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E x c e p t i o n a l  S e t s  a n d  W a v e l e t  
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Communicated by Victor Wickerhauser 

ABSTRACT. We give a partial positive answer to a problem posed by Coifman et al. in [1]. Indeed, starting 
from the transfer function m 0 arising from the Meyer wavelet and assuming m 0 = 1 only on [-rr/3, zt/3], we 
provide an example of pairwise disjoint dyadic intervals of the form 

l(n,q) = [2qn, 2q(n + l)), (n,q) E E C N •  

which cover [0, +cr except for a set A of Hausdorff dimension equal to 1/2, and such that the corresponding 
wavelet packets 

2q/2w n ( 2 q x - k ) ,  kEZ, (n,q) E E C N x Z  

.form an orthonormal basis of L 2 (R). 

1. Introduction 

Wavelet packets provide a large class of orthonormal bases of L2(R), each one corresponding 
to a different splitting of L2(R) into a direct sum of its closed subspaces. 

The definition of  wavelet packets is due to the work of Coifman et al. [1]. Starting with a pair 
of  QMFs with transfer functions mo(O) and m 1(0) = ei~ -4- Jr) associated to a multiresolution 
analysis (MRA) with wavelet ~ and scaling function 4~, one defines first the basic wavelet packets, 
defined recursively by the formulas (for the Fourier transform): 

�9 o(O) = ~(o) ,  ~,l(O) = ~.(o), 
tO2n(0) : m o ( O )  t ~  , 

tO2n+l(0) : ml  ( O )  Wn ( 0 )  �9 

Then the general wavelet packets are given by taking some of  the dilation and translation of  
the basic ones, i.e., 

2q/2wn (2qx - k ) ,  k 6 Z,  (n, q)  6 E C N x Z .  (1.1) 

Math Subject Classifications. 42C15. 
Keywords and Phrases. Wavelet, wavelet packet, QMF, orthonormal basis. 
Acknowledgements andNotes. Partially supported by 60% funds of M.U.R.S.T. 

@ 1999 Birkh~userBoston. Allrights reserved 
ISSN 1069-5869 



422 Sandra Saliani 

In the above-mentioned paper, the authors prove that, under the following conditions on m0, 

1) m0 ~ C~176 Jr]) is even and 2rr periodic, 

2) mo(O) = 1 fo r0  ~ [_~r 

3) 0 < mo(O) < 1, 

4) m2o(O) + m~)(O + ~r) = 1, 
5) mo is decreasing on [0, Jr], 

(1.1) is an orthonormal basis of  L2(R) provided the set E satisfies the following assumption: the 
dyadic intervals 

I(n, q) = [2qn, 2q(n -b 1)), (n, q) c E ,  (1.2) 

form a disjoint covering of [0, +c~)  except for a denumerable set A (A is called, here and in the 
sequel, the "exceptional" set). 

Each choice of E corresponds to a different splitting of L 2 (R) and so to a different orthonormal 
basis: E = {1} x Z leads to the wavelet basis, E = N x {0} to the basis l l ) n ( X  - -  k), k ~ Z, n ~ N. 
In the first case A = {0}, in the second case A is the empty set. 

However, there are choices of  E where the intervals I (n, q) form a disjoint covering of [0, +c~)  
and the exceptional set A is not denumerable: think of A as a Cantor-like set. It is shown (e.g., [1]) 
that, with additional hypotheses on m0, we obtain wavelet packets orthonormal bases corresponding 
to some of these particular choices. 

Therefore, Coifman et al. have posed the question if the above result could be generalized to 
exceptional sets A with zero Lebesgue measure. 

In [2] we gave a positive answer to this question in the case the Hausdorff dimension of A is 
strictly less then 1/2 with no additional hypothesis on mo. 

In this note we go a little step further, by showing that, without any other hypothesis on mo, 
we can find a wavelet packet orthonormal basis where the Hausdorff dimension of the exceptional 
set A is exactly 1/2. 

As always [ 1], statements about wavelet packets derive from statements about a general Hilbert 
space that can be decomposed as a direct sum of an infinite number of  closed subspaces usually 
denoted by HI, I being a dyadic subinterval of [0, 1). The "splitting rule" depends on the MRA. 
(How this works will be explained in Section 2.) 

Therefore, it will be sufficient to prove the following: 

Theorem 1. 
Let H be a Hilbert space. Then there is a collection (In)neN of dyadic subintervals of [0, 1) 

which forms a disjoint covering of [0, 1), except for a set A of Hausdorff dimension equal to 1/2, 
and such that 

H = ~n ~NH ln  

where the sum is orthogonal. 

To prove Theorem 1, we shall use the measure tr on [0, 1) introduced by $6r6 in [3]; the 
definition of tr will be given in Section 2 and in Section 3 we prove a fundamental estimate for it. 
As for now, we recall that ~r is a continuous measure verifying the following: 

Theorem 2. 
Let H be a Hilbert space. Let ( In)n~N be a pairwise disjoint dyadic subintervals of[O, 1), then 

the following are equivalent: 

a) H = ~n~NHIn, and the sum is orthogonal, 

b) cr ([0, 1)/Un~N In) = O. 
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From Theorem 1 and Theorem 2 it follows that is then sufficient to prove the following: 

Theorem 3. 
Let H be a Hilbert space. Then we can find a collection (ln)n~N of dyadic subintervals of 

[0, 1) which forms a disjoint covering of[O, 1), except for a set A of Hausdorff dimension equal to 
1/2, and such that 

a(A)  = a ([O, 1)\ U ln l  = O . 
nEN / 

Theorem 3 will be proved in Section 4. 

2. N o t a t i o n  and A s s u m p t i o n s  

We assume that the reader is familiar with the contents of [1]. To fix notation, recall that for 

1 eikO ' 1 no(O) = ~ Z uk ml(0) : ~ ~ Vk e ikO , (2.1) 
k k 

coming from an MRA, the matrix 

mo(O) ml(O) ) 
mo(O q- yr) ml(O -b :r) 

is unitary. It is well known [1] that, in this case, any Hilbert space H, equipped with an orthonormal 
basis (ek)keZ, ek ~ H, can be decomposed into a direct sum 

H = Ho ~ H1 

where the orthogonal closed subspaces H0 and H1 have the following elements as orthonormal basis, 
respectively, 

f2k : E U2k-heh' k ~ Z,  (2.2) 
h 

and 
f2k+l = E v2k-heh, k E Z .  (2.3) 

h 

The same recipe, applied each time to any subspace, gives a further decomposition of the given 
Hilbert space as finite orthogonal sum of closed subspaces. 

For the sake of notation, we shall associate a dyadic interval I C [0, 1) to any subspace so 
obtained. The choice of I reflects the occurrence of either one of the two sequences, corresponding 
to an orthonormal basis obtained either by (2.2) or by (2.3). Namely, we set 

Hto,  ) = H ,  

H[o,�89 ) = Ho, H[�89 ) = H I ,  

HI = H(e I ..... e j), E i = O, 1 , 

where 
I ~  E2 gj E1 E2 Ej 1 ) 

i =  + Z + . . . +  . 
/ 

We shall denote by zrl : H ---> Ht the orthogonal projection onto HI. 
We shall assume, as in [1], that the following properties hold for m0 and m l: 
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1) m0 6 C ~ ( [ - ~ r ,  rr]) is even and 2rr periodic, 
2) mo(O) = 1 for 0 ~ [ - -~ ,  ~r ~], 

3) 0 < mo(O) <_ 1, 
4) m2o(O) + m2(O +Jr) = 1, 
5) mo is decreasing on [0, zr]. 

Then it follows that, given any unit vector x ~ H,  the set function/Zx ( I )  = 117rl (x)II 2, defined 
for any dyadic set I C [0, 1), extends to a continuous measure on Borel sets of [0, 1). The same is 
true for (see [3]): 

1 ~ Nek 
cr = ~ 21k---'S " 

We shall identify the Hilbert space H with the space L 2 [0, 27r] of square summable 2zr-periodic 
functions equipped with the Lebesgue measure. With this identification, each basis element ek of  H 
corresponds to the function eikO E L2[0, 27r] and each basis element ekd of HI corresponds to the 
function 2J/2ei2JkOmel (0)mE2 ( 2 8 ) . . .  mEj (2J-  10). 

Hence, for any k 6 Z, we have 

[r27r dO 2 
[l, ek (I)  = H~I (ek) ll 2 = 2 j Z J0 me1 ( 0 ) . . .  m~j (2J-10) e 2jpOi e -kOi 27r " 

peZ 

(2.4) 

We shall study in detail the support of  

gn(O) = me I (0)me 2 ( 2 8 ) . . .  me t (2J-10) , 

(where n = e 1 -{- 2e2 -k- . . .  -[- 2J-18j) ,  i.e., the closure of the set of  0 6 [0, 27r] where gn(O) ~ 0 
(denoted by supp gn). By construction, it consists of a finite union of closed intervals. Note that if 
we define Me(O) =1 me(O) I, for e = 0, 1, and 

Wn(O) = MEI(O)Me2(20).. .  MEj ( 2 J - 1 0 )  , 

then Mo(O) = mo(O), MI(0)  = mo(O + 7r), and for all n E N, supp Wn = supp gn. Also llWnll 2 = 
ilgnlf2 = 1 ~-. 

For a Lebesgue measurable set I ,  we shall denote by [ I I the Lebesgue measure of  I .  

3. An Est imate  for ff 

We start this section by noting that, for any f in L2[0, 2rr], f (O) = ~ _ ~  ck eikO, which is 
zero outside a fixed interval I C [0, 2Jr], with 1I I = 2~r/m, m >_ 2, we have, for any 0 ~ I 

( ~ )  ( 2 ( m - 1 ) r r )  ~ c m k e i m k  0 f ( O ) =  f ( O ) +  f O+ + . . . +  f 8 +  -- = m  
m --0(3 

hence m E_~176 ] Cmk 12 = E~cx~ ] C k 12 = Ilftl22. 
Note that this reasoning is the starting point for subband coding schemes. 
In the following lemma we generalize the above equality in the case the support of f consists 

of  more intervals, as in the case of  Wn. We take m = 2 j ,  j >__ 1, since this will be useful in the 
sequel. 
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Lerama 1. 
Let f be in L2[O, 27r]. Let us assume that there exists j > 1 such that sup f is contained in 

7~ a finite union of pairwise disjoint subintervals of [0, 2zr], say Ik, k ~ Z j, and [Ik I <-- 2J-~- " 
Let us denote by ot j the minimum number of these intervals. 
Let us denote by Cp, p ~ Z, the pth Fourier coefficient o f f ,  i.e., 

fo 27r dO Cp = f (O)e-pi~ 2zr 

Then: 

Proof.  

k~Z 

For any m > 2 and 0 ~ [0, 2zr ]: 

( ~ )  ( 2zr(m - 1)) 
f ( O ) +  f 0 +  + . . . +  f O+ - 

m 

= E cgeik~ + E ckeik(O+-~) + " "  + E ckeik(o+ 2~-1)) 
keZ k~Z k~Z 

m-l~ 2"~ k I i k O | ~  ''~ ~ ikmO ~_, Ck e e ip ---- = m 2.~ Ckm e . 
k~z \p=o / k~Z 

(3.1) 

(3.2) 

Now, by hypotheses, supp f C U Ik, IIk I - < ~ and I Zj I = aj .  Let J = [0, ~7"),2zr and consider 
k~ j  

B =  h 6 N : O < h < 2 J - 1 ,  J +  ] n U I k # O  . 
k~Zj 

For h 6 N, h < 2 j - 1, we have that h r B implies f(O + 27rh] = 0 for all 0 6 J. Indeed, if for 
- -  21 " 

some 0 ~ J, f(O + 2np~ 2zrh 2~ " # 0 ' t h e n 0 + T  E S u p p f a n d s o h 6 B .  
2n-h disjoint covering of We show now that [BI < 2otj. Indeed, the intervals J + -~- form a 

[0, 2zr]. Since each interval has exactly the measure of J, at most two of them can intersect any Ip 
for a fixed p; being that the intervals Ip are disjoint, we have that I B I is at most 21Zj I = 2otj. 

Now, let us compute: 

f j  2j E Ch2j eih2J dO 
27r h 

= 2J fo Ch2J eihO 2zrd--'O0 

= 2J E l c h 2 J l  2" 
h 

From (3.2) and the discussion above: 

2~1  2 kEB ( 

< 13 1 ~ 0 +  = IBI Ilfll 2 
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R e m a r k  1. 
so IB[ = ~j  = 1. 

We can now apply Lemma 1 to any 

gn(O)e -iko me 1 (0)m~2(20) . . .  mej (2J-10)  e-ikO . 

(where n = el + 2e2 + . . .  + 2J-18j and k ~ Z). We get the following result: 

Corol lary  1. 
For 

c j  = + 7 + . . . +  ~7, T + 7 + . . . +  ~7 + ~7 

we have 

When the support of f consists exactly of one interval 1, we can take J next to I and 

(3.3) 

n 

-- 2J-1 , 

n corresponds to Wn(O) = Mel (O)Me2(2O)... where, with the same notation as in Lemma 1, ot.i 

M~j(2J-Io) .  

Proof .  Let us recall that 

1 lZek (Gj) 1 II=~j (ek)l122 
cr ( G j ) =  ~ ~ 21/cI 3 k~zE 21kl 

On the other hand, from (2.4), 

fo re " dO 2 lift61 (ek)]122 = 2 j E gn(O)e-ikO ei2JpO 2zr = 2j E C~jp 2 
p~Z pEZ 

\ 

where ckp denotes the pth Fourier coefficient of the function gn (0) e -ikO. 
From the discussion at the end of Section 2 and Lemma 1 we get for all k ~ Z: 

IlJraj (e~)ll 2 < ~ - 2J_l 

and everything is proved. [ ]  

4. Proof  of  T h e o r e m  3 

For any j even we consider the set 

"Pj ~-- n = 8h 2h-1 : e2i = O, i = 1 . . . . .  ~ . 
h=l 

J n In this way, Also for any n > 0, n = }-]h=l eh2h-I we denote the associate interval by Gj.  
corresponding to any even j E N, we get a decomposition of [0, 1) in terms of dyadic intervals of 
length exactly 1/2J, namely: 

[ 0 , 1 ) =  U GTU U G ~ .  
nE79j nr 

Theorem 3 will be proved once we show the following: 
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1. ~-.ncPj ~ = 4 . 3  j/2-1 (or7 is defined as in Corollary 1), 

2. lim./ I U G~j[=O, 
nE'P2j 

3. l im ja (  U G~j)=O, 
n~792j 

4. [ 0 , 1 ) =  U U G~jUA, where the set 
j~N n~'P2j 

A=N U 
j EN n E'P2j 

has Lebesgue measure zero, Hausdorff dimension equal to 1/2 and a(A) = 0. 

P roo f  of  1. The proof will be done in several steps. 

First step. 

We note that for p even: 

supp(MI(2P-20) Mo(2P-IO)+Mo(2P-20)Mo(2P-IO)) 

=supp(Mt(2p-20) Mo(2P-Io))Usupp(Mo(2P-20)Mo(2p-Io)) 

= supp (Mo (2~-10)) (4.1) 

Indeed the first equality in (4.1) holds since the functions are positive. For the second one we have 
(cfg. [4]): 

= { oMo(2(2P-20)) f~ 

M0 (2P-10) for 0 e -3.2--~7~- ' 3.--ZF zr + 

0 otherwise 
(4.2) 

Also 

= Ml(2p-20) Mo(2(2p-20)) 

= 0 otherwise 

2~ 4~ 2~Z 
Mo(2P-lO) fo rOe  3 . - 7 ~ ' ~  +2p--~- 
0 otherwise 

(4.3) 

Now it is easy to verify that the intervals in (4.2) and (4.3) are disjoint. Indeed they all have length 
~r step of ~ brings us and the distance between two next intervals is ~ so that a equal to 

out .  

Also 

suppMo 2p-lo C 3.2P -2' 3 .'~p-2 + 2p-----T ' 
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i.e., the union of all intervals in (4.2) and (4.3) and so the second equality in (4.1) holds. 

Second step. 

By repeated use of (4.1) we get: 

supp(ei~=o,1M~I(O)Mo(20)Me3(220)'"Mej-l(2J-20)Mo(2J-Io)) 

= supp (MI(O)Mo(20) + Mo(O)Mo(20)) 

= supp (M1 (O)Mo(20) + Mo(O)Mo(20)) Cl 

.. . Asupp (MI (2J-ZO) Mo (2J-'O) + Mo (2J-20) Mo (2J-Io) ) 

=  supp( o( , lo)) 

Third step. 

We claim that, for j > 4 even, supp(Mo(20)Mo(230)... Mo(2J-Io)) is contained in 2 . 3  j/2-1 - 1 
2re disjoint intervals of length 4n plus two disjoint intervals of length 

Indeed we already know that the support of M0(20) is contained in one interval of length -~-, 
namely [ - ~ ,  7r ~r ~-], plus two intervals of length 7,  namely [-7r, - -~-]  and [-~,  rr]. 

Passing from M0(20) to Mo(20)Mo(230) it is not hard to see, by direct calculations, that only 
three intervals of the support of M0(230) fall in the "big" interval of M0(20), and only one and a 
half in the "small" ones. Hence, we get 3 .1  + 1 �9 2 disjoint intervals of length ~4n plus two disjoint 

2n intervals of length 3.-57' 

Hence, by a recurrence argument, supp(Mo(20)Mo(230)... Mo(2J-lo)) is contained in 3(2.  
3 ( j -2)/2-1 1) + 2 = 2 . 3  j /2-1 -- 1 disjoint intervals of length 47r plus two disjoint intervals of - 

2~r length ~ .  

Fourth step. 

Let us recall that ~7, n = e 1-4- 282 + . . .  -~- 2./- I e j, is defined as the minimum number of intervals in 

the support of Wn (0) = Me 1 (O)Me 2 ( 20 ) . . .  Mej (2J-10) of length less then 2-~r. Also, from (4.2) 
and (4.3) we deduce that for n, m 6 79j, n # m the support of Wn and Wm are disjoint. Hence, 
~_~n~79j Ot 7 is the minimum number of intervals in the support of 

E M~I (O)Mo(20)ME3(220)"" Mej_t (2J-20)Mo ( 2 j - 1 0 )  
ei =0,1 

of length less then 2-~_ 1 . By the second and third step we get that this number is exactly 2(2 .3  j/2-1 _ 

1 )  + 2 = 4 �9 3 j /2-1 and 1 is proved. [ ]  



Exceptional Sets and Wavelet Packets Orthonormal Bases 429 

Proof of 2. The set ~:~2j contains 2 j elements; hence, 

ll~JpzG~j ~2Jl 1 = 

J 

[] and so 2 is proved. 

Proof of 3. By Corollary 1 and 1: 

cr G2j < E o t ~ j ~ -  22J_ 1 - 3 
n j nE'P2j 

and so 3 is proved. [ ]  

Proof of 4. For any j >_ 1, 

hence, 

[0,1)\ U G~j= U G~j; 
n~7"~2j nEPZj 

[0, 1) = 

.]E n~'Plj n~7~Zj 

jEN nr 

Now, for a n y j  > 1, wehaveA C U G~j, andso, by2wegetlAI = 0 ,  w h i l e b y 3 w e  
nE']o2j 

get a (A) = 0. Also, we deduce that, for any j > 1, A can be covered by 2 j disjoint intervals of 
Lebesgue measure equal to 1/22J; hence, A has Hausdorff dimension equal to 1/2 and everything 
is proved. [ ]  

R e m a r k  2. Unfortunately there are examples of other exceptional sets of Hausdorff dimension 
equal to 1/2 for which Lemma 1 does not give the desired estimate. One such example is obtained 
if we naturally start from the set ( j  even), 

S j  -~- n = eh 2h-1  " 62i :-- 1, i = 1 ..... ~ . 

h = l  

In this case one can easily prove, as done above, that ~n~,Sj ~ = c5J/2, where C is an absolute 

constant independent of j .  Therefore, we obtain the estimate 

(n~sjG~) n l [5] j/2 a < E aJ 2-725"-1 = 2 C  
nE,.~j 

and we cannot conclude that a (A) = 0. 
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