(t, x, y) has at most a singularity 

of type (t 2 - d(x, y)2)+ 1/2. In particular, for small times the fundamental solutions of  the wave 

equations on 1V~ and on R 2 are not equal but similar, and 

fo +e~ Z m A  * ~(Z)Srf(~.)~ox(x) = (mA * ~)^(t) cos(tq/-A)f(x)dt 

= fM(--;---~r f o+~(mA*~)^ ( t ) t ( t 2 -d (x , y )2 ) :3 /2d t )g (x , y ) f ( y )d l z ( y )  

+fM( fo+~(mA*~P)^( t ) tV( t , x ,y )d t ) f (y )d l z (y ) .  

L e m m a  3. 

If f (x ) is piecewise smooth, then 

/o(f7 ) lim (ma  * ~)^(t)tV(t,x, y)dt f(y)dlz(y) = O. 
A----~+o~ 

P r o o f .  Wehave  (mh * ~p)^(t) = 2sint(ht)~(t ) and 

fo ~176 = ~(t)V(t,  x, y) sin(At)dt . (mh * (t)^(t)tV(t, x, y)dt 2 + o o  { 
dO 

h 

Since the function ~(t)V(t,  x, y) is integrable in t, by the Riemann-Lebesgue lemma, the 
integral converges to zero as A --~ +c~ .  [ ]  

We come back for a moment  to the Euclidean space ~2. The following lemma is just a 
restatement of some results in the first section. 
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Lemma 4. 
If f (x) is piecewise smooth on ][~2, then 

lim (mA * gr)^(t)t \t 2 - I x  - yl2, f (y)dy = f ( x ) .  
A--++oo 2 

P r o o f .  Observe that 

fRz (--2@ fo+~(mA*~P)^(t)t (t2-- ]x-- yl2)+3/2dt) f (y)dy 

= [ mA * 7t(2rr [ ~ l ) F f ( ~ ) e x p ( 2 : r i x .  ~)d~ 6 

dR 2 

We proved in the first section that 

lim f Ima(2rc I~1) - mA * ~p(2zr I~1)1 I~'f(~)l d~ = 0 ,  
.A_ ---~ + O0 JR2 

lim ] mh(2rr [~[)]Ff(~)exp(2zrix. ~)d~ = f ( x ) .  
A---++oo dR2 

Hence, we also have 

lim f m^ * 9(2rr I~l)IFf(r ~)d~ = f (x)  . [] 
A--++oo .]~2 

Integrating in polar coordinates, we may restate the above lemma as follows: 

f 0 + ~ 1 7 6  1 f0 +~ ( ) :  ) 1 A~+o~lim - - ~ -  (mA * ~p)^(t)t t 2 -- s 2 3/2dt g(s)sds = ~--~g(O) . 

where g(s) =/{Icrl=l} f (x - s~)dcr. 
We can introduce polar coordinates also on a manifold using the exponential map. For fixed x 

and y close to x we write y = Expx(Sa ) with s = d(x, y) and e unit vector in the tangent space at 
x. Moreover, d tx(EXPx(Sa ) ) = W (x, s~ )sdsda for some smooth density W (x, s~ ). The following 
lemma concludes the proof of the first part of the theorem. 

Lerama s 
If f (x) is piecewise smooth, then 

ll+ Jo ) A~+oolim (mA*~c)^,t)t(t 2 d(x ,y)2):  3/2 \--~--~ - dt U(x, y)f(y)dlx(y) = f (x)  . 

(mA * ~t)^(t)t (t 2 -- d(x, y)2)+3/2 is different from zero only if d(x, y) < P r o o f .  Observe that 
Itl < e. It is then legitimate to introduce polar coordinates centered at x and write 

fM(-~---~ fo+~176 

= fo \ - 2 ~  Jo (mA*~P)^(t)t(t2--s2):a/2dt) g(s)sds 

where g(s) is a spherical mean of f (Expx(sa)), 

g(s) = f f (Expx(so)) v (x, expAs )) W(x, . 
a{ i~l=l} 
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By the remark that follows the previous lemma, 

lim f+~ ( - ~  L+C~(mA, +)^(t), (t 2- s 2)+3/2dt) g(s)sds A~+e~ J0 
1 

= ~ - g  (01 

= C f ( x ) ,  

where C -- U(x,x)W(x,O) is independent of f ( x ) .  If we apply the whole process to a test function, 
2~r 

for which we already know that convergence takes place, we deduce that C = 1. [ ]  

The proof of part 1) of the theorem is then complete. To prove part 2) it is enough to observe that 
in 1) we have actually proved a uniform equiconvergence result between eigenfunction and trigono- 
metric expansions. Then we can refer to the discussion of Gibbs phenomenon for trigonometric 
expansions in Colzani-Vignati [5]. [ ]  

4. An Application 

The Gauss circle problem is the estimate of the number of integer points in a large disk in the 
plane. Let r(n)  = # {k E Z 2 : k 2 + k22 = n} and R(t)  = Y]n<_t z r(n).  Then 

oo 

R ( t - )  + R( t+)  = 7~t2 q- t ~ ~ J l ( 2 7 r ~ / - f f t ) .  
2 n = l  

This identity was first stated by Voronoi and then proved by Hardy in [9]. The connection 
between this problem in analytic number theory and Fourier series is clearly stated by Kendall in [ 13]. 
Instead of considering lattice points in a disk centered at the origin, we let the disk move in the plane. 
The number of integer points in a disk B(x,  t) of center x and radius t then becomes a periodic 
function of x and, by Poisson summation formula, one has the Fourier expansion 

Z XB(x't)(k) = Z XB(O'l)(t-l(k -- x)) = y ~  t2~B(O,t)(tk) exp (2zrik.  x) . 
kEZ  2 k E Z  2 k E Z  2 

Since the Fourier transform, a disk can be expressed in terms of Bessel functions, X'8(0, J) (~) = 
1~1-1 Jl(2zr 1~1), when x = 0 the Fourier series gives formally Hardy's identity, but of course one 
has to show that the series is pointwise convergent. The point is that the function ~kez2 XB(x,t)(k) 
is piecewise constant; therefore, we can apply the result in the previous section and conclude that the 
Fourier series converges at every point. Observe that since the torus is locally Euclidean, for small 
times we have an exact expression for the fundamental solution of the wave equation; hence, it is 
not necessary to introduce a parametrix. Also observe that since we have an explicit expression for 
the Fourier transform of a disk, we can avoid the use of restriction theorems for Fourier transforms 
and Jackson and Bernstein approximation theorems. 
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Added in Proof 

Recen t ly  w e  have  ob ta ined  some  resul ts  on  the  po in tw i se  conve rgence  o f  B o c h n e r - R i e s z  m e a n s  

of  e i g e n f u n c t i o n  e x p a n s i o n s  on  N - d i m e n s i o n a l  mani fo lds .  Th i s  genera l izes  s o m e  o f  the  resul t s  in  

this  paper .  
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