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ABSTRACZ Let A denote the symmetric Laplacian on the Sierpinski gasket SG defined by Kigami [11] as 

a renormalized limit of  graph Laplacians on the sequence ofpre-gaskets Gra whose limit is SG. We study the 

analogs of  some of the classical partial differential equations with A playing the role of  the usual Laplacian. 

For harmonic functions, biharmonic functions, and Dirichlet eigenfunctions of  A, we give efficient algorithms 
to compute the solutions exactly, we display the results of  implementing these algorithms, and we prove various 

properties of  the solutions that are suggested by the data. Completing the work of  Fuknshima and Shima [8] 

who computed the Dirichlet eigenvalues and their multiplicities, we show how to construct a basis (but not 

orthonormal) for  the eigenspaces, so that we have the analog of  Fourier sine series on the unit interval. We 

also show that certain eigenfunctions have the property that they are a non-zero constant along certain lines 

contained in SG. For the analogs of  the heat and wave equation, we give algorithms for approximating the 

solution, and display the results of  implementing these algorithms. We give strong evidence that the analog of  
finite propagation for the wave equation does not hold because of  inconsistent scaling behavior in space and 

time. 

1. Introduction 

Kigami [11] defined a Laplacian on the Sierpinski gasket SG (see Fig. 1) as a renormalized 
limit of difference operators (graph Laplacians) on the sequence of pre-gaskets Gm whose limit is SG. 
The existence of such a Laplacian had been known previously through probabilistic constructions 
of Brownian motion type processes, but this was an indirect approach. Kigami also extended his 
construction to a wider class of fractals in [12]. This set the stage for a direct analytic study of the 
analogs of some of the classical partial differential equations on these fractals, which we propose to 
caUfractal differential equations. Shima [21] and Fukushima and Shima [8] studied the spectrum 
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of the Dirichlet Laplacian, and determined explicitly the eigenvalues and their multiplicities for the 
analog of SG in all dimensions, using methods introduced in [20] and [19]. One of the main goals 
of this paper is to complete the process by determining explicitly all the Dirichlet eigenfunctions for 
the original SG. Thus, we have all the ingredients for the analog of Fourier sine series on SG. 

G O G 1 G 2 

FIGURE 1 a) SG. b) Go- c) G 1 . d) G 2. 

These eigenfunctions are important special functions on SG. Other important special functions 
include the harmonic functions and, more generally, the solutions of A ~ f  = 0. (It is expected that a 
theory of splines built out of these pieces can be developed.) In Section 2 we give algorithms for the 
computation of these special functions. The algorithms are both exact and efficient, giving the values 
of these functions on the vertices of the graph Gm a s  a direct linear function of the values on three of the 
vertices of G,n-1. We also give some algorithms that allow the direct computation of the restrictions 
of these functions to line segments (edges in Gm) that occur in SG, without involving values of points 
not on the line segment. These latter algorithms have important theoretical consequences, but we 
did not use them in actual computations. 

In Section 3 we display the data we obtained by implementing our algorithms. There is a 
wealth of information here, and we have only scratched the surface in trying to make sense of it. In 
Section 4 we give proofs of some of the observations that are apparent from the data. We also prove 
that the three families of Dirichlet eigenfunctions described and illustrated in Section 3 suffice to 
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generate a basis (not orthonormal, however) for all Dirichlet eigenfunctions. This is the analog of 
the single family sin rckx of Dirichlet eigenfunctions on the unit interval (the analog of SG in •). In 
that case, all the eigenfunctions can be built up out of scaled copies of the ground state sin zrx. In 
the case of SG, the Dirichlet eigenfunctions reveal a much more complicated structure. 

~2 
In Section 5 we discuss the heat equation ~ u  = Au and wave equation 0--~t u = Au, where 

u(x, t) is a function of x e SG and time t. Properties of the heat equation are accessible to 
probabilistic methods, so we concentrate on the wave equation. We describe algorithms for the 
approximate solutions of both equations, and present data obtained via these algorithms. In contrast 
to the algorithms in Section 2, these are not exact; from the one-dimensional analog we cannot expect 
that the restriction of x to Gm will in any way simplify the problem. (Another approach would be to 
use the Dirichlet eigenfunction expansion, but at present this seems highly impractical.) 

Certain properties of the wave equation, such as well-posedness of the Cauchy problem and 
conservation of energy, are routine consequences of abstract analysis. An obvious question is whether 
or not there is a maximum speed of propagation for solutions of the wave equation. We will show 
that this is impossible because of the different scaling properties in space and time. When measured 
on a smaller scale, the wave must travel faster. It remains remotely possible, but unlikely, that there 
could be a finite (but unbounded) propagation speed. This would require massive cancellation, of 
the sort that is ruled out in a more familiar context by the Lions-Titchmarsh Theorem on supports 
of convolutions of distributions in R n. 

In describing some functions on the vertices of Gm we will simply draw figures with values 
of the functions at vertices labeled. In order to simplify the figures, we omit the label on vertices 
where the value is 0. 

In this paper we have deliberately restricted our attention to the simplest example of a Laplacian 
on a fractal. There are obviously many more examples that need to be studied. We mention here a 
few directions for further research: 

1) Describe all Neumann eigenfunctions. 
2) Consider the analogous equations on fractal blowups of SG [23]. This was done in [8] for 

just one blowup, which has a single boundary point. But there are uncountably many non-congruent 
blow-ups, most of which have no boundary points. 

3) Extend the results to higher dimensional Sierpinski gaskets. The results on eigenvalues 
in [8] are already done in this generality. 

4) Extend the results to symmetric Laplacians on other nested fractals as discussed by 
Lindstr4~m [17]. 

5) Extend the results to other Laplacians on SG. 

6) It would be interesting to see the graphs of our functions using the harmonic metric on SG 
introduced in Kigami [13]. This metric embeds SG in the plane in such a way that the harmonic 
functions are just restrictions of linear functions on the plane. 

Several recent papers on topics related to this work include [2, 3, 6, 7, 9, 15, 16, 24, 25, 26, 27]. 

Many of the programs used to generate the data presented here are available at the Web site 
ht tp : //www. tc. cornell, edu/Edu/SPUR/SPUR9 6 / Kyal / cover, html. This site also 
contains related graphics. 

2. Algorithms for Harmonic Functions and Eigenfunctions 

In this section we describe algorithms for the exact computation of harmonic, biharmonic, and 
Dirichlet eigenfunctions for the symmetric Laplacian on the Sierpinski gasket. These algorithms 
allow for the computation of the values of these functions on the vertices of the graphs Gin, the pre- 
gaskets, that approximate SG. The key idea of Kigami [11] is that it is possible to define a Laplacian 
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A on SG as the renormalized limit 
A = lim 5mAm "(2.1) 

m - + ~  

w h e r e  A m is the graph Laplacian o n  Gm, which we describe next. (We actually use a slightly different 
normalization constant than in [11]. Our choice is consistent with [8].) 

We let Go be the graph whose vertices P0, Pb  P2 form an equilateral triangle in the plane, and 
whose edges are the three sides of the triangle. We let Sj denote the contractive similarities 

l ( z - p j )  j = 0 , 1 , 2  S s z  = p j  + ~ , , 

with fixed points at the vertices of Go and contraction ratio 1/2. The vertices Vm and edges Em 
of Gm are defined inductively as the images under these contractions of the vertices and edges of 
Gm-1. We define the boundary of Gm tO consist of the three vertices Po, Pb  P2 of Go. Note that 
every vertex in Gm that is not in the boundary is the image of two different vertices in Gin- 1, and 
has exactly four neighbors. We define a minimal triangle in Gm to be the image of Go under a 
contraction S jl ... Sjm. It is understood that a function on Gm is a function (real or complex valued) 
defined on the vertices Vm. 

We define the graph Laplacian Am o n  G m by 

Amf(X)= ((x,y)sem ~ f ( y ) )  - 4 f ( x )  (2.2) 

for x in Vm not a boundary point. A harmonic function is a solution of Am f = 0 at all non-boundary 
points. A biharmonic function is a solution of Arn f = g at all non-boundary points, where g is 
harmonic (strictly speaking, A 2 f is not defined at points neighboring the boundary points). A 
(Dirichlet) eigenfunction with eigenvalue )~m is a solution of 

--Amy = ).mY ( 2 . 3 )  

at non-boundary points (that vanishes at the boundary points). 
Suppose we have a function f defined on Gm-1, and we wish to extend it to Grn. Let T be 

any minimal triangle in Gm-1, with vertices vo, Vl, v2, and let rob v12, v02 denote the midpoints of 
the edges of T, as shown in Fig. 2. 
Then the vertices vo, vl, 1)2 belong to Vm-1, s o  f is defined there, but 1)01, 1)12, 1)02 belong to Gm 
and not Gin-1. Thus, the extension problem is to define f at VOl, v12, vo2. The following algorithm 
is given in Kigami [11], but we include the proof for completeness. 
A l g o r i t h m  2.1. If  f is harmonic on Gm and T is as in Fig. 2, then 

2 2 1 
f (v01) = ~ f  (v0) + ~ f  (1)1) + ~ f  (v2) , (2.4) 

and similarly for f(v12) and f ( v 0 2 ) .  Conversely, if f is harmonic on Gin-1 and we extend it to Gm 
using (2.4) on every minimal triangle in Gin-l, then the extension is harmonic on Gin. 

Proof .  According to Kigami [11], f is harmonic on Gm if and only if its restriction to Gin-1 is 
harmonic and Amf(x) = 0 for every x in Vm but not in Vm-1. For each T this means 

4 f  (vol) = f (1)0) + f (vl) + f (v12) + f (1)02) (2.5) 

and similarly for the other two midpoints. It is elementary to check that (2.4) is equivalent to (2.5). 
[] 

This algorithm is analogous to the Poisson integral formula, since the values at the midpoints 
of the edges of T are obtained as weighted averages of the values at the vertices. It provides 
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FIGURE 2 Labeling of vertices in G m of a minimal triangle in G m _  1. 

an effective procedure to inductively compute the exact values of harmonic functions from the 
Dirichlet data, namely the boundary values f (Po) ,  f (P l ) ,  f (P2).  It can also be interpreted as a 
statement of self-similarity. Specifically, suppose f is the harmonic function satisfying f(Po) = 1, 
f ( P l )  = f(P2) = 0. If R is a 1/3 rotation, then f o R and f o R -1 take boundary values (0, 1,0) 
and (0, O, 1), respectively. Then f o So 1 + 2 f  o R o So 1 + 2 f  o R -1 o SO 1 is a harmonic function 
on So(SG) taking the same values as f on the vertices of this triangle, and so must be equal to f 
on So(SG). Similarly for 2 f  o S{ 1 + i f  o R -a o $11 on S](SG) and 2 f  o $21 + i f  o R o $21 
on S2(SG). If we ignore the three midpoints where these triangles overlap, we can add the three 
equations to obtain the self-similar identity 

2 2 R -  1 2 f = f o S o l + ~ f o R o S o l + - ~ f o  o S o l + ~ f o S 1 1  

1 R -1 o $11 + 2 o S21 -1- 1 + -gf o ~ f  -~f o R o S21  . 

Similar identities hold for f o R and f o R -1. Such identities make it easy to compute inner products 
of harmonic functions (with respect to normalized Hausdorff measure), as in [24]. 

The next algorithm enables us to study the restriction of a harmonic function to any straight 
line contained in SG. Let E be any edge in Gin-2. Denote the endpoints of E by v0, Vl, the midpoint 
by v01, and let 0001 be the midpoint of the edge in Gin-1 connecting 00 and 0Ol, as in Fig. 3. 
A lgo r i t hm 2.2. Let f be harmonic on Gin. Then 

4 8 3 
f (o001) = ~ f  (v01) + ~-gf (v0) -- ~-gf (01) �9 (2.6) 

Proof .  We can use (2.4) to solve for f(02) in terms of f(vo), f(vl), and f(vol) ,  obtaining 

f (v2) = 5 f  (0Ol) - 2 f  ( v o ) -  2 f  (01) �9 

Then we can use this in the formula analogous to (2.4) for f(vo2), obtaining 

1 2 2 
f(oo2) = _ - ~ f ( v l ) + _ ~ f ( v ~ 1 7 6 1 7 6  

2 3 
= 2 f  (VOl) - ~ f  (v0) - ~ f  (Vl) �9 

Finally, we substitute this in the analog of (2.4) for the smaller upper triangle to obtain 

2 1 
f (vO01) ---- ~ ( f  (00) + f (001)) + ~ f  (002) 

2 5 1 (  3 2 5 3 ) = ( f  (v0) + f (o01)) + 2 f  (001) - 7 f  (vo) - (Ol) 
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FIGURE 3 Labeling of some vertices in Gm of a minimal triangle in Gin_ 2. 

which is (2.6). [ ]  

Note that the coefficients in (2.6) sum to 1, but the appearance of the negative sign in (2.6) is 
in contrast to (2.4). 

Next we consider biharrnonic functions, solutions of Ag = f where f is harmonic. Because 
of (2.1), we consider the equation 5tuAreg = f on Gm. 

Algor i thm 2.3. If f is harmonic in Gm, 5tuAreg = f ,  and T is a minimal triangle in Gin-l, then 

2 2 1 
g (VO1) = ~g (VO) -[- ~g (Vl) -}- ~g (V2) 

- 5-m ( 9 f (vo) + 9 f  (vl) -4- 7 f  (v2)) (2.7) 

and similarly for g(vl2) and g(v02). Conversely, if 5m-lAm_lg = f on Gm-I for f harmonic on 
Gm-1, and we extend it to Gm using (2.7), then 5mAmg = f on Gin, where f is extended to be 
harmonic on Gm. 

Proof .  The equation 5 m Arng = f at the midpoint v01 says 

- 4 g  (P01) q- g (V0) + g (Vl) + g (I)12) q" g (vo2) = 5-mf  (1)01) , (2.8) 

and similarly for the other midpoints. Adding these three equations, we obtain 

- 2 g  (1)Ol) - 2g (v12) - 2g (vo2) + 2g (1)0) + 2g (Vl) + 2g (v2) 

= 5 -m ( f  (VOl) + f (v12) + f (vo2)) . 

Using this to eliminate g(1)12) and g(vo2) from (2.8) we obtain 

_5g(vol)+Zg(vo)+Zg(Vl)+g(v2)=5_m(3 1 1 ) ~ f  (v01) + ~ f  (v12) q" ~ f  (1)02) �9 

Using (2.4) to replace the values of f at the midpoints by its values at the vertices yields (2.7). 
Conversely, assume 5m-lAm_lg = f on Gin_ 1, and use (2.7) to extend g to Gin. Then 

the previous argument shows that 5tuAreg = f holds at all the vertices in Vm but not in Vm-1. It 
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remains to show that this also holds at the vertices in Vm-1. This is essentially a consequence of the 
renormalization property proved in Kigami [11], but we give the proof for completeness. 

Let T be any minimal triangle in Gin-2, and label the vertices as in Fig. 3. Then VOl is a vertex 
in Vm-1, and to show5mAmg(Vo1) = f(v01), we need to establish 

- 4 g  (VOl) + g (VOOl) + g (oo12) + g (VLO2) + g (ViOl) = 5-mf  (VOl) �9 (2.9) 

Now we have the analog of (2.7) holding at the points VOOl, oo12, rio2, and OlOl, and adding these 
four equations yields 

g (VOOl) + g ( 1 ) 0 1 2 )  "Jr" g (1)102) + g ( 1 ) 1 0 1 )  

3 3 8 3 3 
= ~g (vo) + ~g (1)1) + ~g (1)Ol) + ~g (1)o2) "1- ~g (o12) 

-- 5 -m-2 ( 8 f  (vo) + 8 f  (Vl) + 18f  (vo1) + 8 f  (vo2) + 8 f  (v12)) �9 

We substitute this in the left side of (2.9) to obtain 

3 3 12 3 3 
~g (vo) + ~g (Vl) - -~-g (1)Ol) + ~g (vo2) -~- ~g (v12) 

- 5  -m-2  ( 8 f  (1)0) + 8 f  (Vl) + 18f  (1)01) + 8 f  (1)02) + 8 f  (v12)) �9 (2.10) 

Since we know 5m-lAm_lg = f on Gin-l, we have 

- 4 g  (VOl) + g (vo) + g (Vl) + g (1)o2) + g (v12) = 51-mf (VOl) �9 

Since f is harmonic on Gin-l, we have 

f (vo) + f (1)  -t- f (vo2) d- f (v12) = 4 f  (VOl) �9 

We substitute these in (2.10) to obtain 

3 . 5 - m f  ( 1 ) 0 1 )  - -  2 . 5 - m f  ( 1 ) 0 1 )  , 

which proves (2.9). 
More generally, the same argument works for any vertex in Vm-1, since we did not use the 

triangle 1)2, 1)02, 1)12 in Fig. 3 in any way. [ ]  

It is also possible to obtain the analog of Algorithm 2.2 for the restriction of biharrnonic 
functions to a line, but we will not give the details. 

We next consider the extension of solutions of - A m - I f  = Lm- l f  on Gin-1 to solutions of 
- A m  f = ~-m f on Gin. According to Shima [21], this is possible for Dirichlet eigenfunctions if and 
only if 

1(5 + em~/25 -4Lm-1)  (2.11) ) ~ m = ~  

where em = 4-1, and ~.m ~ 2, 5. Note that this implies 

~,m-1 = ~,m (5 -- ~-m) �9 (2.12) 

A l g o r i t h m  2.4. If  - A m f  = )~mf on Gin, with ~-m # 2, 5, then for any T as in Algorithm 2.1, we 
have 

(4 - ~-m) 2 
f (VOl) = ( f  (vo) q- f (1)1)) + f (v2) �9 (2.13) 

(2 - Lm) (5 - Lm) (2 - -  ~m) (5 - -  ~,m) 
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Conversely, suppose - - A m - 1  f = ,~.rn-1 f o n  G m - 1 ,  and Lm satisfies (2.11) with )~m # 2, 5. Then if 
we extend f to Gm using (2.13), we obtain a solution of - A m f  = )~mf. 

Proof. If  --Am f = )~m f on Gin, then instead of (2.5) we have 

(4 - ~,m) f (1)01) = f (1)0) + f (Vl) + f (1112) + f (v02) (2.14) 

and similarly for v12 and 1)o2. When we solve this system of equations we obtain (2.13). 
Conversely, if - A m _  I f = ~ , m - I f  and the other conditions hold, then S hima [21] proves that 

an extension exists. We will give a proof of this as well. We use (2.13) to define f at the midpoints. 
Then the eigenvalue equation at the midpoint v01 is (2.14), and similarly for v12 and vo2, and these 
are equivalent to (2.13). It remains to show that the eigenvalue equation also holds at the vertices of 
T. Let T be contained in the minimal Gin-1 triangle shown in Fig. 3. The eigenvalue equation at 
vo1 is 

(4 - )~m) f (v01) = f (1)001) + f (1)012) q -  f (1)102) "q- f (Vl01) . 

To see that this is true we use (2.13) to express f(1)ool), etc. in terms of  f(1)o), f ( v l ) ,  f(vol), f (v l2) ,  
and f(1)02). Thus, we need to show 

( 4 ) 
(4 - Lm) 1 - (2 - )~m) (5 - ).m) f (v01) 

6 - )~m 
( f  (1)0) 4- f (1)1) 4- f (1)02) + f (1)12)) �9 

(2 - Am) (5 - Am) 

But this is just (2.14) (for)~m-1 in place of )~m) in view of  (2.12) (when ~.m = 4 we also have 

~-m--1 = 4). [ ]  

Notice that the coefficients in (2.13) do not add to 1. However, we do recover (2.4) in the limit 
as ~-m "-+ 0. Fukushima and Shima [8] show that any Dirichlet eigenfunction - A f  = L f  on SG 
restricts to an eigenfunction - Am f = ~m f on Gm for all m _> m0, the eigenvalues Lm satisfy (2.11), 
and 

~. = lim 5m)~m . (2.15) 
m - - ~  

In particular this shows that ~m = - -  1 for all but a finite number of ms, and ~ m  "--~ 0 as m --+ o0. In 
Section 4 we will show that the same holds for generic eigenfunctions. 

Next we consider the analog of  Algorithm 2.2. We refer again to Fig. 3 for the labeling of 
vertices in a minimal triangle in Gin-2. 

A l g o r i t h m  2.5 .  

f (v001) 

Let f be as in Algorithm 2.4. Then 

4 -- ~,m 
5 )~m f (v01) 

3 -- )~m 

-~" (2 -- ~,m) (5 - ~,m) _( 1 

(2 - )~m) (5 - )~m ) 

l ) 
+ (2 -- Lm) (5 - ~.m) (5 - -  ~.m-1) f (V0) 

+ (2 -- )~m) (5 -- Lm) (5 -- Lm-1) f (Vl) . (2.16) 

P r o o f .  Using the analog of (2.13) we can solve for f (v2)  in terms of f(v01), f(vo), and f ( v l ) ,  
to obtain 

(2 - Lm-1) (5 -- ~,m-1) (4 - -  ~,m-1) 
f (V2) = 2 f (V01) -- 2 ( f  (V0) + f (Vz)) �9 (2.17) 
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On the other hand, we have 

f (v02) = 

and 

4 - ~,m-1 
( f  (130) + f (132)) 

(2 - )~m-1) (5 - )~m-l)  
2 

+ f (Vl) , 
(2 - -  )~m-l)  (5 --  s 

(4 - Zm) 
f (v001) = ( f  (v0) + f (v01)) 

(2 --  ~,m) (5 I )~m) 

2 
+ f (1302) �9 

(2 - ~,m) (5 - -  ~,rn) 

So we substitute (2.17) in (2.18), and then substitute the result in (2.19), to obtain 

f(13001) 

(2.18) 

(2.19) 

8 i ~ , m  i ) ~ m _ l  ~ ~-m)(5 --~,m--1) (~____.~m)_(5~_)~.m),]f(1301)+((4~_ 2 -- ~m-l)  -- 

- -  ( 2 _ ~ , m ) (  5 Lm) (5 -- )~m_l),] f (v l )  " 

Using (2.12), this simplifies to (2.16). [ ]  

R e m a r k  1. The coefficients in (2.16) sum to 1. This will have important consequences. It is not 
at all clear why this should be so, in view of the fact that this is not the case in (2.13). 

We conclude this section with a converse to Algorithm 2.1, which enables us to "blow up" the 
values of harmonic function on a small triangle to a larger triangle. 

A l g o r i t h m  2.6. Let f and T be as in Algorithm 2.1. Then 

/ f (131)= ~ -f(1301)-Sf(1302)-2f(vO) and  
f (132) --35-f (1301) -k- ~ f  (1302), 2 f  (130) - (2.20) ! 

In particular, 
f (Vl) -- f (v2) = 5 ( f  (vo1) -- f (1302)) �9 (2.2.1) 

Proof. Linear algebra from (2.4) and its analogous forms. [ ]  

It follows by induction that a harmonic function is uniquely determined by its values at the 
vertices of any triangle T. The same is not true for Dirichlet eigenfunctions. 

3. Numerical Computations of Harmonic Functions and 
Eigenfunctions 

The space of continuous harmonic functions on SG is three-dimensional, each harmonic func- 
tion being uniquely determined by its values at the three boundary points. (Of course every harmonic 
function is continuous in the interior of SG, so it is the continuity at the boundary points that will 
be assumed throughout, except for a brief discussion at the end of Section 4.) Using Algorithm 2.1 
we can recursively compute the values of the function at the vertices of the graphs Gin. This is 
an exact computation that could be performed in rational arithmetic, although we chose not to do 
this. In Figs. 4, 5, and 6, we display the graphs of some harmonic functions, with the computation 
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FIGURE 6 The harmonic function with boundary values (2.7, 1, 0). 
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(a) Restriction of the function in Fig. 4 to the edge (a) joining the values (0, 0). 
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(b) Restriction of the function in Fig. 4 to the edge (b) joining the values (0, 1). 
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(a) Restriction of the function in Fig. 5 to the edge (a) joining the values (1, - l ) .  
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(b) Restriction of the function in Fig. 5 to the edge (b)joining the values (0, 1). Note that the boundary 
behavior at the antisymmetric vertex (value 0) is different. 
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FIGURE 9 (a) Restriction of the function in Fig. 6 to the edge (a) joining the values (2.7, 1). 
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(b) Restriction of the function in Fig. 6 to the edge (b)joining the values (1, 0). 
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FIGURE 9 (c) Restriction of the function in Fig. 6 to the edge (c) joining the values (0, 2.7). 
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performed out to m = 9. The first example is symmetric with respect to the reflection that fixes 
P0 and interchanges Pl and P2, while the second example is antisymmetric. The third example is 
generic, having no symmetries. In Figs. 7, 8, and 9, we display the graphs of the restrictions on 
these functions to some straight lines in the gasket. These computations could have been done using 
Algorithm 2.2, but in fact we just restricted the data obtained using Algorithm 2.1. 

There are a number of interesting features observable in the graphs. It appears that the restric- 
tion of a harmonic function to a line is often a monotonic function. The behavior near the boundary 
point appears to be different in the case of an antisymrnetric point, with the generic case resembling 
the symmetric case. All these observations will be verified in the next section. 

The next set of figures shows the graphs of Dirichlet eigenfunctions, computed using Algo- 
rithm 2.4 (up to m = 9). According to Fukushima and Shima [8], there are three basic families of 
eigenfunctions, and all eigenfunctions are obtainable from these by a localization process that will 
be described in more detail in Section 4. We have chosen to index the eigenfunctions in each family 
by a natural number n, written in binary form 

oo 

n = ~ S j 2  j 8 j = 0 o r l ,  
j=O 

(3.1) 

all but a finite number equal to 0. In the first family g:n (2), we take the initial conditions on G1 with 
the value 1 at the three midpoints, as in Figure 10, and )~1 = 2 and then take ~,m for m > 2 to be 

1 

FIGURE 10 Initial values on G 1 for the family ap (2). 

given by (2.11) with 
em = ( - 1 )  l+~m-l+~m-2 (3.2) 

This ordering of eigenfunctions makes the eigenvalue an increasing function of n. This can be 
seen by a routine induction argument based on the observation that a choice of ~m = "]- 1 in (2.11) 

! l reverses order and Em ----- --1 preserves order, so if )-rn--I --< ) 'm--1 then ~-m > ~'m for the choice 
/ / / - 1 .  On the other hand, ),m < ~n if Em -~- E m =  + 1  and ~rn < 3-m, for the choice gm = E m = 

t e m =  - 1  and ~m = -'~-1, regardless of the relative order of ) ,m-1  and )~-1" We leave the details to 

the interested reader. Figure 11 shows the graphs of ~n (2) for n = 0, 1 . . . . .  7. In Fig. 12 we give 
a table of the values of )~m and the limiting eigenvalue for each eigenfunction. In Fig. 13 we show 

the graphs of the restrictions to an edge of Go. (All eigenfunctions in the gen (2) family have complete 
dihedral D3 symmetry, so the restrictions to all edges are the same, and are even functions.) The 

eigenfunction ~po (2) is the "ground state," with the lowest eigenvalue, and is strictly positive. All 
other eigenfunctions change sign, and it is interesting to study their nodal sets, the points where the 
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eigenfunction is zero. To visualize these nodal sets, we show in Fig. 14 the subset of SG where the 
eigenfunctions are positive; the nodal set is just the boundary of this set. 

One of the most striking features of this data is that it appears that all these eigenfunctions are 
constant along the inner edges of  G1 (connecting the midpoints of the edges of Go). We will prove 

that this is the case in the next section. Another obvious conjecture is that the restriction of ~pn (2) to 
an edge of Go has exactly 2n + 1 local extrema; we do not have a proof  of  this. 

The second family of eigenfunctions is denoted lpn (5) , where we choose E m in (2.11) using (3.1) 
and (3.2) as before, but now )q = 5 and we take initial conditions on G1, shown in Figure 15, that 
are antisymmetric with respect to one vertex. (Under the action of the dihedral D3 group, each 
such eigenfunction generates a two-dimensional representation space.) In Figs. 16 through 20 we 

display the same data for ~pn (5) as we did for ~p(2). In the next section we will show how to chain 

together scaled-down copies of ~pn (5) to obtain eigenfunctions that are localized along paths joining 
two boundary points. 

The third family of eigenfunctions is 7t (6), where now n is required to be congruent to 1 or 2 
mod 4. We give initial conditions on G2, as shown in Figure 21, with )~2 = 6, and then use (2.11) for 
n > 3, modifying (3.2) by replacing m - 2 with m - 3. Since 80 + 81 is odd, e3 = +1.  We display 
the same data in Figs. 22 through 25, only for n = 1, 2, 5, 6. Again we observe certain edges along 
which these eigenfunctions appear to be constant; this will be established in the next section. The 

~pn (6) eigenfunctions can be scaled-down and localized to minimal triangles in Gm (this was already 
observed in [8]). 

In the next section we will show that the three families and the scaled-down versions of  ~pn (5) 

and ~n (6) give a complete set of eigenfunctions. (Text continues on page 257.) 

1.4 ] ' "" ' ' ' tr" 

1.2 

1 

0 .8  

0 . 6  t . '~ 

ot: , , , , "i 
0 0.2 0 .4  0 .6  0.8 1 

FIGURE 11 The graph of ~pn (2) for n = 0. 
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20 
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, B ! ~ | 
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�9 . :  :. �9 : 

'""q" '. i, .. ~. �9 . t  ' ~" " " ~ I T ~ ' ~  

: :;: : J:i 
�9 !" ~. .:- 

I I l I I 

0.2 0,4 0,6 0.8 1 1.2 

F I G U R E  11 T h e  g raph  o f  ~t (2) for  n = 7. 

2.000000000000000 
0.438447187191170 
0.089283755227748 
0.017920983374572 
0.003586769658231 
0.000717456880521 
0.000143495494296 
0.000028699263589 
0.000005739859307 
0.000001147972125 
0.000000229594435 
0.000000045918888 
0.000000009183778 
0.000000001836755 
0.000000000367351 
0.000000000073470 
0.000000000014694 

2.000000000000000 
2,192235935955850 
2.232093880693689 
2,240122921821492 
2.241731036394142 
2.242052751628976 
2.242117098367850 
2.242129967864985 
2.242132541804311 
2.242133056908763 
2.242133158281666 
2.242133182676215 
2.242133209781269 
2.242133142018633 
2.242133480831812 
2.242138563029496 

2.000000000000000 
4.561552812808830 
1.200597372947411 
0.252912412242774 
0.051104823036064 
0.010241944090965 
0.002049228685835 
0.000409879337381 
0.000081977211529 
0.000016395496068 
0.000003279101364 
0.000000655820359 
0.000000131164075 
0.000000026232815 
0.000000005246563 
0.000000001049313 
0.000000000209863 

2.000000000000000 
22.807764064044150 
30.014934323685271 
31.614051530346742 
31.940514397540280 
32.006075284266892 
32.019198216164284 
32.021823232896047 
32.022348253417896 
32.022453258398301 
32.022474258310183 
32.022478459593600 
32.022479286297752 
32.022479354060394 
32.022480370499927 
32.022478676434034 
32.022504087422455 

2.242138563029496 0.000000000041973 32.022504087422455 

(2) 
F I G U R E  12 A table  o f  the va lues  o f  ~-m and 5 m -  ! ~.m. The  l imi t ing  va lue  ~. for  the e igenfunc t ions  ~ n  is the  va lue  at the  

b o t t o m  o f  the  r ight  hand  c o l u m n  (Cont.). 
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2.000000000000000 
4.561552812808830 
3.799402627052589 
0.934561603592332 
0.194476546116334 
0.039202679235109 
0.007852869358454 
0.001571067522323 
0.000314233252972 
0.000062847440555 
0.000012569519710 
0.000002513905206 
0.000000502781092 
0.000000100556220 

2.000000000000000 
22.807764064044150 
94.985065676314733 
116.820200449041508 
121.547841322708877 
122.508372609715991 
122.701083725843333 
122.739650181458330 
122.747364442220629 
122,748907333035746 
122.749215913237066 
122.749277634156243 
122.749289980508479 
122.749292352200726 

0.000000020111244 122.749292352200726 

2.000000000000000 
0.438447187191170 
4.910716244772252 
3.657274278305600 
0.889805688218220 
0.184790654869029 
0.037235426369185 
0.007458210253875 
0.001492087315687 
0.000298435275860 
0.000059687767698 
0.000011937582041 
0.000002387517548 
0.000000477503555 
0.000000095500713 

2.000000000000000 
2.192235935955850 
122.767906119306303 
457.159284788200011 
556.128555136387604 
573.470796465715466 
581.803537018513566 
582.672676084010163 
582.846607690042106 
582,881398164146162 
582.888356424069229 
582.889748078872799 
582.890026393570452 
582.890082162219755 
582.890093343054559 

0.000000019100143 582.890093343054559 

2.000000000000000 
0.438447187191170 
4.9107162447?2252 
1.342725721694400 
0.284763155257299 
0.057616564758371 
0.011549993421280 
0.002311066890290 
0.000462256114201 
0.000092452932349 
0.000018490654851 
0.000003698133705 
0.000000739626851 
0.000000147925374 
0,000000029585075 
0.000000005917015 
0.000000001183403 
0.000000000236681 
0.000000000047336 
0.000000000009467 
0.000000000001893 

2.000000000000000 
2.192235935955850 
122,767906119306303 
167,840715211799989 
177.976972035811571 
180.051764869908368 
180.468647207505938 
180.552100803935133 
180.568794609843081 
180.572133494675768 
180.572801278104123 
180,572934832838257 
180.572961571974332 
180.572966857459903 
180.572968890338984 
180.572973972536687 
180.572982442866135 
180.575024794513515 
180.573660069223962 
180.576836442776141 
180.576836442776141 

2.000000000000000 
4.561552812808830 
3.799402627052589 
4.065438396407668 
1.021973747326411 
0.213512245238652 
0.043073514579374 
0.008629596904421 
0.001726515552075 
0.000345326960557 
0.000069066346143 
0.000013813307390 
0.000002762663004 
0.000000552532662 
0.000000110506535 
0.000000022101307 

2.000000000000000 
22.807764064044150 
94.985065676314733 
508.179799550958478 
638.733592079006826 
667,225766370788506 
673.023665302722634 
674.187258157925271 
674.420137529137605 
674,466719837677601 
674.476036556081340 
674.477899909303005 
674.478272576694735 
674,478346980068864 
674.478~61549035526 
674.478359854969653 

0.000000004420261 674.478359854969653 

2.000000000000000 
4,561552812808830 
1.200597372947411 
4.747087587757227 
1.274066717866436 
0.269319995576783 
0.054457114581055 
0.010915251459094 
0.002184004266746 
0.000436839019015 
0.000087369330483 
0.000017473927164 
0.000003494787875 
0.000000698957673 
0.000000139791539 
0.000000027958308 

2.000000000000000 
22.807764064044150 
30.014934323685271 
593.385948469653272 
796.291698666522166 
841.624986177446203 
850.892415328991433 
852.754020241723083 
853.126666697733526 
853.201209013412949 
853.216117996749063 
853.21909%810221451 
853.~19696162073888 
853.219815492075440 
853.219840225437565 
853.219845307635183 

2.000000000000000 
0.438447187191170 
0.089283755227748 
4.982079016625428 
1.373980025321677 
0.291828816717707 
0.059063461848651 
0.011840732961141 
0.002369269279612 
0.000473898771932 
0.000094781551095 
0.000018956382088 
0.000003791279292 
0.000000758255973 
0.000000151651199 
0.000000030330240 
0.000000006066048 
0.000000001213210 
0.000000000242642 

0.000000005591662 853.219845307635183 0.000000000048528 

2.000000000000000 
2.192235935955850 
2.232083880693689 
622.759877078178533 
858.737515826047911 
911.965052242833167 
922.866591385187908 
925.057262589172637 
925.495812348462096 
925.583538928910798 
925.601084910939221 
925.604594137268919 
925.605295941335157 
925.605436142228541 
925.605464941348828 
925.605468329480573 
925.605459859151097 
925.605417507503716 
925.605841023977405 
925.605841023977405 

FIGURE 12 A table of the values of ~.m and 5 m-  1 ~-m. The limiting value L for the eigenfunctions ~n (2) is the value at the 
bottom of the right hand column (Cont.). 
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-0.01 
-0.01 1.01 

-0.01 
I.Itl 

FIGURE 14 The subset of SG where ~(2) is positive, for n = 1 and n = 2 (for n = 0 it is the whole SG). The boundary 

is the nodal set. 
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F I G U R E  14 The subset  o f  SG where  ~(2) is positive, for  n = 3 and n = 4 (for n = 0 it is the whole  SG). The b o u n d a r y  
is the nodal  set. 
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F I G U R E  14 The  subset  o f  SG w h e r e  ~bn (2) is posit ive,  for  n = 5 and  n --= 6 (for n = 0 it is the  w h o l e  SG). T h e  b o u n d a r y  

is the  noda l  set. 
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X~XuX 

A A  ....  ̂ A  

,r X"A Z"k ,r 

FIGURE 14 
nodal set. 

-0.01 

�9 0-01 1.01 

The subset of SG where ~p(2) is positive, for n = 7 (for n = 0 it is the whole SG). The boundary is the 

FIGURE 15 Initial value on G 1 for the family ~n (5). Under the action of the dihedral group D 3 this generates a 

two-dimensional representation space. 
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FIGURE 16 The graph of ~(5) for n = 0 and n = 1. 
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FIGURE 16 The graph of  ~ 5 )  for n = 2 and n = 3. 
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5.000000000000000 
1.381966011250105 
0.293637838261838 
0.059434048885759 
0.011915204195355 
0.002384177~99732 
0.000476881023048 
0.000095378024003 
0.000019075677577 
0.000003815138427 
0.000000763027802 
0.000000152605565 
0.000000030521113 
0.000000006104223 

5.000000000000000 
6.909830056250526 
7.340945956545955 
7.429256110719831 
7.447002622096993 
7.450555311662097 
7.451265985132689 
7.451408125247472 
7.451436553505483 
7.451442239386936 
7.451443376715015 
7.451443609818482 
7.451443636923536 
7.451443704686173 

0.000000001220845 7.451443704686173 

5.000000000000000 
3.618033988749895 
0.877666491978266 
0.182170517915148 
0.036703533456671 
0.007351515647798 
0.001470735742284 
0.000294164455002 
0.000058833583279 
0.000011766744347 
0.000002353349977 
0.000000470670040 
0.000000094134010 
0.000000018826802 

5.000000000000000 
18.090169943749473 
21.941662299456656 
22.771314739393478 
22.939708410419161 
22.973486399369484 
22.980245973193771 
22.981598047050294 
22.981868468170685 
22.981922552620279 
22.981933370247454 
22.~81935541362304 
22.981935975043172 
22.981936110568444 

0.000000003765361 22.981936788194801 

5.000000000000000 
3.618033988749895 
4.122333508021734 
1.041347713819957 
0.217752799064036 
0.043936645577732 
0.008802827068426 
0.001761185768747 
0.000352261971449 
0.000070453387026 
0.000014090717115 
0.000002818145011 
0.000000563629066 
0.000000112725816 
0.000000022545163 
0.000000004509033 
0.000000000901807 
0.000000000180361 

5.000000000000000 
18.090169943749473 
103.058337700543362 
130.168464227494610 
136.095499415022317 
137.302017430411894 
137.544172944151057 
137.592638183594769 
137.602332597199478 
137.604271534708289 
137.604659324009816 
137.604736876991211 
137.604752353977233 
137.604755403295854 
137.604756080922215 
137.604754386856314 
137.604779797844714 
137.604737446197362 

0.000000000036072 137.604737446197362 

5.000000000000000 
1.381966011250105 
4.706362161738162 
1.257567773171575 
0.265624868821615 
0.053701749340775 
0.010763520543051 
0.002153631734540 
0.000430763458339 
0.000086154176176 
0.000017230894616 
0.000003446181298 
0.000000689236355 
0.000000157847275 
0.000000027569455 

5.000000000000000 
6.909830056250526 
117.659054043454049 
157.195971646446878 
166.015543013509415 
167.817966689921491 
168.180008485174767 
168.252479260935445 
168.266975913858658 
168.269875344228922 
168.270455235724000 
168.270571210119869 
168.270594398493841 
168.270599006353081 
168.270599683979441 

0.000000005513891 168.270599683979441 

FIGURE 17 A table of the values of ~-m and 5 m-1 ~-m. The limiting value L for the eigenfunctions ~n (5) is the value at the 
bottom of the right hand column (Cont.) 
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5.000000000000000 
1.381966011250105 
4.706362161738162 
3.742432226828425 
0.916469838250128 
0.190556309032439 
0.038406270123447 
0.007693090753758 
0.001539091911534 
0.000307837335072 
0.000061568225144 
0.000012313675354 
0.000002462736284 
0.000000492547305 
0.000000098509463 
0.000000019701893 
0.000000003940379 
0.000000000788076 

5.000000000000000 
6.909830056250526 
117.659054043454049 
467.804028353553122 
572.793648906330077 
595.488465726371487 
600.097970678854040 
601.022715137375144 
601.207777942993289 
601.244795062072512 
601.252198668879942 
601.253679399023554 
601.253975535294444 
601.254034624312794 
601.254045466334560 
601.254047160400432 
601.254055630729908 
601,254055630729908 

5.000000000000000 
3.618033988749895 
4.122333508021734 
3.958652286180043 
0.986280173275135 
0.205720194325708 
0.041488294582616 
0.008311475039992 
0.001662848020706 
0.000332591727593 
0.000066519230480 
0.000013303881495 
0.000002660777715 
0.000000532155600 
0.000000106431122 
0.000000021286224 

5.000000000000000 
18.090169943749473 
103.058337700543362 
494.831535772505390 
616.425108296959024 
642.875607267836632 
648.254602853381812 
649.333987499337695 
649.550008088471373 
649.593217954820375 
649.601860158526506 
64Y;603588612603403 
649.603934283361127 
649.604003401249543 
649.604017631403053 
649.604017631403053 

5.000000000000000 
3.618033988749895 
0.877666491978266 
4.817829482084852 
1.303266730672558 
0.275874718158295 
0.055797618477205 
0.011184542493599 
0.002237910147085 
0.000447622102526 
0.000089526023487 
0.000017905268817 
0.000003581056328 
0.000000716211368 
0.000000143242278 
0.000000028646456 

S.O00000000000000 
18.090169943749473 
21.941662299456656 
602.228685260608426 
814.541706670348617 
862.108494244673238 
871.837788706322726 
873.792382312431641 
874.183651205129536 
87~.261918996574423 
874.277573115742939 
874.260703958224876 
874.281330112084561 
874.281455405198130 
874.281480477373407 
874.281488947702883 

o.oooooooo9729691 874.261488947~o2883 

5.000000000000000 
1.381966011250105 
0.293637838261838 
4.940565951114241 
1.355694949375055 
0.287692369803660 
0.058216301513105 
0.011670500418625 
0.002335190706853 
0.000467081774447 
0.000093418100278 
0.000018683689872 
0.000003736740767 
0.000000747348265 
0.000000149469657 
0.000000029893932 

5.000000000000000 
6.909830056250526 
7.340945956545955 
617.570743889280152 
847.309343359409240 
899.038655636437966 
909.629711142267865 
911.757845205090803 
912.183869864260942 
912.269090717421705 
912.286135526453791 
912.289544512871544 
912.290226340512845 
912.290362475648067 
912.290389919515519 
912.290398389844995 

0.000000005978786 912.290398389844995 

FIGURE 17 A table of the values of Lm and 5m- l  )~m. 
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FIGURE 18 Restriction to the bottom edge in Fig. 15 of the functions ~b (5) for n = 0 and n = 1. Note the pattern 2, 2, 6, 
6, 10, 10, 14, 14 for the number of  local extrema. 
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FIGURE 18 Restriction to the bottom edge in Fig. 15 of  the functions ~ n  for n = 4 and n = 5. Note the pattern 2, 2, 6, 
6, 10, 10, 14, 14 for the number o f  local extrema. 
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FIGURE 18 Restriction to the bottom edge in Fig. 15 of the functions ap (5) for n ---- 6 and n = 7. Note the pattern 2, 2, 6, 
6, 10, 10, 14, 14 for the number of local extrema. 
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FIGURE 19 Restriction to the left edge in Fig. 15 of the functions ~0 (5) for n = 0 and n = 1. Note the pattern I, 2, 5, 6, 
9, 10, 13, 14 for the number of local extrema. 
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0.8 
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F I G U R E  19 Res t r i c t ion  to the  lef t  e d g e  in F ig .  15 o f  the  func t ions  ~n  (5) for  n = 4 and  n = 5. N o t e  the  pa t tern  1, 2, 5, 6, 

9, 10, 13, 14 for  the  n u m b e r  o f  local  ex t r ema .  
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FIGURE 19 Restriction to the left edgeinFig. 15 ofthe functions ~n (5) forn = 6. Notethe pattern 1,2,5,6,9,  10, 13, 14 
for the number of local extrema. 
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FIGURE 19 Restriction to the left edgeinFig. 15 of the functions ~n (5) forn = 7. Note the pattern 1, 2, 5, 6, 9, 10, 13, 14 
for the number of local extrema. 
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1.01 

-O.Ol ~ 

�9 0.01 1.01 

1,01 

FIGURE 20 

..0,01 1.01 

The subset of  SG where ~(5)  is positive, for n = 0 and n = 1. The boundary is the nodal set. 
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I,,111 
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FIGURE 20 
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The subset of SG where ~(5) is positive> for n = 2 and n = 3. The boundary is the nodal set. 
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FIGURE 21 Initial values on G2 for the family ~n (6). 
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FIGURE 22 The graph of ap (6) for n = 1. 
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F I G U R E  22  T h e  g r a p h  o f  ~pn (6) for  n = 6. 

! ! 

"e2pnp.dat.tf '  

1 .2  

In 
2 
3 
4 
5 
6 
7 
8 
9 
10 

�9 sign choice: + - - 
km 5 m - 1 ~.m 
6 30 
3. 75. 

0.697224 87.153 
0.143567 89.7295 

0.0288802 90.2508 
0.00578274 90.3553 
0.00115682 90.3762 

0.000231374 90.3804 
0.0000462752 90.3812 

~ 6 )  

sign choice: + + - 
;L m 5m-llm 
6 30 
3. 75. 

4.30278 537.847 
1.10457 690.356 

0.231646 723.894 
0.0467666 730.729 

0.00937089 732.101 
0.00187488 732.375 

0.000375004 732.43 

~,~6) 

sign choice: + + + 
~.m 5m-lkm 

sign choice: + - + 

~.m 
6 30 
3. 75. 

4.30278 537.847 
3.89543 2434.64 

0.965539 3017.31 
0.201204 3143.82 

0.0405701 3169.54 
0.00812723 3174.7 
0.00162597 3175.73 

6 
3. 

0.697224 
4.85643 
1.31951 

0.279528 
0.0565451 
0.0113347 

0.00226797 

5m-l~. m 
30 
75. 

87.153 
3035.27 
4123.45 
4367.63 
4417.59 
4427.63 
4429.64 

F I G U R E  23 A table  o f  the  va lues  o f  ~.m and  5 m - 1  ~-m for  the  e i g e n f u n c t i o n s  ~kn (6) . 
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FIGURE 24 Restrictions to the bottom edge in Fig. 20 of the functions ~n (6) for n = 1 and n = 2. Note the pattern 3, 11, 

19, 27 for the number of  local extrema. 



2 5 4  KyaUee  Dalrymple ,  R o b e r t  S. Strichartz,  a n d  J a d e  P. Vinson 

. h 5  

4 1 . 0 1  

. .  . .  . .  

�9 . . . , , 

^ 

- : . - -  . 

":~ " ".,/ �9 . 
"v '  . � 9  

, r  

. ~ 

�9 . . : : 

�9 " d - -  v 
�9 : V 

1 . 0 1  

z �9 �9 
~ .  ~ . 

�9 :. . . p.. : 

' !:i!\ 

) 

4 r 

, 0 1 1 !  

~  ~ 1 7 6  

�9 o ~ - ~ �9 . .  

. . -  :: ~. 
�9 . ; - . . 

: "  " " : : ' i -  
�9 . : i ' : "  

:i '~ �9 "~" " :  " " "~ �9 . r  . . 

�9 . � 9  

�9 ~ 

1 , 0 1  

F I G U R E  24 Restr ic t ions  to the  b o t t o m  e d g e  in Fig. 20  o f  the  funct ions  ~ ( 6 )  for  n ---- 5 and n = 6. No te  the  pat tern  3, 11, 

19, 27 for  the  n u m b e r  o f  local ex t rema.  
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The subset  of  SG where  ~t (6) is positive, for  n = 1 and n = 2. The bounda ry  is the nodal  set. 



256 KyaIlee DaIrymple, Robert S. Strichartz, and Jade P. Vimson 

l.Ol 

-0.01 
.0.01 1,0! 

1.01 

FIGURE 25 

_x & 

�9 0.01 I ~ !  

The subset of SG where ~(6) is positive, for n = 5 and n = 6. The boundary is the nodal set. 
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4. Properties of Harmonic Functions and Eigenfunctions 

It appears from our numerical computations that some harmonic functions have restrictions to 
lines that are monotonic. We will now demonstrate that this is in fact the case. 

Theorem 1. 
Let f be a harmonic function on SG, E an edge in Gm with endpoints vo, Vl and midpoint vol. 

Suppose f(vo) < f(v01) < f ( v l )  and 

1 f ( v l ) - f ( v o 1 )  
- < < 4 .  ( 4 . 1 )  
4 - f ( v 0 1 ) - f ( v 0 )  - 

Then the restriction o f f  to E is strictly increasing. 

P r o o f ,  Let 
f (Vl) - f (v01) 

f (v01) - f (v0) 

and 
f (v01) - f (v001) 

f (v001) - f (v0) 

using the notation in Fig. 3. Now by (2.6) we have 

~ X  

= y ,  

8 3 
f ( v o l ) - f ( v o o l ) = ~ ( f ( v o l ) - f ( v o ) ) + ~ ( f ( v l ) - f  (v01)) (4.2) 

and 
17 3 

f (v001) - f (v0) = ~ ( f  (v01) - f (v0)) -- ~ ( f  (Vl) -- f (v01)) �9 

Using x < 4 from (4.1) we obtain 

(4.3) 

17 1 2 )  
f ( v o o l ) - f ( o 0 )  > ~ ~ ( f ( v l ) - f ( v 0 1 ) )  , 

and so f (vo) < f(v001) < f(v01).  From (4.2) and (4.3) we obtain 

8 + 3 x  
Y = 17 - 3 - - - - ~  " (4.4) 

Since the right side of (4.4) is an increasing function of x on the interval �88 < x < 4, we obtain 

7__ < y < 4, hence �88 < y < 4. Thus, the hypotheses of  the theorem also hold for the half of  the 
13 . . . .  

edge from v0 to ool. A similar argument, using x > 1 from (4.1), shows that the hypotheses hold 
for the other half of  the edge. 

It follows by induction that the same is true for any dyadic subinterval in E. Thus, in particular, 
we have f (a )  < f (b)  i f a  < b and a and b are dyadic points in E. Since the dyadic points are dense 
in E,  and f is continuous, it follows that f is strictly increasing on E. [ ]  

Now let T be any minimal triangle in Gm, with vertices v0, Vl, v2. Assuming that the harmonic 
function f is not constant, we order the edges according to the relative sizes of  I f (v  j) - f (vk)l  
along the edge. 

Theorem 2. 
If there is a tie for smallest edge, then f is monotone along all three edges. If not, then 

f is monotone along the two largest edges, and has a single extremum along the smallest edge. 
Furthermore, if E denotes the largest edge, then we have the following stronger monotone property: 
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if T r is any minimal triangle in Gm with m r > m which has an edge E r contained in E, then the 
absolute maximum and minimum values o f  f on T I are assumed at the endpoints o f  E ~. 

P r o o f .  We may assume without loss of  generality that f ( v o )  < f ( v l )  < f ( v 2 )  and f ( v o )  # 
f (v2) ,  so the largest edge joins vo to v2. It follows easily from Algorithm 2.1 that the two halves of 
this edge (vo to v20 and v20 to 02 in Fig. 2) are the largest edges in the two minimal Gm+l triangles 
containing them. An inductive argument shows that the same is true for any smaller triangle bordering 
on the edge. In particular, f is increasing along this edge. 

Next consider the second largest edge. Suppose f (v2 )  - f ( v l )  > f ( v l )  - f ( v o )  (a similar 
argument works in the contrary case). Then f (v l2 )  = -~(f(v2) + f ( v l ) )  + l f ( v o ) ,  so f ( v l )  < 

f (v l2 )  < f (v2 )  (because f (v l2 )  - f ( v l )  = 2 ( f (v2 )  - f ( v l ) )  - � 89  - f ( v o ) )  and f (v2 )  - 

f ( v l2 )  = ~-(f(v2) - f ( v l ) )  + � 89  - f (vo) ) ) .  Thus, we may apply Theorem 1 once we have 
verified the analog of (4.1), namely 

1 f (1)2) - -  f (v12) 
- <  < 4 .  
4 -  f ( V l Z ) - - f ( v l )  - 

But since 
f (v2) - f (v12) 3 ( f  @2) - f (vl))  + ( f  (vl) - f (v0)) 

f (v12) - f (vx) 2 ( f  @2) - f (vl))  - ( f  (vl) - f (vo)) 

the left inequality is trivial and the right inequality is exactly f (v2 )  - f ( v l )  > f ( v l )  - f ( vo) .  
Finally, we consider the smallest edge, assuming f (v2 )  - f ( v l )  > f ( v l )  - f ( v o )  (a similar 

argument works in the contrary case). Without loss of  generality we may take f ( v o )  = 0, f ( v l )  = 1 
and f (v2 )  = a > 2. (In the case that f ( vo )  = f ( v l ) ,  it is easy to see that VOl is the unique local 
maximum; this would correspond to the limiting case a = ~ . )  Now the top triangle in Fig. 2 has 
f ( vo )  = O, f(v01) = -q~ and f(1)2o) = 2a+l 5 ' SO the edge from v0 to VOl is the second largest 

( - ~  - 0 > 2q~1 -q~) and by what we have already proven we know that f is increasing on the 

edge from v0 to vm. On the other hand, the lower right triangle has f ( v m )  = - ~ ,  f ( v l )  = 1 and 

f(v12) = ~ - '~ ,  and we need to distinguish two cases: 1) i r a  _> 3, then f (v l2 )  > f ( v 0 l )  _> f ( v l )  
and the edge joining Vl to v01 is the smallest edge, 2) i f 2  < a < 3, then f ( v l 2 )  > f ( v l )  >_ f(v01) 
and the edge joining v01 to Vl is the smallest edge. By repeating the argument we obtain that f is 
increasing on half of this edge, namely from vl to VOll in the first case, and from vol to v011 in the 
second (see Fig. 3 for notation). By induction, we continue to add half of  the remaining piece of 
the edge either to one side or the other, and in the limit there is a unique point x on this edge such 
that f is increasing from v0 to x and from Vl to x, so x is the unique (maximum) extremum. (In the 
contrary case f (v2 )  - f ( v l )  < f ( V l )  - -  f ( vo )  and the unique extremum is a minimum.) [ ]  

R e m a r k  2. The proof actually yields a formula for the extreme point M(a)  on the smallest 
�9 he aramete f(v2)--f(vo) edge as a funcUon of t p r a ( =  f(vl)-f(vo) in general). If  we parametrize points on 

the edge by x 6 [0, 1] with 0 corresponding to v0 and 1 corresponding to vl, then our argument 
shows 5 < M(a)  < 1 (M(c~) = 5 corresponds to the degenerate case f ( v l )  = f (vo) ) ,  with 

3 5 < M(a)  < 1 i f 2  < a_< 3 a n d  < M(a)  < i f 3  < a  < oo. More precisely, the induction 
argument gives us the recursion identity 

5 ( 1 + M ( 3 _ - - ~ ) )  2 < a < 3  

M(a)  = ~ a = 3 

1 - 1M (2aa_@) a >  3 .  

By iterating this identity we can compute M(a)  to any desired accuracy. It also follows that M(a)  
is continuous, decreasing in a, and assumes all values in (5, 1). Figure 26 shows a portion of the 
graph of M(a).  
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FIGURE 26 A portion of the graph of M(a). 

We have the analog of  Theorem 1 for Dirichlet eigenfunctions and biharmonic functions (we 
omit  the details for this case). 

Theorem 3. 
Let f be a Dirichlet eigenfunction on SG, - A  f = )~f . There exists mo depending on )~ such 

that i f m  > mo and E is an edge in Gm with f ( v o )  < f (v01)  < f ( v l )  and 

1 f (Vl) - f (v01) 
- -  < < 4 - ~m (4.5) 
4 - t~ m - f (VOl) - f (vo) - 

then the restriction of  f to E is strictly monotone (Sin is a constant depending on ~ with 8m --+ 0 as 
m ----> (x) ). 

P r o o f .  By (2.15) we  can choose m0 so that ~,m is close to 0 for all m > mo. Then using 
Algorithm 2.5 and the remark following it, we  obtain the analog of  (4.2) and (4.3) with the coefficients 
changed slightly, say 

f ( v 0 1 ) - - f ( v 0 0 1 )  = a m ( f ( v o 1 ) - f ( v o ) ) + b m ( f ( v l ) - f ( v o 1 ) )  (4.6) 

f (v001) - f (v0) = Cm ( f  (v01) - f (v0)) - bm ( f  (1)1) - -  f (v01)) (4.7) 

8 bm > 3 ,  Cm = 1 - am. By taking m0 large we can make am close to 8 /25  and bm with am > 2~' 
close to 3 /25 .  We need 

1 - am - (4 - 8m) bm > 0 (4.8) 

in order to show f ( v o o O  > f ( v o )  as before. The analog of (4.4) is 

am + bmx 
Y - -  1 -  am - bmx ' (4.9) 
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so we choose 4 - ~ m  to be the larger fixed point of the transformation (4.9). Then we can complete 
the induction step as before. [ ]  

Next we consider the behavior of  harmonic functions in a neighborhood of  a vertex. We fix a 
triangle T, and let R denote the reflection that has vo as fixed point and interchanges vl and v2. 

Theorem 4. 
Let f be a nonconstant harmonic function on T. Then there exist positive constants cj such 

that 

i f ( x ) -  f ( vo ) [  < Cl I x -  vo[/~ (4.10) 

I f ( x ) -  f ( R x ) l  < c 2 1 x -  vol e (4.11) 

log(~) ~ .7369655 and y = log5 for all x in T, where fl = ~ ~ ~ 2.3219281. Further, we have the 

following dichotomy: (i) either 

f (Vl) - f (v0) = f (v0) - f (v2) , (4.12) 

in which case 
I f (x )  - f (vo)l < c3 qx - v0[ • , (4.13) 

or (ii) for every other nonconstant harmonic function, 

ca Ix -- 1)01 ~ < I f (x )  - f (v0)t (4.14) 

for all x sufficiently close to vo. 

Proof. Without loss of  generality, we may assume f (vo)  = 0. Then f ( R x )  is also a harmonic 
function, so we can write f as a sum of a symmetric l ( f ( x )  + f ( R x ) )  and an antisymmetric 

l ( f ( x )  - f ( R x ) )  harmonic function. To prove the theorem it suffices to show that a nonconstant 
symmetric harmonic function satisfies (4.10) and (4.14), while an anti symmetric harmonic function 
satisfies (4.13), since 3 < Y. 

Suppose f is symmetric, with f (vo)  = 0, f ( v l )  = f (v2)  = a # 0. Then by Algorithm 2.t, 
we have f (vol )  = f(vo2) = 3a, while f (v l2)  = 4a. By the maximum principle for harmonic 

functions, the values of f on the two smaller triangles at the vertices vl and v2 must lie between 3a 

and ~a, so with the appropriate choice of constants we have (4.10) and (4.14) holding on these two 
triangles. On the third small triangle at the vertex v0, we again have that f is symmetric. Since we 
scale lengths by a factor of 1/2 and the values of f by a factor of 3/5, we see that (4.10) and (4.14) 
scale exactly to this smaller triangle, and we continue by induction to prove (4.10) and (4.14). 

Suppose f is antisymmetric, with f (vo)  = 0, f ( v l )  = - f ( v 2 )  = a. Then by Algorithm 2.1 
we have f(v01) = - f ( v2o )  = la,  so now it is (4.13) that scales exactly to the small triangle at 
vertex v0. The rest of  the argument is the same. There is no lower bound in this case because f 
vanishes on the line of symmetry. [ ]  

Essentially the same result is true for Dirichlet eigenfunctions, except that we need an extra 
hypothesis for the lower bound (4.14). 

Corollary 1. 
Let f be a Dirichlet eigenfunction. Then (4.10) and (4.11) hold. If(4.12) holds, then (4.13) 

holds. On the other hand, if f (vo) = 0 but (4.12) does not hold, then (4.14) holds. 

Proof. We are no longer able to assume f (vo)  = O, but we can still write f as a sum of a 
symmetric and an antisymmetric eigenfunction (the Dirichlet boundary conditions need not hold for 
these eigenfunctions, but that is irrelevant to the argument). We use Algorithm 2.4, together with 
the observation from (2.15) that 

Lm ~ C5 - m  for large m . (4.15) 
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Consider first the symmetric case. If  we write f ( v l )  = f (v2 )  = f ( v o )  + am then f ( v o l )  = 
f(v02) = f ( v o )  + am+l for 

3 
am+l ~ Cl)~mf (o0) -t- ~ (1 + c2~.m)am . (4.16) 

Using (4.15) we obtain by induction the upper bound am < c3 (3)m, and this yields (4.10) (although 
we do not have a strictly maximum principle for Dirichlet eigenfunctions, it follows from Algo- 
rithm 2.4 and (4.15) that I f  (x)l on T is bounded by a constant times the maximum of I f ( v j ) l ) .  Also 
if f ( v o )  = 0 but f ( v O  = f (v2 )  # 0, then we obtain the lower bound (4.14). On the other hand, if 
f ( v o )  = f ( v l )  = f (v2) ,  then since the sum of  the coefficients in (2.13) differs from I by a term of 
order )~m, we obtain the estimate (4.13). 

Next consider the antisymmetric case, with f ( vo )  = 0 and f ( v l )  = - f ( v 2 )  = a. Then 
by Algorithm 2.4 we have f ( v o l )  = - f ( v 0 2 )  = 5_--~1x a, and again by induction we obtain (4.13). 
[] 

Next we consider the phenomenon of lines along which certain Dirichlet eigenfunctions are 
constant. 

Theorem 5. 
Let f be a Dirichlet eigenfunction, and let E be an edge in Gm such that f (v0 )  -- f ( v l )  = 

f (v0I ) .  Then the restriction o f f  to E is constant. 

Proof. Algorithm 2.5 and the remark that the coefficients sum to 1 implies f (v001) and f (v011 ) 
are both equal to the common value. By induction it follows that f takes on the same value at all 
dyadic points on E. Since f is continuous, f is constant on E. [ ]  

Corol lary  2. 

The eigenfunctions ~n (2) are constant on the inner edges o f  G 1. 

P r o o f .  In order to apply the theorem we need to check that ~n (2) takes on the value 1 at the 
midpoints of  these edges. According to Algorithm 2.4, this value is equal to 

2 (4 - L2) 

(2 - L2) (5 - ~.2) 

However, in view of (2.12) and ~.1 = 2, this does equal 1. [ ]  

Corol lary  3. 

The eigenfunctions ~n (6) are constant on the edges o f  G2 joining endpoints where ~n (6) is set 
equal to - 1. 

P r o o f .  According to Algorithm 2.4, the value at the midpoint of one of these edges is equal to 

- 2  (4 - ~,3) + 4 - 2  

(1 - )~3) (5  - ~.3) 5 - ~3  

But we have e3 = + 1 s o  ~,3 = 3, and s o  ~(6) takes the same value - 1 at the midpoint. Then we can 
apply the theorem. [ ]  

In the next three results, we derive specific properties of Dirichlet eigenfunctions based on our 
algorithms. These results actually hold more generally (Theorem 6 for all functions in the domain 
of A, and Theorem 7 and Corollary 4 for subharmonic functions) using methods in [11]. 
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Theorem 6. 
Let f be a Dirichlet eigenfunction. 

minimal triangle in Gin, then 

I f ( x ) -  h(x)l < cZl l f l l~5 -m on T, wi thc  = 5 / 4 ,  

where h is the harmonic function that is equal to f on the vertices of  T. 

P r o o f .  We choose m0 so that 

Then there exists mo such that if  m > mo and T is any 

(4.17) 

;~m < 1 for m > _ m 0 .  (4.18) 

Comparing Algorithms 2.1 and 2.4, we see that for ~m < I the coefficients differ in L 1 norm by 
at most ;~m, and so (4.17) holds at the midpoints of  the edges of T. At the next level, the left side 
of (4.17) can be bounded by a sum of two terms: the error ]lfllooXm from level m and the error 
]] flloo)~m+l from level m + 1. Since ~.m -< 5 -m;~ for all m, these errors form a convergent geometric 
series. The result follows by induction and a density argument. [ ]  

Since the size of T in Gm is on the order of  2 -m, the estimate (4.17) is very strong. 

Theorem 7. 
Let f be a Dirichlet eigenfunction with )~ given by (2.11) with e m =  - 1  for  all m > k. Let T 

be any minimal triangle in Gmo with m 0 > k with f taking on nonnegative values on the vertices 
vo, Vl, v2 o fT .  Then 

f ( x ) > m i n ( f ( v o ) , f ( v l ) , f ( v 2 ) )  for x in T ,  (4.19) 

with strictly inequality unless x is a vertex or f is identically zero on T. 

P r o o f .  The condition that e m =  - -  1 for m > k implies that ~-m < 2, in fact ~'m ~ 1 (5 - -  ~ /5)  

1.381966 for m > k. Now in Algorithm 2.4 the coefficients of  (2.13) are positive and sum to 2 ~m'  
which is greater than 1. Thus, (4.19) holds at the points of the edges of  T, in fact with strict inequality 
unless f (vo)  = f ( v l )  = f (v2)  = 0. We may then use an induction argument to show that (4.19) 
holds at all vertices of any Gin' for m I > m0 that lie in T. By density this proves (4.19) for any point 
in T, and it is routine to see that strict inequality holds except in trivial cases. [ ]  

Corollary 4. 
A Dirichlet eigenfunction cannot have a local minimum at a point where it is positive. 

P r o o f ,  Suppose first that the point x where f has a local minimum is not a vertex in any Gin. 
If  f ( x )  > 0 then by continuity we can find an infinite sequence of triangles Tj containing x and 
shrinking to x on which f is positive. The theorem then shows that f ( x )  cannot be the minimum 
value of  f in Tj. On the other hand, if x is a vertex in Gk, hence in Gm for all m > k, we can 
argue directly from the eigenvalue equation (2.14) that f (x) is strictly greater than the average of 4 
neighboring values, hence cannot be a local minimum. [ ]  

, ( 2 )  
In particular, these results hold for the ground state 7r0 , since this function is nonnegative. We 

can actually say more about it. First we need a computation that is valid for all the ~n (2) eigenfunctions. 

L e m m a  1. 
Let x parametrize an edge of Go, with x = O, 1 corresponding to the endpoints and x = 1/2 

the midpoint. Then 

( ~  1 )  ~-m (4.20) 7tn (2) 4- ~-~ = 1 -- - ~ - ,  

where )~m are given by (2.11) and em are determined from n by (3.1) and (3.2). 



Fractal Differential Equations on the Sierpinski Gasket 263 

Proof .  Since a I = 2 we see that (4.20) is consistent w i t h  ~ ( 2 )  ( 0 )  = 1 / / ( 2 ) (1 )  = 0. 'We prove the 
result by induction. By Corollary 2, we have the point corresponding to 1 4- ~ as the midpoint 

of a minimal triangle T in Gm with ~n (2) equal to 1 at 2 vertices of T, and 1 - ~- at the third vertex 
by the induction hypothesis. Thus, Algorithm 2.4 gives us 

( ~  1 ) ( 4 - a m + l ) ( 2 - ~ ~ )  + 2  

f 4- ~ = ( 2 -  am+l) (5 - -  am+l) 

Note that the numerator is equal to 2(5 - am+l) - (4 - Lm+l) ~m2 ' and if we substitute (2.12) to 
e l i m i n a t e  a m this becomes 

(5 - Lm+I) (2 - (4 - Lm+I) L ~  -------~1) 

Theorem 8. 
The groundstate ~0 (2) satisfies 

am+l ) 
= ( 5  - -  a m + l )  ( 2  - X m + I )  1 ~ . [] 

0 < ~(2)(X) < 1 , (4.22) 

attaining the minimum value 0 exactly at the 3 boundary points, and the maximum value 1 exactly 
along the 3 inner edges Of Gl. Furthermore, it is increasing along the other edges of G1 (joining a 
boundary point to a midpoint of an edge of Go). 

Proof .  For the groundstate we have Lm < 2 for m > 2, so all the coefficients in (2.13) are 

positive. It follows easily that q/0 (2) is positive except at the boundary points (nonnegativity is of 
course a generic property of goundstates). To prove the upper bound we prove by induction that 
~(2) 0 does not attain its maximum value on any minimal triangle T in Gm except one that borders on 

one of the three edges where ~o (2) is identically 1. The reason is that for each point x in T there are 
positive coefficients ao(x), al (x), az(x) such that 

~2) (x)  = a0(x)~ (2) (vo) -+-a l (x)~ 2) (Vl) -1-a2(x)~o (2) (v2) , 

and these coefficients are the same for corresponding points x in all the minimal triangles in Gm 
(Algorithm 2.4 gives the coefficients explicitly for the midpoints of the edges of T). So if apo (2) is 

larger at the vertices of one triangle T' as opposed to another T", then ~po(2)(x ') > ~o(2)(x ") for 

, (2) cannot achieve its maximum on T". corresponding points x'  and x" in T' and T". In particular, ~o 

Now in G2 there are two types of minimal triangles, six inner triangles where ~/,0 ~2) takes values 1, 1, 

1 - ~z on the vertices, and three outer triangles where the corresponding values are 1 - 9 ,  1 x2 2,  
0. This eliminates the outer triangles. In the induction step we need to compare minimal triangles 

. (2) where the vertex values for V*0 are 1, 1, 1 - ~ -~  for the inner one and 1 - x~______~, 1 - ~ -~ ,  1 xm2 
for the outer (see Fig. 27). Since am is decreasing in m for the groundstate, we can eliminate the 
outer triangles. 

To show that ~0 (2) is increasing along the outer edges of G1 we could in principle invoke 
Theorem 3, but the details are rather delicate, so instead we give a direct argument. We need one 

additional observation: we cancompare the values of ~0 (2) at corresponding points of triangles of 
different sizes, as long as the larger vertex values are taken on the larger triangle. The reason is that 
the coefficients in (2.13) decrease with am, and am decreases with m, so the larger triangle (smaller 
m) has larger coefficients. So, for example, since 

~ ( 2 ) ( 1 )  ~ ( ~ ) = 1  2 >V/o ( 1 ) = 1  2 >ap~ = 0  o = 1 > ~ 2) a3 , (2) a2 2) (0) 
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FIGURE 27 

1 

"1 - k m + l  2 
2 

Groundstate values on a minimal triangle in Gin_ 1 bordering on the edge where it is identically 1. 

we can now conclude that tl)> +o+(1) 
(using the notation in Lemma 1) by comparing the G1 triangle in Fig. 28 with the G2 triangle in 

the lower right. An induction argument based on these types of comparisons shows that ~0 (2) is 
increasing on dyadic points, and hence by continuity that it is increasing along the whole edge. 
[] 

1 

) 

1 

2 

FIGURE 28 Groundstate values on a minimal triangle in G 1 . 

It seems likely that ~2)  is increasing along every edge that is in the direction joining the vertex 
to a midpoint in the G 1 minimal triangle containing that edge. This is supported by the numerical 
results, and can probably be established by a similar argument. The numerical evidence suggests 

that on lines parallel to the inner edge on which ~/0 (2) is constant, there is a single minimum, and 

~0 (2) assumes its maximum on the endpoint closest to the outer edge. It is not clear exactly where 
the minimum lies, or how one could prove this. 

We turn next to a description of a basis for the space of Dirichlet eigenfunctions. Since 
Fukushima and Shima [8] have computed all the eigenvalues with their multiplicities, it suffices to 
construct a linearly independent set of eigenfunctions of the correct size for each eigenvalue. Let)~(n 2), 
L(n 5), and ~(6) denote the eigenvalues associated with the three families of eigenfunctions described 
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in Section 3. Then [8] shows that the spectrum consists of all Z(n 2) with multiplicity 1, all 5kLn (5) with 
multiplicity 

1 3) bk = ~ \3 ~ q- 

k -  (6) for k = 0, 1, 2 . . . . .  and all 5 A n with multiplicity 

3) ak = -~ 

for k = 0, 1, 2 . . . .  and n odd. Clearly, the eigenfunctions ~tn (2) account for the simple eigenvalues 

Ln (2). Also, the eigenfunctions ~n (5) and their rotations account for the multiplicity b0 = 2 eigenvalues 
L(n 5). 

We now show how to construct the 5k~.(n 5) eigenspace by chaining together scaled-down copies 

of gtn (5). Let T1 . . . . .  TAr be a sequence of distinct minimal triangles in Gk such that T1 and TN have 
a boundary point vertex, and each consecutive pair of triangles has a vertex in common. We call 
this sequence a chain of level k. To each such chain we associate an eigenfunction with eigenvalue 
5k)~(n 5) by placing a scaled-down and rotated copy of ~pn (5) in each triangle, aligned according to the 
rule that each vertex should have total charge zero, where we assign a charge of 0, + 1, and - 1 to the 
vertices of each triangle equal to the sum of the values of the eigenfunction at the two neighboring 
midpoints. The eigenfunction so constructed is supported in the union of the triangles in the chain, 
and satisfies both A f  = 0 and f = 0 at all the vertices of the triangles in the chain because of 
the total charge zero alignment. An example of a chain of level 1 with N = 3 and the (non-zero) 
values of the eigenfunction at all vertices of G2 is shown in Fig. 29. It is easy to see that we have 
an eigenfunction since the eigenvalue equation holds in the interior of each triangle in the chain 
because each contraction multiplies the eigenvalue by 5, and it holds by default (both sides are 0) at 
the vertices and in all other triangles. 

F I G U R E  29 

[a 1 

The values on G 2 o f  an  e igenfunct ion obtained f rom a chain o f  level I with N = 3. 

We now describe an inductive procedure for obtaining bt chains of level k. When k = 1, bl = 3. 
We take the chains (To, T1), (To, T2), and (To, T1, T2) for the triangles marked in Fig. 29, we call 
them the high road, the low road, and the middle road of level 1. Note that bk+l = 3(bk -- 2) + 3. 
For the induction step we create a high road, a low road and a middle road of level k + 1 in the 
obvious way: 

i) For the high road we take two scaled copies of the high road at level k in triangles To and T1. 
ii) For the low road we take two scaled copies of the low road of level k in triangles To and T2. 
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iii) For the middle road we take a scaled copy of the high road of level k in To, a scaled copy 
of the low road of level k in T1, and a scaled and rotated (so it goes down) copy of the high road of 
level k in T2. 

In addition, for each chain of level k that is not the high road or the low road (note that this 
includes the middle road), we create three offspring chains as follows: 

iv) Take a scaled copy of the chain in To and a scaled copy of the low road of level k in T2. 
v) Take a scaled copy of the low road of level k in To and a scaled copy of the chain in T2. 
vi) Take a scaled copy of the high road of level k in To, a scaled copy of the chain in T1, and a 

scaled and rotated (so it goes down) copy of the high road of level k at T2. 
Note that an easy induction argument shows that all the offspring chains are indeed chains and 

join P0 to P2, as is true of the middle road and the low road. Only the high road joins P0 to Pl. Note 
that our induction step creates 3 + 3(bk - 2) = bk+l chains, as required. As an example, referring 
to Fig. 30 for notation, the level 2 chains are the following: 

FIGURE 30 The minimal triangles in G 2. 

i) Too, To1, TIo, Tll (high road) 
ii) Too, TOE, T20, T22 (low road) 
iii) Too, TOl, TlO, T12, T21, T22 (middle road) 
iv) Too, TOl, To2, T20, T22 
v) Too, To2, T20, T21, T22 
vi) Too, To1, TlO, Tll,/ '12, T2~, TEE 

(The last three are the offsprings of the middle road To, T1, T2 of level 1.) 

Theorem 9. 
The bk eigenfunctions obtained by chaining scaled-down copies of ~5)  for each of the level 

k chains constructed in i) through vi) above are linearly independent; hence, they span the 5k)~ (5) 
eigenspace. 

Proof .  We prove this by induction. The case k = 1 is straightforward since the high road, low 
road, and middle road eigenvectors are already linearly independent when restricted to the vertices 
of G2. For the inductive step, assume the result is true at level k and consider any linear combination 
of the bk+l eigenvectors associated with the chains of level k + 1. If  this vanishes, we must show 
all the coefficients vanish. First we restrict attention to the triangle T1. The only chains that pass 
through TI are the high road, the middle road, and the offsprings of type vi). The restrictions to T1 
of these bk chains give us exactly a scaled version of all the bk chains of level k (the high road of 
level k + 1 gives the high road of level k, while the middle road of level k + 1 gives the low road of 
level k). By the induction argument these are linearly independent, so their coefficients vanish. 

Next we restrict attention to To. The low road of level k + 1 and all the offsprings of type v) 
restricted to To are equal to a scaled copy of the low road of level k. By the induction hypothesis all 
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the coefficients of the offsprings of type iv) vanish. 

Finally, we are left with a linear combination of the low road and offsprings of type v). The 
restriction of these to T2 and the induction hypothesis kills all the remaining coefficients. [ ]  

R e m a r k  3. A different construction of a basis for the )~(n 5) eigenfunctions has been given by 
Kigami [10]. It has the advantage that some of the basic functions are localized. It is also based on 

�9 (5) chaining scaled copies of 7in , but with the chains forming loops around the perimeters of triangles. 
All but two of the basis functions are pre-localized in the sense of [2]. 

To complete the eigenfunction story, we show how to construct a basis for the 5tk(n 6) eigenspace 

out of scaled-down and rotated copies of  ~n (6). Let TI, T2 be any pair of adjacent minimal triangles 
in Gt+l  (note that we do not require that they both belong to the same minimal triangle in Gt). Note 

that lp (6) is supported in two of the three minimal triangles in G 1. By scaling and rotating 11i(6) w e  

can map these two triangles to the pair T1, T2, and this is the localized eigenfunction supported on 

the pair of triangles. Because ~pn (6) vanishes on all vertices, except the common vertex, of the two 
minimal G1 triangles and is antisymmetric at these vertices, the localized eigenfunction satisfies 
the eigenvalue equation by default at all the vertices, except the common vertex of Tit and T2. The 
existence of these localized eigenfunctions is already pointed out in [8]. 

There are 3 t+l minimal triangles in Gk+l, and each one, with the exception of the three comers, 
is adjacent to three other triangles. The corner triangles are adjoint to two others. Thus, there are 
exactly 1(3k+2 -- 3) = at  pairs. It remains to see that they a/e linearly independent. But this is 
trivial, since on the common vertex of the two triangles T1, T2, only the eigenfunction associated 
with this pair is nonzero. 

They are not orthogonal, however. Consider the eigenfunctions supported on pairs with one 
triangle T in common. On T the two functions are shown in Fig. 31. 

FIGURE 31 

-1 2 2 -1 

The values of two different localized ~pn (6) eigenfunctions on a triangle where they overlap. 

The inner product on To and T2 must vanish because we have the product of an odd and an even 
function. However, on T1 the two functions are identical up to the constant factor - 1 ,  so the inner 
product is strictly negative. 

Finally, we discuss the case of continuous eigenfunctions, solutions of - - A f  = ~.f for ~. any 
real or complex value, that are continuous up to the boundary. We will show that Algorithm 2.4 
actually constructs a three-dimensional space of eigenfunctions, hence, all of them, in the case that X 
is not a Dirichlet eigenvalue, starting from any given boundary conditions. In the case of a Dirichlet 
eigenvalue, if we let m (X) denote its multiplicity, the space of all solutions may have dimension up 
to 3 + m(X). We will see that Algorithm 2.4 will also construct the extra solutions in all cases. 

Given any complex value L, there exists a unique sequence Lm, and em= 4-1 with all but a 
finite number equal to - 1, such that (2.11), (2.12), and (2.15) hold. Indeed, we consider the function 

(z) = l imn~ ~ ~On (5-n Z) where ~On (z) denotes the n-fold iterate of the polynomial ~Ol (z) = z(5 - z ) .  
The existence of the limit follows from Koenigs' Linearization Theorem (see [ 18, p. 37]) and depends 
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only on the fact that ~01 is entire and ~0](0) = 5. The theorem also gives qbP(0) = 1. Now set 

~k = O (5-k~-) �9 

Then (2.15) follows from the fact that ~bl(0) = 0, and (2.12) follows easily from the definition. 
Solving (2.12) yields (2.11) for e m =  -4-1 uniquely determined except when )~m-1 = 25/4. But 
the requirement that 5m~m remains bounded requires that all but a finite number of  choices must be 
e m =  - 1 .  

We say )~ is generic if n o  ~.m equals 2 or 5. It is easy to see that the only nongeneric Xs are of 

the form 5~)~n (2) and 5kZ(n 5~. 

Theorem 10. 
I f  L is generic, then Algorithm 2.4 starting with m = t constructs a solution to --A f = L f  

with any given boundary conditions f (pj)  = cj. 

P r o o f .  Since we never encounter L m = 2, 5, we can use Algorithm 2.4 starting with m = 1 to 
produce a function o n  U m = l  Era" Because )~m ~ 0 it is easy to see that this function is continuous, 
and hence, extends to a continuous function on SG. Since - A m f  = Xmf  on Vm and (2.15) holds 

Um=1 Vm. Since both f and )~f are continuous, we obtain - - A f  = ~ f  in the limit on all points in 
this is the definition of - A f  = L f  on SG. [ ]  

The generic case includes the Dirichlet eigenvalues 5kx(n6), where Theorem 10 constructs a 
three-dimensional space of eigenfunctions linearly independent from the Dirichlet eigenfunctions 
(constructed by Algorithm 2.4 but starting with m = k + 2, not m = 1). In the other cases of  
generic eigenvalues, which are not Dirichlet eigenvalues, the three-dimensional space constructed 
in the theorem gives all continuous eigenfunctions. 

k- (2) What happens in the nongeneric case, which includes the values 5 *Vn for k > 1 that are not 
. ( 2 )  Dirichlet eigenfunctions? First consider the case L = *vn . Then the function shown in Fig. 32 is seen 

to satisfy - A 1  f = 2 f  on G~, and then Algorithm 2.4 for m >_ 2 extends this to an eigenfunction. 
Together with its rotation, we obtain a two-dimensional eigenspace that is linearly independent of 
the Dirichlet eigenfunction for this eigenvalue. Note that all eigenfunctions constructed for these 
eigenvalues satisfy 

f (P0) + f (Pl)  + f (P2) = 0 ,  (4.23) 

and (4.23) is a consequence of - A s  f = 2 f  on G1. If  we knew that all continuous eigenfunctions 
on SG for these eigenvalues satisfied (4.23), then we would have constructed all of them. 

FIGURE 32 

3 -3 

Another eigenfunction on G 1 with eigenvalues L 1 = 2. 

,.-(2) for k Next consider the case X = 5~/Vn > 1. These are not Dirichlet eigenvalues, so it suffices 
to construct a solution for arbitrary boundary conditions. Algorithm 2.4 will take over for m > k + 2 
if we can find a solution of - - A k + l f  = 2 f  on Gk+l. A solution for k = 1 is shown in Fig. 33, 
and under rotation this generates the desired space of solutions. Similarly, for k > 1, we can find 
analogous solutions. (The eigenvalue equation imposes N - 3 homogeneous linear conditions on 
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the N-dimensional space of functions on Vk+l, for N = #(Vk). So linear algebra guarantees a 
three-dimensional space of solutions.) 

3 -1 -3 -1 3 

FIGURE 33 Another eigenfunction on G 2 with eigenvalue ~,2 = 2. 

Finally, consider the case ~. = 5kx (5). Here we need to find solutions of - - A k + l f  = 5 f  on 
Gk+l. There are already bk linearly independent solutions given by Theorem 9. We can find one 
more, namely the one shown in Fig. 34 when k = 0, and the same solution in each minimal Gk 
triangle when k >_ 1. Note that all solutions constructed satisfy 

f (p0) = f (pl)  = f (p3) , (4.24) 

and (4.24) is indeed a consequence of --Ak+l f = 5 f  on Gk+l. 

FIGURE 34 

3 

3 -2 3 

Another eigenfunction on G 1 with eigenvalue ~-1 = 5. 

Conjecture 1. 
Any solution of - A  f = ~.(n2) f on SG continuous up to the boundary satisfies (4.23), and any 

solution of - A  f = 5kx(5) f on SG continuous up to the boundary satisfies (4.24). 

This conjecture was recently proved by Kigami [10]. 

Corollary 5. 
Any solution o f - A f  = g f  on SG continuous up to the boundary for )~ # X (2), 5k)~ (5) is 

constructed by Algorithm 2.4 starting with m = mo for some mo. In particular, Theorems 3, 5, 
6, and 7 and Corollaries I, and 4 hold. Furthermore, the dimension of the spaces of  solutions is 
m ()Q + 3, where m (X) is the multiplicity of the Dirichlet eigenvalue ~ (m (X) = 0 if it is not a Dirichlet 
eigenvalue). Essentially the same is true for the exceptional values, except now the dimension is 

. ( 2 )  m(g) + 2 = 3 for L = ~n . andm(L) + 1 = bk + I for L = 5kk (5). 

If we drop the requirement that the eigenfunction be continuous up to the boundary, then we 
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add (generically) another three dimensions to the space of solutions. For simplicity we discuss only 
the case of harmonic functions. Figure 35 shows a function that is harmonic on SG with a singularity 
at a single vertex (it is skew-symmetric about the axis through this vertex). By taking rotations of 
this example, together with the continuous harmonic functions, we obtain a six-dimensional space 
of harmonic functions on SG. On the other hand, it is easy to see that the dimension is at most 6, 
so we have constructed them all. (The idea of the proof is that the function is uniquely determined 
by its values at the six vertices shown in Fig. 36. These values easily determine the values at the 
other six nonboundary vertices of G2, hence, the values in the shaded region in Fig. 36 by using 
Algorithm 2.1 on each of the six triangles. To show that there is a unique harmonic continuation into 
the remaining triangles, it is convenient to consider separately the symmetric and skew-symmetric 
harmonic functions with respect to one axis; the argument is outlined in Fig. 37.) 

FIGURE 35 A function harmonic in the interior of SG with a singularity at the top vertex. This function 
is skew-symmetric about the vertical axis and grows by a factor of 3 as you move up the ladder of triangles toward the upper 
vertex. 

d c 

FIGURE 36 Six vertices in G 2. Any harmonic function is uniquely determined by its values at these points. 

It is interesting to observe that the singular harmonic function in Fig. 35 just fails to be 
integrable, since the function grows by a factor of 3 and the measure shrinks by a factor of 1/3 as we 
move up the infinite sequence of triangles toward the vertex. This yields a cheap analog of Fatou's 
theorem: an integrable harmonic function has boundary values (since the boundary is just 3 points, 
we drop the "almost everywhere"). The same is true for positive harmonic functions. 
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FIGURE 37 To extend a function harmonic in the shaded area, assumed either skew-symmetric  or symmetric,  to the 
next level, it suffices to compute the value of x (and y in the symmetric  case). In the skew-symmetric  case, 4a = x + b + c 
determines x.  In the symmetric  case, 4a  = x + y + c + b and 4y  = 2a + 2x determines x and y. The extension continues 
by induction. 

5. Heat and Wave Equations 

In this section u(x, t) will denote a function defined for x ~ SG and t 6 R (or t > 0). The 
heat equation is 

8u 
- -  = Axu , (5.1) 
0t 

and the wave equation is 
02u 

Ot 2 

We will impose Dirichlet boundary conditions 

u(pj,t) =0, 

and initial conditions 

for the heat equation, and 

- -  = AxU. (5.2) 

j = O, 1, 2 ,  (5.3) 

u(x, O) = f ( x )  (5.4) 

Ou 
u(x, o) = f (x) ,  -5-[(x, o) = g(x) (5.5) 

for the wave equation. For the heat equation we require t > O, and define the heat kernel H(t, x, y) 
to be the solution of (5.1), (5.3), and (5.4) with f equal to the &measure at the point y. It is known 
that H(t, x, y) exists and is continuous for t > 0, and the unique solution of (5.1), (5.3), (5.4) for 
continuous f vanishing at the boundary is given by 

f H( t , x ,  y ) f ( y )d l z ( y ) .  (5.6) u(x ,  t) 
ds G 

(Here/z is the Hausdorff measure of dimension a = log 3/ log 2 on SG normalized to have total 
mass 1.) The analogous object for the wave equation is the wave propagator P(t, x, y) defined to be 
the solution to (5.2), (5.3), and (5.5) for f = 0 and g equal to the &measure at the point y. We will 
see that P(t, x, y) exists at least as an L 2 function of  x, y for each t. At least formally, the solution 
to (5.2), (5.3), and (5.5) should be 

f s  8 f s  P( t , x ,  y ) f (y)dtx(y)  . (5.7) u(x, t) = G P( t , x ,  y)g(y)dlz(y) + -~ o 
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[Similarly, Duhamel's formula would allow an inhomogeneous term F(x, t) on the right side of (5.2) 
and an additional term 

fot fs P ( t -  s,x, y)F(y,s)dlz(y)ds (5.8) 
G 

on the right side of (5.7).] The exact meaning of these expressions awaits further development of 
the subject. In particular, we point out that at present there is no theory of distributions on SG. 

The simplest way to get a formula for the heat kernel and the wave propagator is to use 
the Fourier sine series analogs discussed earlier. To simplify notation we denote by tpl, ~o2 . . . .  an 
orthonormal basis of Dirichlet eige, nfunctions with eigenvalues ~q, )~2 . . . . .  Then 

H(t,x, y) = E e-~'jt ~oj (x )qgj (y ) (5.9) 
j=l 

and 
--~ sin v/-~-t 

P(t, x, y) = - -  ~oj(x)~oj(y) . (5.10) 
j=l V/~ 

Since it is known [8] that 

Lj = O (j~) for fl = log5/ log3  ~ 1.4649735 (5.11) 

the series both converge in L 2 norm. The crucial fact that gives the convergence in (5.10) is fl > 1, 
and this is in fact true for all Laplacians on p.c.f, fractals [ 14]. This is equivalent to the condition that 
the spectral dimension (= 2/fl ~ 1.3652124) is less than 2. In some ways, the propagation of waves 
on SG is closer to the situation for strings than for membranes or regions in higher dimensional 
Euclidean spaces. 

For numerical purposes, the expansions (5.9) and (5.10) are useless. The number of terms 
that would be required for minimal accuracy would be quite large, even if one could solve the 
problem of getting an orthonormal basis. (It is not even clear how to compute inner products of 
eigenfunctions.) Instead, we use the analog of the finite difference method for partial differential 
equations to obtain approximate solutions. We choose a space scale by taking the graph Gm in place 
of SG, and approximating the solutions only for x ~ Vm. We also choose a time scale h, and restrict 
t to integer multiples of h. The difference equations are then 

u(x'(k+l)h)-u(x'kh)=h5rn(((x,y)~EmE u(y, kh) ) -4u(x ,  kh)) (5.12) 

for the heat equation, and 

u(x, (k + 2)h) - 2u(x, (k + 1)h) + u(x, kh) 

=h25m (((x,y)~E,~E u(y, kh)) -4u(x, kh)) (5.t3) 

for the wave equation, where x is any vertex in Vm except the three boundary points where u is 0 
by (5.3). The initial conditions for the heat equation are 

u(x, O) = f (x) ,  (5.14) 

and for the wave equation 

u(x, 0) = f (x ) ,  u(x, h) - u(x, O) = hg(x). (5.15) 
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(This enables us to solve (5.13) forward in time; a minor variation also allows the solution backward 
in time.) To approximate the ~-measure at a point y in Vm we take the function equal to 3 m at that 
point and 0 elsewhere. 

An important question is what is the optimal relationship between m and h? One reasonable 
approach would be to choose a constant value for h5 m (heat) or h25 m (wave). In practice, there 
are severe constraints on the size of m because of computation time. Our procedure was to choose 
values of m in-between 5 and 9 and then experiment with choices of h until there was no appreciable 
change in the approximation when h was reduced. 

In our computations of the heat kernel and wave propagator, we chose the stimulus point y 
to be a midpoint of one of the edges of Go. In Fig. 38 we show the restriction of the heat kernel 
to this edge for a succession of five equally spaced small times. As expected, there is a Guassian 
shape which spreads and flattens with time, with a peak at the point where the heat was applied. In 
Figs. 39 and 40 we restrict to an edge opposite the one where the heat was applied. At the early 
times in Fig. 39 we see the heat arriving on the left half and beginning to slowly work its way across 
the midpoint bottleneck. The graph increases with time. At the later times in Fig. 40 the graph has 
begun to decrease with time in the left half, but it is still increasing with time in the right half. 
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FIGURE 38 The heat kernel restricted to the edge containing the stimulus point in the middle, for times 
t = .005, .01, .015, .02, .025 (decreasing order at the midpoint). 
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FIGURE 39 The heat kernel restricted to an edge opposite the stimulus point for times 
t = .005, .006, .007, .008, .009 (increasing order). The stimulus point is closest to the left half of the edge as shown. Note 
that some heat has already diffused across the midpoint bottleneck. 

For the wave propagator, with stimulus at the midpoint of an edge, we restricted our com- 
putations to a minimal triangle in G1 with one vertex at the stimulus point (the left corner in our 
figures). There is an obvious even symmetry about this point so the neighboring minimal triangle is 
just the mirror image of  the one we show, and the third minimal triangle is far enough away from the 
stimulus point that the solution is extremely small for small times. In Fig. 41 we display the graph 
of our best approximation to P(t, x, y) for a sequence of small times t. (We have reasons to believe 
that this is a rather inaccurate approximation, as will be explained below.) 

We would like to compare our propagator with the analogous propagators on Euclidean space. 
Since SG is compact, it must be compared with a string or membrane with boundary. However, if 
we stay away from the boundary and take a small enough time, then the boundary effects are zero, 
and we can use the R n propagator. For n = 1 and 2, with y = 0, these are 

1 
~X (Ixl ~ [tl) (5.16) 
Z 
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FIGURE 40 The heat kernel restricted to the same edge as in Fig. 39, for times t = .03, .031, .032, .033, .034. Note that 
the values are now decreasing on the left side, but are still increasing on the right side. 

and 

ct -1 (1  Ixl2~ -1/2 - - t 2  .] + "~ c (t2 -- [x[2) + 1/2 �9 (5.17) 

By coincidence, these are nonnegative functions (no longer true in ~n for n > 3), but our data 
indicate that this is not the case on SG. The propagators (5.16) and (5.17) reveal the hyperbolicity of  
the wave equation in two striking properties: the support (for fixed t) is the ball of  radius It], and the 
singular support is the boundary of the support. There does not appear to be any analogous behavior 
on SG. It does appear that P(t,  x, y) is localized to a neighborhood of  x = y for small t, with a 
sharper localization for smaller t, so we do have the general appearance of  a wave spreading from 
the stimulus point y. But the spreading cannot occur at a constant speed. 

Suppose it were true that for some to and all times Itl _ to the propagator P(t ,  x,  y) had 
support (in x) contained in the two minimal G1 triangles having vertex y. Choose coordinates so 

oft-L- �89 y) (set equal to 0 on the third minimal triangle) would that y = 0. Then the function 3 - ~  43 '  

satisfy the same conditions as the propagator. Thus, we would have the scaling identity 

x ) 
3 2 ' 0  for Iti _ to (5.18) 
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F I G U R E  41 T h e  w a v e  p ropaga to r  on  a m i n i m a l  G 1 t r iangle  wi th  s t imulus  point  at the left  ver tex ,  for  t i m e  t = .  15, .2, .35. 
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on the two triangles. Suppose ~" is a point at time • for which P ~ ~', 0) is significantly different 
from zero. Then the wave has traveled at a speed of the order of I~'lfi 'to get from y = 0 to ~'. But 
by (5.18), we would also have that P(5-k/2T, 2-k~ ", 0) is significantly different from zero, so the 
wave has traveled at a speed of the order 

5_k / z?  = t 

to get from y = 0 to 2 -e~  ". This indicates that the speed of propagation increases as we pass to 
smaller scales. (The argument does not depend on using the exact Euclidean metric on SG, but only 
one that scales the same way under contractions. However, since SG contains lines, it is impossible 
to introduce a true metric on SG in which distances decrease any faster under contractions, so the 
increase in speed at smaller scales cannot be eliminated by choosing a different metric.) 

This scaling argument shows that we cannot have a maximum propagation speed for the wave 
equation, but it does not conclusively rule out having a finite (but unbounded) propagation speed. 
There might be a function a(t) such that P(t, x, y) is supported in Ix - Yl < a(t). In that case, 
(5.18) would imply 

( + t ]  a(t) for I t l < t o  (5.19, 
a \ ~ / 5 J  = 2 

which is consistent with 
log 2 

a ( t ) = O ( t  y) for y =  l o g ~ "  

But this seems very unlikely because (5.7) implies the semigroup property 

0 fs  P(t, x, z)P(s, z, y)dtz(z) P(t + s,x, y) = -~ G 

which implies 
a(t + s) < a(t) + a(s) , 

(5.20) 

(5.21) 

with equality in (5.21) unless there is massive cancellation in (5.20). But (5.19) is inconsistent with 
equality in (5.21), so there would have to be massive cancellation in (5.20). While we cannot assert 
that this is impossible, we can make an analogy with the Lions-Titchmarsh Theorem for convolutions 
in ~n:  the convex hull of the support of a convolution of two distributions of  compact support is 
exactly equal to the sum of the convex hulls of the supports of  the distributions. 

This argument, if it is valid, undermines the validity of  (5.18), which was derived from a finite 
speed assumption. Thus, we do not believe that (5.18) is an exact equality. On the other hand, it 
seems likely that (5.18) is a good approximation, since the error would come from the influence of 
the Dirichlet boundary condition, and the boundary is relatively far away, at least for small t and x 
near y. 

Since the wave propagator is known a priori to be only an L 2 function, it may be intrinsically 
very difficult to approximate accurately. Our data show extreme variability, and are very sensitive 
to the choice of  m. Therefore, we also examined some less singular solutions to the wave equation. 
One way we tested for accuracy was to check the conservation of total energy 

(5.22) ~m(t) = E v(P't)2q- ~ 5m E E (u (p , t ) -u (q , t ) )  2 
pEGm pEGm (p,q)~Em 

where 
v(p, kh) = h-l(u(p, kh) - u(p, (k - 1)h)) (5.23) 
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approximates 8ulat. We can also consider the portion of energy localized to any region in SG by 
restricting the sum to those values of  p lying in the region. 

We studied solutions of the wave equation obtained from zero initial position and velocity and 
boundary data, except that at one boundary point we specify the value of the solution by a driving 
function ~o(t). Let Ue,m (x, t) denote the resulting approximation at level m (we suppress the value of 
h, and choose space coordinates so that x = 0 corresponds to the driven boundary point). Figure 42 
shows the graphs as a function of t for x the midpoint of  one of the edges of Go containing x = 0, 
for ~o(t) = sin o9t and various choices of  o9. Note the relative insensitivity of the change from m = 3 
to m = 4, showing that, for these examples, a relatively small choice of  m was sufficient. 
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F I G U R E  42  The graphs o f  Ug,m (X, t ) as a function o f  t for x the midpoint o f  an edge o f  Go containing x = O , 
and cp(t) = sin tot, for  va r ious  choices  o f m  and  to. (a) m = 3, to = 10, (b) m = 4, to = 10, (c) m = 4, to = 20,  (d) m = 4, 
to = 40 ,  (e) m = 4, to = 60,  and (f) m = 4, to = 100. 

In general, the approximation is insensitive to m, and is therefore a good approximation, as long 
as the frequency of the driving function ~o is significantly less than 5"~. For such driving functions, 
high frequency noise develops near the point being driven, probably because of the introduction of 
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localized eigenfunctions. The major front of the wave, however, spreads outward from the driven 
point, its amplitude decreasing as it gets farther from the source. 

In contrast, the approximations to the wave propagator show high sensitivity to the value of m. 
Figure 43 shows the position of the stimulated point as a function of time for several values of m. We 
observe that for higher values of m, the forces acting to restore the stimulated point are higher and 
thus the stimulated point oscillates more rapidly. Intuitively, a delta function of velocity on a coarse 
pre-gasket corresponds to a long wavelength and low frequency oscillation, while a velocity delta 
function on a refined pre-gasket is a high frequency stimulation. Based on Fig. 42, we conjecture that 
the energy from high frequency waves remains more localized than the energy from low frequency 
w a v e s .  

o.I 

F I G U R E  43 

-0.1 
0 0.5 

time 

Approximat ions  to the wave  propagator  at the st imulated point  as a funct ion o f  t ime, (a) m = 3. 

To test our conjecture directly, we returned to the previous experiment of driving one of the 
boundary points. We used driving functions of the form 

sin2zrwt if 0__< t < 1/2w (5.24) 
~0 (t) = 0 otherwise 

and varied the frequency. We measured the arrival times of the crest of the wave to the points 
Pl, P2, P3, (see Fig. 44) by noting the time at which the displacement of these points reached its first 
local maximum. From the arrival time we calculate the speed of the wave for that scale. We also 
recorded the amplitude of this first local maximum. In Fig. 45, we show for m = 6 the amplitude 
and speed of the wave at different points and for different frequencies. (The same computations for 
m = 7 yielded similar data, showing some evidence for the accuracy of our results.) This evidence 
supports our conjecture that the energy from high frequency waves remains more localized than the 
energy from low frequency waves. However, the data is disappointing in other respects. While a 
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Approximations to the wave propagator at the stimulated point as a function of time, (b) m = 4 and (c) 
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0 . !  

FIGURE 43 

FIGURE 44 

u ~ 5 

Approximations to the wave propagator at the stimulated point as a function of time, (d) m = 6. 

The sequence of points Pl, P2, P3 approaching the driving point. 
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speed-up is observed at smaller scales, it is somewhat more than the factor of (V~-~/2 we predicted 
by using a scaling argument. It is not apparent from the figure, but the wavespeed is slightly sensitive 
to the depth m of the pre-gasket. 

point ~equency(w) wave speed maximum amplitude 

Pl 3 1.384914 .316183 

P2 3 1.438159 .671578 

P3 3 1.705708 .874292 

Pl 5 1.417033 .198700 

P2 5 1.485443 .420118 

p3 5 1.624431 .796316 

Pl 10 1.420858 .102625 

p2 I0 1.566907 .221725 

p~ 10 1.655629 .471438 

Pl 15 1.421599 .068883 

P2 15 1.569694 .151216 

P3 15 1.696833 .327375 

pl 20 1.421868 .051788 

P2 20 1.569859 .114424 

P3 20 1.707650 .250322 

p~ 30 1.422138 .034587 

P2 30 1.570023 .076793 

P3 30 1.715070 .169459 

Pl 40 1.422172 .025955 

P2 40 1.570105 .057730 

P3 40 1.716444 .127810 

FIGURE 45 A table of values for wave speed and the first local maximum amplitude for solutions of the wave 
equation with driving term of the form (5.24). All data shown used an approximation m = 6 to the gasket (data for m = 7 is 
quite similar). The points pj  refer to Fig. 44. 
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