
The Journal of Fourier Analysis and Applications

Volume 5, Numbers 2/3, 1999

A F a s t T r a n s f o r m f o r S p h e r i c a l
H a r m o n i e s

Martin J. Mohlenkamp

Communicated by M. Victor Wickerhauser

ABSTRACT. Spherical harmonics arise on the sphere S 2 in the same way that the (Fourier) exponential

functions {e ikO }k~Z arise on the circle. Spherical harmonic series have many of the same wonderful properties

as Fourier series, but have lacked one important thing: a numerically stable fast transform analogous to the
Fast Fourier Transform (FFT). Without a fast transform, evaluating (or expanding in) spherical harmonic series

on the computer is slow--for large computations prohibitively slow. This paper provides a fast transform.

For a grid of O (N 2) points on the sphere, a direct calculation has computational complexity O(N4),
but a simple separation of variables and FFT reduce it to 0 (N 3) time. Here we present algorithms with times
O(N 5/2 log N) and (9(N2(log N)2).

The problem quickly reduces to the fast application of matrices of associated Legendre functions of
certain orders. The essential insight is that although these matrices are dense and oscillatory, locally they can

be represented efficiently in trigonometric series.

1. Introduction

Spherical harmonics arise on the sphere S 2 in the same way that the (Fourier) exponential
functions {eik~ }k~Z arise on the circle. Spherical harmonic series have many of the same wonderful
properties as Fourier series, but have lacked one important thing: a numerically stable fast transform
analogous to the FFT. Without a fast transform, evaluating (or expanding in) spherical harmonic
series on the computer is s low-- for large computations prohibitively slow.This paper provides a fast
transform.

Using spherical coordinates (4~ 6 (0, Jr), 0 E [0, 2zr)), the spherical harmonics for S 2 can be
represented as {Pnm(COS (9)e imO } where n > [ml, m and n are integers, and the Pn m are associated
Legendre functions. When properly normalized, this forms a basis for the sphere with measure
sin 49dg)dO.

On a grid of 2N points equispaced in 0 by N gaussian nodes in cos 4~, N 2 basis functions
are resolved. I f we expand (or evaluate) directly using these basis functions, it will take 2N 4
computations. In the 0 variable, our basis is simply Fourier series and we can use the FFT. Applying

Math Subject Classifications. Primary 65T20; secondary 42C10, 33C55.
Keywords and Phrases. spherical harmonics, fast transforms, associated Legendre functions.
Acknowledgements andNotes. I would like to thank my thesis advisor, R.R. Coifman, for his help and guidance.

Q 1999 Birkhg.user Boston. All fights reserved
ISSN 1069-5869

160 Martin Z Mohlenkamp

the FFT for N values of ~ requires N • 2N log(2N) computations, and leaves us with a set of 2N
problems indexed by m. Each problem is the following: on an interval of N points, expand (evaluate)
a given function using the basis {Pro (cos ~b)} with measure sin ~bd~b. If we do each of these directly,
it will take 2N x O (N 2) computations. Our overall cost is then O(N3).

Here we present a method for expanding (evaluating) using {pro (cos q~)} in O (N log 2 N) time,
with constant independent ofm. This method allows us to reduce the overall cost to O (N 2 log 2 N).
We also present an O (N 5/2 log N) algorithm that, although asymptotically slower, performed better
in our tests. Both methods use precomputed, compressed representations of the associated Legendre
function bases.

This paper is based on the thesis [17]. More details may be found there.

1.1 Statement of the Problem

We are given a set of spherical harmonics:

{pm(cosdp)eimO/~r - (1.1)
I (m,n)E.L N

defined on the sphere (~b 6 (0, rr), 0 6 [0, 2zr)). /Snm is the associated Legendre function of degree
n and order m, normalized so that our set of functions is orthonormal on the sphere. The indices
allowed are restricted to the set

Z N = {(m, n) E Z • < N , - n <_m <_n} . (1.2)

For the evaluation problem, we are also given a set of coefficients m {~ }(m,n)~Iu and we form
the sum

f (4~, 0) = E am/~m (cos (p)e i m O / ~ / ~ . (1.3)

IN

This sum is evaluated on a grid in 4~ x 0 with 2N equispaced points in 0 and N gaussian nodes in
COS ~b:

{((bj, O k) = (C o s - l (g . l f) , 2 Y r 2 ~) : j , k E Z ; O < _ j < N , O < k < 2 N } . (1.4)

(See, e.g., [13] for discussion of the gaussian nodes.) The evaluation problem for spherical har-
m in a fast, monics is to compute the O(N 2) output values f(dpj, Ok) from the O(N 2) input values ot n

numerically stable way.
The expansion problem for spherical harmonics is dual to the evaluation problem. We are

given the O (N 2) sampled values f(qbj, Ok) of a function of the form (1.3) and wish to compute the
m in a fast, numerically stable way. O (N 2) output values a n

1.2 Summary of Results

The problem of the Fast Transform (FT) quickly reduces to a set of 2N problems indexed by
m (- N < m < N). (See Section 2.3.) The problems are to find a fast application for the matrices

M m . = . (1.5) .,j Pn (cos*j) .,J

These matrices are dense and oscillatory. (See Fig. 2 in Section 2.4.)
To understand these matrices, we model them using quasi-classical (WKB) frequency esti-

mates. (Section 2.4.) The model is

M m . exp d4,j (exp (indpj*m (n, q)J)))n,j n,j "~ i (n+1 /2) 2 - sin 2t d t = �9
(1.6)

n,j

A Fast Transform for Spherical Harmonics 161

We now fix m and analyze dp m (n, ~). (See [3] for a similar model analysis.) If for each n,
~m (n, tp) is constant as a function of ~b, this matrix application becomes the evaluation of a Fourier
series and so can be done fast using the FFT. qb m (n, ~b) is not constant, but we can partition q~-space
into a small number of intervals, on each of which ~m (n, q~) is almost constant. Using this partition,
we can write exp(indp~P m (n, ~b)) as a sum of O(~/-N log N) localized exponentials. The partition,
however, depends on n (and m). Restricting ourselves to dyadic partitions, we can find a suitable
partition for each ~m (n, q~), and yet the total collection of intervals used is manageable. We can
now represent the entire matrix (1.6) in terms of O(N 3/2 log N) exponentials, apply it in this same
O(N 3/2 log N) time, and return to normal coordinates with the FFT in O(N log 2 N) time. We call
this the One-Dimensional Algorithm.

If for each ~b, ~pm (n, 4,) is constant as a function of n, this matrix application becomes an
expansion into a Fourier series, which can also be done fast using the FFT. Thus, we can use the
same technique in the n coordinate. In fact, we can partition in both coordinates at the same time,
which corresponds to breaking the matrix into dyadic rectangles. In ordinary coordinates, each
rectangle gives the interaction of some interval in n with some interval in ~b. Instead we represent
each rectangle by the interactions of a small number of exponentials in n with a small number of
exponentials in tp. We can then represent the matrix (1.6) in terms of (9(N log N) interactions, apply
it in O(N log N) time, and return to normal coordinates with the FFT in O(N log 2 N) time. The
partition into rectangles will depend on m, and will not generally be a tensor product partition. We
call this the Two-Dimensional Algorithm.

This model gives the proper intuition, but is not suitable for proofs. To prove our compres-
sion estimates, we construct a quantitative type of quasi-classical (WKB) theory for solutions to
Schr~dinger equations in one dimension. Given a space localization, this theory gives us rigor-
ous bounds on the number of local Fourier coefficients needed for a given precision. This theory
also provides an intuition using "instantaneous frequency" and the ever-elusive justification for this
intuition.

We have implemented these algorithms, mainly for diagnostic purposes. Experiments have
shown the algorithms to be stable and to work well at high precision. The one-dimensional algorithm
is outperforming the compression predictions, while the two-dimensional is not performing as well.
In our implementation, the one-dimensional algorithm becomes faster than the direct method at
N = 128. By N = 512 it is faster by a factor of three.

2. Background

2.1 History

Spherical harmonics arise naturally when one tries to generalize Fourier series to the next
dimension. Many of their properties, as well as references to their earlier history, may be found in
Hobson [14]. A more modern perspective can be found in [19]. The spherical harmonics can be
built from associated Legendre functions, which are considered "special functions," and therefore
appear in many handbooks of functions, e.g., [2].

Modern attempts at a fast transform were underway by the time of Dilts [11], who reduced
the operations count but not the order of the algorithm. Duvall et al. [9] evaluate this method, and
conclude the best current (1988) method is due to Brown [7]. He separates variables and does an
FFT in the tp variable to reduce the operations count to (9(N 3) (See Section 2.3). This result is very
likely much older, and indeed Brown does not claim originality.

Driscoll and Healy [10] have an O(N log 2 N) algorithm for expansions (not evaluations) in
{Pn m (cos ~b)} with constant independent of m. Their algorithm becomes unstable as m increases.

Orszag [18] proved a general result that one can expand or evaluate any set of Sturm-Liouville
eigenfunctions (e.g., {Pn m (cos tp)} for fixed m) in (9(N log 2 N~ log log N) time. The dependency

162 Martin J. Mohlenkamp

on m is suppressed, however, so it does not yield a result for the full transform. Our approach is
somewhat similar to Orszag's, but we are able to track down the m dependence.

Alpert and Rokhlin [1] have an O(N log N) algorithm for Legendre polynomials (Pn~ As m
increases, however, their technique would seem to break down. A frequency space version of our
Section 4.4 would show that in fact one could have uniform bounds in m. We draw much from their
ideas and approach.

2.2 What are Spherical Harmonics?

Spherical harmonics can be generated in the same way as Fourier series, simply in one dimen-
sion higher. A development that emphasizes these parallels may be found in Stein and Weiss [I9,
Chapter IV]. Our motivation for the consideration of spherical harmonics is the same as for Fourier
series, e.g., both diagonalize all linear operators that commute with rotations.

The spherical harmonics are eigenfunctions of the spherical Laplacian

32

which is the Laplacian in R 3 restricted to the sphere. A3s is self-adjoint and rotation-invariant, which
implies that the eigenspaces are preserved by rotations and are orthogonal. The nth eigenspace An
has eigenvalue - n (n - 1), dimension 2n + 1, and consists of the homogeneous harmonic polynomials
of degree n restricted to the sphere. All eigenfunctions are smooth, and together they span L2(S;).

For fixed n, we can organize the An as {/3nm (cos qb)ei'nO/~/~}_n<m<_n. The condition on/Snm

to make this a set of (smooth) spherical harmonics is that/Snm (1) # 4-oo and

I 02ff-~ q- cot ~ 0r s mi~4~]Pnm(c~162176162 (2.2)

This equation identifies the pms up to a constant as the associated Legendre functions (ofthefirst kind)
of order m and degree n. We use the tilde (z) to indicate the L 2 normalized version of the classically
defined associated Legendre functions, denoted Pn m. We construct/Snm explicitly in Section 5.1.1.

2.3 First Reductions of the Problem

First note that we can use the FFT in 0 (for each 4)). Thus, for total computational cost
of O(N 2 log N), we have reduced the evaluation problem to a set of N problems indexed by m
(- N < m < N). Each problem is as follows:

Given the O(N) inputs a m, compute the N outputs

N-I
f (m'*J) = E am/3rim (COS~j) .

n=lml
(2.3)

fon fo 2n e -imO an m = f (~b, O)/Snn (cos ~b) ~ sin ~bd(adO. (2.4)

Again we can use the FFT in 0 and reduce the expansion problem to a set of N problem indexed by
m, each of which is:

Given the N sample values f(4~j, rh) compute the O(N) coefficients an m.

Evaluated directly, each problem takes (.O(N 2) time, and so together they take (.9(N3).
For the expansion problem we have learned first that these spherical harmonics are an orthonor-

,n by mal set, and so we should compute a n

A Fast Transform for Spherical Harmonics 163

Our next task is to discretize the remaining integral. With our assumption (1.3) on the form
of f , we only need to be able to compute inner products of Pnms (m fixed). For n, n t < N,

/Sm (cos ~p)/Snm, (cos ~b) = (sin w~th'~2m Pn_m(m,m) ~.(co ~ ~)'a~ ~n,_m(m,m) (COS ~) = e (cos ~p) is a polynomial in cos q~
of degree at most 2N - 2. Thus, using Gaussian nodes and weights in cos q6, we can capture this
exactly using N points. (See, e.g., [13].) Each reduced problem can be solved by evaluating this
sum, which takes O (N 2) time.

We will also find it convenient to modify our problems slightly. We define

~nm(q~) = ~ . ~ m (c o s ~,). (2.5)

The reduced evaluation and expansion problems then become matrix applications:

Opn m ((pj))n,j~mn = ~ f (#~j,rh) (2.6)

(#~m (#gj))j, n (~ f (#~j, rh) wN(j)) = ~n m �9 (2.7)

In our algorithm, we find a way to apply these matrices quickly. The method works equally well for
the matrix transpose and so the evaluation and expansion problems become one problem. We will
usually ignore the expansion problem and only consider the evaluation problem.

One property of/Snm (cos ~b) that is only apparent from its explicit construction in Section 5.1.1
is that it is either even or odd across ~b = zr/2 as n - m is even or odd. We can solve the reduced
problem separately for the even and odd components on ~b 6 (0, zr/2) and then use simple reflections
to produce the final solution. We use this explicitly in Section 4.3 when we prove compression results
on (0, zr/2), in Section 5.1.3 where we use it to justify a specialized search, and to deal with edge
effects. The use of parities also reduces computation time by a factor of two.

2.4 Quasi-Classical (WKB) Frequency Estimates

There is a method for estimating the solutions to some types of differential equations, in
particular Schr6dinger equations. See, e.g., Landau and Lifschitz [15, Chapter VII] or Bender and
Orszag [6]. We will use this to get a preliminary description of the associated Legendre functions
and to motivate the algorithms in Section 3.

With the reductions made in Section 2.3, we are considering {~pn m (~b) = d ~ - ~ / 5 m (cos q~) } as
a basis with measure dqL From (2.2) we can deduce the differential equation:

[l ~'~2 sin2 q~ i~m(4~)=-(n+l/2)2~pm(cb) (2.8)

which is a nice Schr6dinger equation, to which we can apply the quasi-classical approximation. This
approximation yields "instantaneous frequency"

m 2 - 1/4
Vnm(~b) = (n + 1/2) 2 sin2~b (2.9)

valid when the argument of the root is positive, and the approximation ~ n (~b) ~ exp (i fd~ v~ (t)dt).
These estimates tell us that at the edges of the interval our functions decay rapidly and smoothly.

As we move toward the center of the interval, they have instantaneous frequency increasing and
concave down. See Fig. 1.

Globally this function is complicated, but locally it looks very much like a trigonometric
function. This is the motivation behind our one-dimensional algorithm (Section 3.2). We partition
our function and represent each piece in localized trigonometric functions. These representations
will be very efficient, and convert our matrix to a sparse or "compressed" form. The partition we

164 Martin J. Mohlenkamp

FIGURE 1 ~2g(4b) = ~ / 3 2 g (c o s ~b) on [0, rr].

m . choose will depend on m and n. For fixed m, we wish to express the matrix (~n (~J))n,j in sparse

(compressed) form. Since the partition changes with n, this is not simply a change of basis, but is
an adaptive, non-standard representation of the matrix.

These estimates can also be used to model the entire matrix (~Zn m (cbj))n,j (m fixed). See Fig. 2.

Note that the matrix is also almost trigonometric as a function of n. With a proper two-dimensional
partition, we should be able to compress this matrix even further. This is the motivation for the
two-dimensional algorithm in Section 3.3. The partition chosen will depend on m.

The quasi-classical method is important in that it gives an understanding of the behavior of the
associated Legendre functions and motivation for our algorithms. It lacks sufficient rigor for use in
proofs, however. In Section 4.1, we develop an alternative method that gives rigorous results of the
type we need.

3. The Structure of the Algorithms

This section gives the structure of the algorithms used for the spherical harmonic transform.
The fact that they do in fact give the transform follows from simple facts such as orthogonality, and
is explained here. The speed of these algorithms depends mostly on the compression that is achieved
in the precomputation stage, and this is dealt with in Section 4. We deal specifically with the reduced
form of the evaluation problem, from Section 2.3.

We present two algorithms. The first, the one-dimensional algorithm, is asymptotically slower,
but has performed better in numerical testing. The core of both algorithms is a non-standard matrix
representation and multiplication. We note the similarities between our approach and the non-
standard matrix multiplication in [4].

A Fast Transform for Spherical Harmonics 165

s f # i i ;

�9 : . , . . ~ ~

FIGURE 2 The positive part of ~p40(~b) = ~/~"~/Sn40('cos ~b) for n in [0, 2561 and ~b in [0, :r/2]. The n axis points down,
and the ~b axis points to the right.

3.1 Local Tr igonometr ic Expans ions

To compress the associated Legendre functions we use variations of the standard local cosine
basis. See, e.g., [8] for a proof of its properties and [22] for an exposition of its uses. A local cosine
basis is constructed as follows:

We begin with a sequence of points on the line (interval, circle) �9 �9 ai < ai+l �9 �9 ". Let li =

[ai, ai+l]. We have a set of compatible bells, indexed by their interval, {bi (x)}. These bells have
the properties that bi (x)b i - 1 (x) is even about ai, bi (x)bi, (x) = 0 if i ' ~ i -4- 1, and ff'~i b2(x) = 1.
On each interval we have a set of cosines of the proper scaling and shift, denoted

r(~ 2
C X)

ai+l -- ai
cos ((P - k l / 2) : r (x - - a i)) } ~ 1 7 6 --- ai-- "

p=O

(3.1)

The set {bi (x)c p (x)} forms an orthonormal basis for the line. There is a fast Local Cosine Transform
(LCT) based on the FFT, using techniques similar to those in [13, Chapter 12].

3.2 The One-Dimens iona l Algor i thm

In the precomputation stage, we express each ap m in the local cosine basis that requires the n
least number of coefficients above some given E. We require the intervals to have dyadic size and
dyadic position (intervals of length 2 - j are k2 - j from the edge, k ~ Z). We denote the set of dyadic
intervals by 79 and the local cosine basis element for interval I with frequency p by bl (~b)c p (~P).
We can then write

NIII-1

lp2 ((gj) = ~ ~_~)~impnbl (~ j)C f (~ j) . (3.2)
1~79 p=0

mn Each ~n m has)~Ip s only for Is in some particular partition. We approximate the full sum with the
sum where we discard all)~n~ that are smaller than E.

For the reduced evaluation problem from Section 2.3, m is fixed, we are given {c~ m }, and we
wish to form the sum

N/2-1

y ~ 0 t 2 ~ 2 (t~j) . (3.3)
n=lm]

166 Martin J. Mohlenkamp

We can reorganize this as

am E Z)~ipb, (q~j) C; (~j) .~- 2 bl (q~j) ~ C; (~gj) Z 42)~I~ (3.4)
n IEZ) p IE~D P n

and sum over n to obtain

= bi (,j) y ; c ; (, j) . (3.5)
l e d P

To compute all the y m s c o s t s as many computations as we have ~.s, (Remember we have discarded
~.Tp n < E.) To evaluate the sums over I and p at all ~bjs, we do local cosine transforms at l o g N

scales, for total cost N log 2 N.
In Section 4.3 we will show that for each ~n m we need at most O(~v/-m log N(log e) 7/2) coeffi-

cients. Adding this over n yields a total count of)~s of O(~v/-mN log N (log E)7/2). The application of
the compressed matrix (computation of y) thus, dominates the local cosine transforms. Doing this
evaluation for N values of m gives us a total operations count of O(N 5/2 log N(log E)7/2).

3.3 The Two.Dimensional Algorithm

We again deal with the reduced evaluation problem (Section 2.3) for some fixed m. We consider
it in its matrix form (q/nm(4~j))n,j a m = ~ f (~ j , rh). Define the matrix Mn,j = ~Pm(~bj) with

m and f be the vector of values of ~pm _-__ 0 for n < [ml. Let a be the vector of values of a n , n
V/~ ~)j f (~ j). We can apply M to a directly with computation time equal to the number of nonzero

entries of M, which is N(N - m) = (.9(N2).
Instead we break M into disjoint rectangular submatrices. We can apply M to a by applying

each submatrix to some part of a and putting the result in the appropriate place in f . Conceptually,
it is best to think of this as applying the transpose of the vector a (a t) to M from above, and getting
OUt ft, as in Fig. 3. In the end, several rectangles contribute to each fj, but only additively. We
can treat each rectangle as a separate problem. In particular, we can do a distinct change of basis on
each rectangle. AS input for these rectangles, we must expand a locally into many different bases.
Similarly, we have to recombine the outputs to get f .

ft M

FIGURE 3 Applying a vector to a matrix from above.

We assure the fast computation of inputs from a by first requiring the rectangles be dyadic (in
size and position). Second, we only allow our change of basis be to local cosine series. With these
restrictions, preparing a and assembling f take at most N log 2 N computations.

The objective of this approach is to find a partition so that each rectangle can be represented
by a small number of (Fourier) coefficients. The cost to apply this matrix is the total number of
these that are greater than E. Simply removing the rectangles creates a discontinuity at the edges,

A Fast Transform for Spherical Harmonics 167

however, which makes the Fourier coefficients decay very slowly. Instead, we would like to separate
the rectangles smoothly.

We consider the partitioning in n, which has to do with expansions of a. Fix j and a dyadic
interval I . Let ot I be ot restricted to I , I* be the symmetric double of I , and bl a smooth function
supported on I* with 1/2 < b(n) < 1 when n 6 I. As part of the matrix application, we wish to
compute the inner product (Mn,j II, or) = (Mn,j ,~I) = (...Mn,jbl, Otl/bl). Let (-~) represent a Fourier
expansion on I*. Then (mn,jbl, Otl/bl) = (Mn,jbl, Otl/bI). Since Mn,jbt is as smooth as M, this
eliminates the discontinuity. We will store the coefficients mn,jbl instead of Mn,j II. We refer to
this trick as using "double bells" or "double sized intervals."

Note that with this approach we lose orthogonality. All we really need is the ability to apply the
matrix, which we retain. An advantage of this method is that adjacent rectangles do not interact. This
removes issues of bell compatibility and greatly simplifies searches (Section 5.1.3). A disadvantage
is a factor of two inefficiency in the bell cost.

In Section 4.4 we will show that for each m we need at most O(N log N(log E) 7) coefficients
for M, with constants independent of m. The operations count of O(N log 2 N) for the LCTs thus
dominates. Doing this evaluation for N values ofm gives us a total operations count of O(N 2 log 2 N).

4. Compression Rates

This section gives rigorous proofs of bounds on the number of coefficients retained after
compressing using the one- or two-dimensional partitioning schemes described in Section 3. We
first construct a general theory of compression for solutions to Schr/Sdinger equations, and then apply
this theory to our specific case.

By "compression" we mean the representation (to some prescribed accuracy) of a given function
or matrix in a small number of parameters. We also require that we be able to effectively use these
parameters in place of the function. This requirement means that a sparse representation of a
function in terms of a basis with fast transform is compression, while the representation of the matrix
(l[tm(~j))n,j by the two parameters m and N is not.

4.1 A Quantitative Quasi-Classical Theory

4.1.1 First Bounds

Theorem 1.
Let ap(x) be a solution to Vtn(x) = - V (x)lp(x) and b(x) a smooth function supported on

[0, 1]. Then:

ll(v(x)- V*)btlp + lib"lip + 21~1" lib'lip
Iv*- 21][~[[q (4.1)

forany V* ~ R a n d l = (1 / p) + (1 / q) ; 1 < p ,q < c~.

Proof . Integrating twice by parts, we obtain

fO e -ix~ b"~(~) = [b"(x)ap(x) + 2bt(x)~p'(x) + b(x)g/ '(x)] ~ d x . (4.2)

Considering the bqp t term separately and integrating by parts again, we have:

xfol ~ (~) ---- ~ [--b"(x) -- V(x)b(x) + 2i~b'(x)] ~(x)e- iX~dx. (4.3)

1 6 8 Martin J. Mohlenkamp
Choosing any V* we have

71/01 b'~(~e) (1 + _~*) = [-b"(x)-(V(x)-V*)b(x)+2i~b'(x)]~(x)e-iX~dx (4.4)

A 1 fo 1 b~(~) = V* ~-------g [-b" (x) - (V(x) - V*) b(x) + 2i~b'(x)] ~(x)e-iX~dx (4.5)

and the theorem follows by H61der's inequality. []

4.1.2 M e a s u r i n g LAoealization
We have "localized" b~p near ~ = -4-~-Q--;. The localization is better when we choose V*

V (x). In a rough sense then, we can claim ~p has local frequency -t-~'-V -7 and instantaneous frequency
-t-~/V-~. To qua~ntify these statements, we would like to know how many frequencies (near - t - ~ "7)
are signnificant, b~ cannot be compactly supported, so we must choose some E > 0 and consider
{~ : Ibq/(~)1 > ~} as being significant. We will call this set the E-support of b ap (~).

Theorem 2.
With ~ and b as in Theorem 1, and with the assumptions II~llq = 1 and O < b(x) < 1, the

length of the overall E-support is bounded by

12lib'liP + e min {2FIIb"IIPE ' 6~/2 IIb"llP] E , J - Q - - ;

+ min{ ~6l lV(x)-V*l lp 6 ~ l l V (x) - V * l l p } 2 E , Eq/_v_ ~_ . (4.6)

Proof . To compute the e-support of our bounds, we compute the (E/3)-support of the three terms
in Theorem 1 and take the union. For the (V - V*)b term we have

E liE(x) - V*lle > _ (4.7)
Iv*- 21 - 3

when
~V* 3 l i E (x) - V*llp ~ 3 l i E (x) - V*llp

- 5 I~1 5 V * + (4.8)
E E

which is a set of length

(~ 311V(x)-V*llp ~/ 311V(x)-V*llp)
2 v* + - V* - -- . (4.9)

E E

When V* < NilE(x) - g*llp/E we drop the second term. This length is bounded by

{ ~/6llV(x)-V*llp V(x)-V*Itp}
min 2 6 ~ II . (4.10)

E ' E~c/-V -'~"

This second bound is only useful when V* > 3[IV(x) - E'lip~E, so we call it a "high frequency"
bound.

Similarly, for the b p~ term, we have a set of length

2 V* + - - E* < min 2 , . (4.11)
E E - - E v / - V -'~-

A Fast Transform for Spherical Harmonics 169

The b r term behaves differently, however.

on a set of length

Iv* - ~21 - 3
(4.12)

1211b'llp []
E

R e m a r k 1. The b ~ term yielded an E-support of length 1211bPllp/E. We may be able to improve
this by applying Theorem 1 again, but we will always be left with a term that, like this one, is
independent of V and V*. This term gives a minimum on the length of the E-support, and can be
viewed as a manifestation of the uncertainty principle.

4.1.3 N u m b e r o f T e r m s
Up to now we have been considering the Fourier transform b~ . Since we are actually on an

interval, it makes sense to sample b ~ and consider the Fourier series. Instead of considering the
length of the E-support as our measure of localization, we consider the number of Fourier coefficients
above E.

D e f i n i t i o n 1. The cost (or E-cost) of an expansion is the number of Fourier coefficients above E.

For our application we choose p = r and q = 1. We assumed earlier that Ilgrllq = 1.
Actually, ~ will be a basis element, and so have 117~llL2t0 ' q = 1. We formulate our theorem on cost
for our particular application because the scaling simplifies.

Theorem 3.
With 7t and b as in Theorem 1, and with the assumptions II~Pl12 = 1 and O < b(x) < 1, the

cost of expansion on an interval of length I is at most

2 max , min 2 , ~ ,

min{2 l~611V(x)~ V*lloo 1 6 4 ~ l l V (x) - V * l l o o } }
, ~---~_Q__~ . (4 . 1 4)

To deal with intervals of length l, we must adjust our previous bounds. We first note that we
can bound II ~Pll t.ltx,x +ll -< II ~Pl1211111 t.2tx,x+zl = 47. When we convert from a Fourier transform to
Fourier series, we must also normalize the exponentials to be a basis on our interval, by dividing by
x/1. These two factors of 4 7 will cancel.

Converting the Fourier transform to Fourier series by sampling also means changing the ~ to
k~ l where k is an integer. (We ignore a factor of 2zr.) The cost on an interval of length I can thus be
computed from the E-support as I �9 IE-support[.

We must also shrink the bell to fit on this interval. We must consider b(x/l) and thus,
II(b(./l))'ll =]lb'll/l and II(b(./l))"ll = IIb"]l/l 2. Our new b' cost bound is then

12 IIb'll /= 12 IIb'lloo (4.15)
el E

which is unchanged. Thus, any expansion on any interval has at least this cost (using this method).
From b" we have a new cost of

min { 2 7 [tb" [[~ 1 7 6 , 6 x / ~ [[b" [1~ } ,/24~_V~ . (4.16)

170 Martin J. Mohlenkamp

From V - V* we now have

(4.17)

In this case both bounds have been multiplied by I and so improve linearly if we shrink I. Also note
that the norm is taken over a different interval. Thus, if we shrink l, for some (different) choice
of V*, we can likely make l i E (x) - V * l l ~ somewhat smaller. How much smaller we can make it
depends on our particular V(x). We will later use our knowledge of V(x) to choose appropriate l
and V*.

Remark 2. The b ~I term is unimportant, since its cost in general can be dominated by the b r term.
We will ignore its presence.

4.2 The Intuition

We would like to have a simple method for computing the cost of expanding a "chirp," i.e.,
a function that has "instantaneous frequency" some function v(x). We graph v(x) in the x x
phase plane. On the phase plane a local cosine basis element is viewed as a rectangle of area 1
with x-support on its base interval I shifted in ~ by its frequency. Intuitively, those boxes that
intersect u (x) should correspond to local cosine elements that yield significant coefficients. If we set
A = maxl v(x) - mint v(x) we can estimate the number of boxes by AI I I = AI. We must always
intersect at least one box, however, so we need to consider max{A/, 1 }. See Fig. 4.

/
FIGURE 4

f 1/l

III = l x

Instantaneous frequency cost intuition.

In Section 4.1.2 we bounded the cost of expansion by

C l i E (x) - V*ll
~ (4.18)

Assuming V(x) > 0 let v(x) = ~ and ~ be the median value of ~ / V (~ . Then our cost is

c 2s v-V-7 . 7 ~ < , ~v/-V~ - (4.19)

In Section 4.1.3 we determined that if the interval is of length l, our cost is multiplied by l, to yield
(2 C / E) I I ~ - (' ~ -- ~/-V--;I. Again we let A = m a x / v (x) -- mini v(x) . The cost to expand on that
interval is bounded by (2C/E)max{IA, B}, where B is the minimal bell cost (I Ib'l I)- Our intuition
is therefore justified.

4.3

FIGURE 5

Associated Legendre Functions

If we consider the potential

m 2 - 1/4 (4.20)
V(~b) = (n + 1/2) 2 sin 2 4~

on [0, zr/2], ~ will be an associated Legendre function of order m, ~cffff~/Sm(cos~b). We will
eventually wish to take many derivatives of V(x) but the sin ~b will introduce factors of cos q~ and
make the calculations unpleasant. Instead we can consider the potential

m 2 - 1/4 (4.21)
V (x) = (n + 1/2) 2 x2

which will yield Bessel functions. Qualitatively, these behave the same as the associated Legendre
functions, and so we will have the same overall cost estimate. Making this rigorous would simply
introduce some factors of Jr. See Fig. 5 for graphs comparing the behavior of an associated Legendre
function and the corresponding Bessel function.

A Fast Transform for Spherical Harmonics 171

~-ff-~/520(cos 40 and 47J20(60r) on [0, zr/2].

_)

R e m a r k 3. In the next few sections we will prove compression results for associated Legendre
functions by proving them for Bessel functions. As a consequence, we also obtain a fast version of
the Hankel transform for f with compact support. (See [12, p. 3].) The Hankel tranform is defined

172 Martin J. Mohlenkamp

as

f0 74.v f (y) = f (r)Jv (ry)~ / -~dr . (4.22)

4.3.1 Besse l F u n c t i o n s
We have made a simplification to consider the potential (4.21) on [0, 1]. ~ (x) is then the

Bessel function of order m, ~ J m (n x) . To simplify the following calculations further, we make a
further reduction to V(x) = n 2 - (m / x) 2. We will not use an 3, algebraic properties of the values of
m and n, so this reduction is unimportant.

The tools we developed above give bounds on the cost (number of coefficients) for a given
interval. Our only real freedom is how we partition [0, 1]. Our total cost is the sum of the costs from
each subinterval. We would like to find the partition that minimizes our total cost.

T h e o r e m 4.
Let gt be a solution to ap" = (n 2 - (m/x)Z)gt on N points in [0, 1], normalized so tI~PlI2 < 1.

Then there exists a partition of [0, 1] that yields total expansion cost less than

24'-~ ~ log N . (4.23)
E

The first part of our scheme is a stopping time argument. We fix a cost C to be the maximum
allowed cost. Given an interval, if its cost is less than C we keep it; otherwise split it in two and
pass them to the next stage. Start with [0, 1] and continue until stopped. In deciding whether we
stop there are two considerations. First is the bell cost. If we split an interval in two, our non-bell
cost (4.17) shrinks by a factor of at least two, but the bell cost (4.15) is unchanged. We will stop
if and only if C is greater than the bell cost I Ib'll/E. The second consideration is that we will be
working on a finite number of points N. Once the number of points in an interval is less than C, it
cannot cost more than C in any case. We will also use this fact when we count intervals.

Before trying to count the intervals, we consider the structure of the partition we expect to be
chosen. When x < m / n , 7r decays rapidly and smoothly and can be expanded into local cosine with
negligible cost. We thus consider this a "nothing" interval and only worry about [m/n , 1]. For a
fixed interval length I = 2 - j there will be some set in [m/n , 1] such that the interval [x, x + l] has
cost less than C. Using the high frequency bound in (4.10), we have cost

2 - J [I V - V*[[
< (4.24) - E4~--*-

Since V is concave down, we can bound IIV - V*ll on [x, x + 2 - j] by 2 - J V l (x) , choosing V* =
V(x) . We then have cost

2-2Jm2
< (4.25)
- Ex2~/(nx)2 - m 2

Note that this cost shrinks as x increases. The "good" set (G j) for size 2 - j is thus some interval
[xj, 1]. The remaining interval Ira~n, x j] is the "bad" set (B j). See Fig. 6.

It will be most efficient if we break the interval B j - I n Gj = [x j , X j - l] into intervals of
size 2 - j . It will take 2 j]Bj-I N G j] such intervals, yielding cost C2 j IBj_, n Gj 1. To estimate
IBj - I n Gj l, we first dominate it by IBj - l [= x j -1 -- m / n = Yj-1. Setting our cost bound equal
to C and manipulating, we find

2 - J m 1/4
4 - e 7 - xj ((x j .) 2 - m2) = + .),/4 + 2m) '/4

It is difficult to solve for y j , but it will be dominated by 6j, that satisfies

2 - J m = a /4(ml.) 1/4 (jn)'/4ml/4 = ajml/2 ,/-d-i

(4.26)

(4.27)

A Fast Transform for Spherical Harmonics 173

i Bj] Gj

0 m / n yj x j 1

I ' I
8j

FIGURE 6 Good and bad intervals for size 2 - j .

which means 8j = 2 - j ~ CE.
We can now bound [x j , x.i_l] by 8j-1. Our cost for this interval using subintervals of size 2 - j

is thus at most

2 - J + l . / - ~ - - . 2 j . C = 2 ~ E C- (4.28)
V CE

As noted above, j < log N and thus we can sum over j and bound our overall cost by 2~r CvrC~ log N.
Plugging in the minimal cost per interval lib'l I/E, we obtain total cost

2~/-~ ~ log N . (4.29)
E

R e m a r k 4. According to these estimates, our best results are obtained by shrinking the intervals
until the non-bell cost equals the bell cost. Since the bell cost is independent of the interval size, this
indicates that our choice to have all intervals of the same cost should be optimal.

4.3.2 Higher Order Estimates
The above estimates are fine, but depend on E like E -1. Here we apply Theorem 1 repeatedly

to get higher order decay in ~, and thus, more benign dependence on E.
If we apply Theorem 1 one time, we convert a single term into three terms. One of these has

multiplicity 2, so we'll consider there to be four terms. If we apply the theorem k times, we expect
4 k terms. Along the way we take derivatives of products and powers, and this will give us further
multiplicities. In going from step k to step k + 1, we multiply by at most (2k)(2k + 1). Our total
number of terms, including multiplicities, is thus bounded by 4 k (2k) !. Within some terms we will
also generate a factor of k!. We account for this now so that when it appears later, we can ignore it.
We therefore proceed as if there were 4 k (2k)!k! terms.

Each term has the following form:

I~1 a . Ilb(b ll �9 12k-(a+b �9 l iE - V*ll e- Iv(l~[dl . Iv(2 ld=
_ / 2 v , lk

(4.30)

with a + b + 2c + ~_, di (i + 2) = 2k, a < k, and if a = k, then b = k. We wish to know when
this is greater than E/4k(2k)lk!. We will separate each term into k factors and determine when each
is greater than (E/4k(2k)!k!) 1/k ,.~ E1/k/k 3 = rl. (We use Stirling's formula n! ~ ~/2-~nn+l/2e -n.)
The 0-support of each factor is two intervals, containing the points +14r-V -7. The union of these
intervals is essentially the largest pair of intervals, and will contain the intervals when our term is
greater than E/4 k (2k) !k!.

Following Section 4.3.1 we fix a sub-cost C and determine the smallest x that, given an l,
yields cost C for this factor. We will have some factors whose cost is independent of I and x (and
V(x)) and these will act as a minimum on C. When we can affect the cost with l, we will show that l
is a linear function ofx . It may have x-intercept at 0, in which case its slope is independent of m and
n. It could instead have x-intercept at m / n , in which case its slope depends on m like m -1/2. As we
saw in Section 4.3.1 and using (4.28), a linear dependence between I and x (or (x - m / n)) means
our total cost will depend on N like log N. The total cost also depends on the slope of the line like

174 Martin J. Mohlenkamp

its inverse. For us this is either independent of m or depends on m like ~ . Given this collection of
lines, we can choose a line that is under all of them on [m/n, 1], and the inverse of its slope will be
O(~/-m). This line gives us a partition of [m/n, 1] for which all factors obey the sub-cost limit C. A
closer examination of its slope will tell us our dependence on C, e, etc.

We organize the various types of factors in tables. Table 2.1 contains the basic factors, the
bound used for that factor, the corresponding line, and the total cost if that was the dominant line.
The bounds are analogous to those in (4.10) and (4.13). The lines are found by either setting the
bound equal to C and solving for l, or by using the 8 construction as in (4.27). The total cost is found
by taking the inverse of the slope and multiplying by C. We will also use the shorthand

bk = sup b(j) 1/j . (4.31)
l<j<2k

TABLE 2.1

Basic Factors in the Higher Order Estimates

Factor Bound used Line Total cost

I~ Ibk ~ (4.32)
1~2--12V*1 r/

b~ bk (4.33)

I~llx-I lx-1 l = rICx 1 (4.34)

13m2x-3 12rn 2 C~-~ m W ~
I ~ ,TxZ (Vr(2"~Z-m 2 I = (x - -y) (4.35)

Ix -1 ~/~-x0-- 1 1 (4.36) I ~ l -.~ rlC2x c-~

12x-2 Ix-1 l -~ ~-~Cx 1 (4.37)

Next, in Table 2.2, we list the more complicated, composite terms and show how to factor
them. The terms of type (4.38), (4.42), and (4.43) have factorials, but these were accounted for at
the beginning and incorporated into r/, and so can be ignored.

For large m, the worst total is in terms of type (4.35) and is 4'-~-C--~. The factors of type (4.32)
and (4.33) give us bounds independent of l, and thus tell us we should choose C = bk/rl. Plugging
in C = b~/rl and r7 = El lk /k 3 yields ~/"m-ffkk3E l/k. To estimate bk, we note b (j) should have j
peaks, about 1/j apart. The height of these peaks can be found from the height of b(J-1)s peaks
by multiplying by the previous separation (1 / (j - 1)) and an extra factor of two. Inductively this
gives Ib(J)["-~ 2J j! and so bk ~ 4k. Plugging in this estimate yields cost ~/--mkT/2E Uk. Choosing
k = log(I/E) gives us a compression cost of O(~/-m log N(log E)7/2).

R e m a r k 5. The estimate bk ~ 4k is far from rigorous. In applications, we use bells that are
optimized (Section 5.1.2) using a method that does not look at derivatives of the bell. We have found
these bells to be highly efficient.

4.3.3 O n e - D i m e n s i o n a l C o m p r e s s i o n Conclus ion : O (N 5/2 log N(iog E) 7/2)
We concluded above that we can compress each associated Legendre function into at most

O(.v/-mlogN(logE) 7/2) <O(~r 7/2) (4.44)

coefficients. We must add this count over N values of m and N values of n. For the complete

A Fast Transform for Spherical Harmonics

TABLE 9..2

Composite Terms in the Higher Order Estimates

175

Term Factorization

I~IP'IIV(P)II'lp+2 m213x -3 I~1 { i~l/x-i ,~p-1
l~2_12V.ip+l = ~ ~ ~ , ~] (p + 2)! (4.38)

m213x-3 IIV-V*ll < (4.39)

I~IPlIb(P)II < { I~lbk "~ P _ ~ , ~] (4.40)

I~lPllb(P+q)[I < { I~lbk "~P { b2 ~q/2
l~2-I2V*lp+q/2 -- I ~] ~ ~ J (4.41)

ip+211V(P)ll m213x_ 3 lx_ 1 { 12x_ 2 ~ p/2-1
1~2_12V, i1+p/2 -- 1~2_/2V, I 1~2_/2V, I \1~2_12V,i } (p + 2)! (4.42)

I~IPlP+q+2IIV(P+q)II m213x -3 I~1 { i~l/x_X ,~p-l { 12x_ 2 ,~q/2
1~2_t2v.lP+~+q/2 = ~ ~ ~] ~ , ~ } (p + q + 2)t (4.43)

spherical harmonic transform, this yields a bound of

(.9 (N 5/2 log N (log 6)7 /2) . (4.45)

4.4 Two-Dimensional Compression: (.9 (N 2 log N(log c)7)

The compression scheme described previously involves compressing ~-ff -~/Sm (cos tp) as a

function of ~b, and so is one-dimensional. We are actually applying a matrix of 4's]-n-~/Sn m (cos 40 (m
fixed) and so can consider this as a function of both n and tp and compress in both directions. In the n
direction we do not have a differential equation, but instead a recurrence relation (see Section 5.1.1).
If we model with Bessel functions, however, we are dealing with ~v/-h~Jm (nx) for which n and y are
interchangeable. Setting y = n /N we consider y~-x-NJm(yxN) on (x, y) ~ [0, 1] x I0, 1] which is
fully symmetric. Obtaining rigorous results for the associated Legendre functions from results for
Bessel functions in the n variable seems difficult, but we expect the behavior to be the same. We
state the result for Bessel functions:

Theorem 5.
Let ~(x, y) = ~ x - N J m (y x N) on the unit square, normalized so]]~(., Y)II2 -< 1. There

exists a partition into squares with total expansion cost bounded by

O (N l o g N (logE)7) �9 (4.46)

In Section 4.1 we constructed tools for one-dimensional compression and in Section 4.3 we
applied them. Here we will try to use these tools and techniques as much as possible and only
highlight the differences.

We are allowed to choose any partition of the unit (x x y) square into rectangles, but for now
we restrict ourselves to squares of sidelength 2 - J . We first note that the turning point occurs when
x = m/yN. Anything above or to the left of this hyperbola is either rapidly decaying or zero, so we
do not have to worry about this region. (Recall that since M is a matrix, the x axis points down.)

First we fix a sub-cost C 2 as our goal on the subsquares. Fixing j , we can break the unit square
into three regions. The first is a "good" region for the size 2 - j , denoted G j, where the cost is less
than C 2. The second is a "bad" region (B j) where the bounds fail, and the third is a "nothing" region
beyond the turning point. We break the unit square into the nothing region and Go U~= 0 (Bj 71 Gj+I).
To compute the number of squares needed for a region, we can compute the area of that region and
divide it by the area of the squares used. Thus, for the region Bj 71Gj+I we need I Bj 71 Gj+I l" 22j+2

176 Martin J. Mohlenkamp

squares. Multiplying by C 2 will give the number of coefficients. Our problem is now reduced to
estimating the area of these regions.

The first step is to assess the cost associated with the square Ix, x + 2 - j] x [y, y + 2-J] . This
cost will be bounded by

u +s:,)l j ,:4.4...,:,
0<s<2-J

I f we require this to be less than C 2 it suffices to have each factor less than C. When computing
the E-supports, the only dependence on m was through i[V(x) - V*ll. Recalling now that V also
depends on y, we instead consider sup IVy (x) - V*[taken over the square [x, x + 2 - j] x [y, y + 2 - j]
with V* independent of y. The cost computed using this will dominate the first factor in (4.47).

For our particular potential, Vy(x) = (yN) 2 - m2/x 2, we can choose V* = (yN) 2 - m2/x 2
and achieve the supremum with

V y + 2 _ J (X + 2 - J) - v * = y 2 N 2 + 2 y 2 - J N 2 + I 2 N 2

m 2 m 2
yN z + - ~ (4.48)

(x + > 0 2

= m 22-j(2x+2-j)" " + 2 y 2 - J N Z + 1 2 N 2. (4.49)
x 2 (x + 2 - J) 2

We will consider the costs from these three terms separately. We will show the three bad regions
shrink at least at a certain rate. The analysis of the second factor in (4.47) yields the same rate, and so
the union of all of these regions also has this same rate. We then use I Bjl to dominate I Bj n Gj+ll.

The first term gives cost

m22 - j (2x + 2 - j) 2 - j
(4.50)

x2 (x + 2 -0 2 , / (yN)2 _ m2/x2E

We set this equal to C, define y = x - m /yN , and manipulate to find

m 2 (2 - J) 2 = (r + 2-J + m / y N) 2 ~ / y y N ~ / y y N + 2m (4.51)

CE 2y + 2-.i + 2 m / y N

Following the argument from Section 4.3. I, we note it is sufficient to use $ such that

m 2 (Z-J) 2 - - 81/2 (r n ' ~ l / 2 m
C E \ y N) -~ , N ~/-m , �9 (4.52)

which means 8 = N(2-J)2/C~. will suffice. This 8 = 83 bounds the thickness of the strip Bj. Since
this strip has length at most 1, 8j also bounds its area. Our cost for the region Bj CI Gj+I is thus
less than 6 (2 - J) -2 = NC/~. Since a square must contain a point, j _< log N, and we can add our
cost over log N strips to obtain total cost (C/E)N log N. See Fig. 7 for a schematic of the different
regions and Fig. 2 for the original matrix.

The second term gives cost

2 - j
y2 -JN 2 (4.53)

~/ (yN) 2 - m2/x2E

A Fast Transform for Spherical Harmonics 177

0 y

m / N

~m/ N

8

FIGURE 7 The good and bad regions for a certain sized square.

We set this equal to C, define y = x - m / y N and manipulate to find

(2 - j) 2 y N 2 y~/~f'-ffx/yyN + m 2

C~ (y + m / y N) 2

It will suffice to take 8 such that

(4.54)

(2 -J) 2 yN 2
= 8yN (4.55)

CE

This yields NC/E as the cost for a strip and total cost and so 8 = (2-J)2N/C~ will work.
(C/E)N log N.

The third term gives cost

2 - J (4.56)
(2 - j) 2 N2 x/ (y N)2 _ m2 /x2e

We set this equal to C, define y = x - m / y N , and manipulate to find

(2 -J) 3 U 2 y~/-~'N~/yyU + m 2
= (4.57)

CE (y + m / y N) 2

It will suffice to take 8 such that
(2-J) 3 N 2

= 8yN (4.58)
CE

which means 8y = (2-J)3N/CE will work. Anticipating the results from the analysis of the first
term in the compression in y, we assume y > 8 + m/x > 8 (for the same 8) and so we can take
82 = (2-J)3N/C~ and

8 = (2-'i)2 N 1
2 _/~$7_ ~ . (4.59)

Noting 2 -.i _> 1/N and so 1/2-4'~-7-N < 1, we can take 8 = (2-J)2N/~r yielding total cost

(C/e)U~/ -~ .
As in the one-dimensional case, we can use Theorem 1 iteratively to obtain higher order decay.

Excluding the case (4.35) dealt with above, all the basic factors in Table 2.1 yielded lines of the form
x = lA = 2 - JA with A independent of m, n, y, etc. These lines give us strip cost of A/2 - j and

z :0 - . _ total cost A (2 j) 1 = AN. We expect E dependence like ((log E)7/2) 2. For each m we can

compress into O(N log N(log E) 7) coefficients and so have total coefficient count

O (N Z l o g N (logE) 7) . (4.60)

178 Martin J. Mohlenkamp

5. Numerical Results

The proof of the theoretical result of the fast transform for spherical harmonics is now complete.
When attempting to implement the algorithms, several issues arise. This section first gives the
solutions to those problems which proved most troublesome. It then gives the results of numerical
testing on an implementation of the algorithms from Section 3.

Our implementation was mainly for diagnostic purposes. When evaluating run times we
attempted an efficient implementation, but our main goal was to provide a fair comparison with the
direct method. We seek to answer the following questions:

1. Does the cost of expansion agree with the prediction in Section 4?

(a) As a function of N?

(b) As a function of E?

2. When are our algorithms better than the direct method, specifically:

(a) At what N do they become faster?

(b) Are there other considerations we need to take into account?

3. Are our algorithms stable, and how large are the errors?

To summarize the results:

1. The one-dimensional algorithm performs better than predicted, as a function of both N and
e. The two-dimensional algorithm performs well in E, but poorly in N, in the range of N
we tested.

2. The one-dimensional algorithm becomes faster than the direct method at N = 128. At this
size, the overhead cost for full adaptation is too great, so we had to modify our adaptation
process. By N = 512, we have improved run times by a factor of three.

3. Since we perform only orthogonal operations, the one-dimensional algorithm is stable and
has errors about size E.

5.1 Computational Details

5.1.1 Generating the/~nms
Before we compress a matrix of associated Legendre functions (or ~nms) we must be able to

construct the matrix. Let ff,~m,m) be the L 2 normalized Jacobi polynomial. We can construct the L 2
normalized associated Legendre functions for m > 0 as:

/Sm (cos ~b) = (sin q~)m/Sn(m_mm) (cos qS) (5.1)

and for m < 0 using/Snm (cos 40 = /Sn--m (cos ~b). Using the recurrence relation and normalization

from Szeg6 [20, p. 68, 71], we can construct P(k m'm) with the recurrence initialized by

e(r~'m)(x) ~ 0 (5.2)
J r (2 m + 2) 1 1 f l ~ / 7 1

= 2 2mF(m + 1) = ~ + ~-~ (5.3) j=l
~(m,rn) (X)

and with general term

F'(~ m'm) (x) = 2 x ~ (m l m) (x) (l + m - - k l / 2) l / 2 (1

(4
- E'~m_~m)(x) 1 + 2k + 2m - 3

m--1 /2"] ~/2
k + 2 m]

(1_1) 1/2(1 1 -~1/2
k -(- 2m] "

(5.4)

A Fast Transform for Spherical Harmonics 179

For large m this recurrence is poorly conditioned, especially when m < n < 2m. The
solution we want corresponds to the larger eigenvalue, however, so the conditioning acts in our
favor. The recurrence is also highly prone to underflows. We fix this by using scientific notation,
~/sq-ff-~/Snm (cos ~) = A2/~, 1/2 < A < 1, B 6 Z, and storing A anffB separately.

5 . 1 . 2 B e l l s

In determining the order of our algorithm, the bell used is unimportant, except perhaps that
it has a few bounded derivatives. In determining the constants involved, however, it is crucial.
We use bells developed by Matviyenko [16], which are optimized for a given precision. These
bells are bi-orthogonal, so we expand using the bells {bi(x)} and reconstruct with the dual bells
{bi (x) /Y~j b2(x)}. The use of these bi-orthogonal bells has condition number ~.'2, so we will
pretend as though we are using orthogonal bells.

5 .1.3 S e a r c h e s

In Section 4.3 we developed a theory which said we can achieve a certain amount of compres-
sion if we can find an optimal partitioning of the interval. We find the optimal partition by searching,
and here present fast searches.

First consider the one-dimensional partition from Section 4.3.1. We know that the interval size
should grow slowly as we move to the right, so we explicitly restrict to partitions where an interval's
left neighbor is either the same size or one size smaller. Our compression bounds only hold if all our
bells are dilates of a single bell. With our restricted partition we can have good (broadly supported)
bells and yet only use two different bells. When an interval's left neighbor is of the same size, we
use a "full bell," that will be supported on the double of the interval. When the left neighbor is half
the size, we adjust the left half of our bell to be compatible with the full bell of the smaller neighbor,
creating an "asymmetric bell."

We place the root node to the left of our interval. It has log(N) children, which correspond to
the leftmost dyadic intervals. Now working left to right, we assign each node children corresponding
to allowed right neighbors of the current interval. (See Fig. 8.) The cost of a partition is the cost of
a path from the root node to a leaf node (right edge), so we want to find the path of least cost. For
our purposes, the cost is the number of coefficients above E, but the search generalizes to other cost
functions.

FIGURE 8 The one-dimensional search graph. Empty circles represent full bells and solid circles represent asymmetric
bells.

The generic decision step is as follows: We assume the current node's children contain the
minimal cost of a path from them to the right. We compare the costs for the symmetric child of the
same size and the asymmetric child of the next larger size (if it exists), and add the smaller to the
symmetric and asymmetric costs of the current node. To each box associate its center. Process the
boxes in order of the x coordinate of their center, starting at the right. This reduces us to the children

180 Martin J. Mohlenkamp

of the root node, which we compare by hand. It costs 2N log 2 N to compute the coefficients and 4N
to run the search.

For the two-dimensional compression scheme in Section 4.4 we also require a search algorithm.
Our use of double bells allows us to use an algorithm for determining the best partition into dyadic
rectangles developed by Bennett [5]. The search using squares only is given in [22, p. 299]. See
also [21] for a similar algorithm.

5.2 Coefficient Counts

5.2.1 One Dimensional
First we consider the coefficients counts (costs) obtained from the one-dimensional compres-

sion scheme from Section 4.3. These coefficients would be used in the one-dimensional algorithm
in Section 3.2. Our algorithm to obtain the counts is as follows:

1. Fix some E to serve as a cutoff, and the number of points N. This E determines which bell
to use, as in Section 5.1.2.

2. Loop through 0 _< m < N and m < n < N. For each value do a best non-decreasing
dyadic partition search as in Section 5.1.3 in ~b to ap m (~p) on [0, zr/2]. This search gives us
a cost for each (m, n) that we add to a running total.

If we did no compression, we would be adding over N/2 points, 0 < m < N, and m _< n < N,
for total cost N2(N + 1)/4. Dividing this number by the number of coefficients we kept gives us the
compression ratio. Our prediction in Section 4.3.3 is that the number we keep for each associated
Legendre function should be O(~/N). To test this, we divide the number kept by ~v/-NN(N + 1)/2
to obtain the "effective constant." The results for this method are contained in Table 2.3.

T A B L E 2 .3

Compression Ratios and Effective Constants for
Compression in r Only

E = 10 -6 E = 10 -12

N Ratio Constant Ratio Constant

32 1.09 2.59 1.00 2.82

64 1.32 3.04 1.07 3.71

128 1.67 3.38 1.30 4.34

256 2.18 3.67 1.64 4.88

512 3.03 3.74 2.08 5.44

1024 4.39 3.65 2.81 5.68

2048 *6.47 *3.49 *3.97 *5.70

4096 *9.67 "3.31 "5.51 "5.81

Note.'A * indicates an estimate by sampling in m.

Preliminary timing results indicated that the cost of the LCTs at multiple scales is prohibitive
at N ~ 256. As an alternative to using multiple scales, we can choose a single partition for each m
and parity (see Section 3.2). In Table 2.4 we give compression ratios and effective constants for this
method.

5.2.2 Two Dimensional
Next, in Table 2.5, we consider the two-dimensional compression scheme, as in Section 4.4.

A Fast Transform for Spherical Harmonics 181

TABLE 2.4

Compression Ratios and Effective Constants for
Compression in ~b Only Using a Single Partition per
m (and Parity)

E = 10 -6 E = 10 -12

N Ratio Constant Ratio Constant

32 1.09 2.59 1.00 2.82

64 1.28 3.12 1.07 3.71

128 1.59 3.56 1.28 4.41

256 2.07 3.86 1.56 5.14

512 2.89 3.91 1.97 5.75

1024 4.26 3.75 *2.69 *5.94

2048 "6.31 *3.59 *3.88 *5.83

Note:A * indicates an estimate by sampling in m.

Our algorithm is now:

1. Fix some E to serve as a cutoff, and the number of points N. This ~ determines which bell
to use, as in Section 5.1.2.

2. Loop through 0 < m < N. For each value do the two-dimensional search (Section 5.1.3)
to (lpn m (~b)) as a function of tp and n on [0, rr/2] x [0, N]. We allow the search to choose
not to try to compress any particular rectangle in either direction. The search produces a
cost for each m that we add to a running total.

We compute the compression ratios and effective constants as above. The "constant" is com-
puted by dividing by ~/ 'NN(N + 1)/2. This is not the rate predicted for this algorithm, but gives us
a good way to compare it with the one-dimensional algorithm. For the two-dimensional algorithm
to work as predicted, we want the constant to decrease at a rate like 1/~,/-N or perhaps log N / V ~ .

TABLE 2.5

Compression Ratios and Effective Constants (Using
One-Dimensional Rates) for Compression in ~b and
/,/

E = 10 -6 ~ = 10 -12

N Ratio Constant Ratio Constant

32 1.13 2.50 1.04 2.72

64 1.31 3.05 1.13 3.55

128 1.59 3.55 1.32 4.30

256 1.98 4.03 1.55 5.16

512 2.60 4.35 1.90 5.96

1024 3.56 4.49 *2.39 *6.69

Note:A * indicates an estimate by sampling in m.

The two-dimensional algorithm is not performing very well in this range of N. The analysis
in Section 4.4 predicts the constant in the two-dimensional algorithm to be the square ,of that in the

182 Martin 3". Mohlenkamp

one-dimensional. The double bells will give an extra factor of 4 inefficiency. At smaller N, other
constraints enable us to still have compression, but we do not expect to see the predicted rate until
much larger N. Ad hoc methods allow us to outperform the one-dimensional compression, but the
effect is marginal: a 25% reduction in coefficients at N = 1024. At some point in the future, this
algorithm will have to be revisited.

5.3 Program Timings

The coefficient counts in the previous section are essentially implementation-invariant. When
trying to compare the speed of these algorithms to the direct method, there are implementation-
dependent and hardware-dependent factors. We attempt here to give fair comparisons.

All programs were implemented in ANSI C, compiled with c c - 0 - n a t i v e - d a l i g n
and run on a Sun Ultra2 with UltraSPARCII cpu running at 300 Mhz. The timing mechanism is
based on internal system queries as to how much CPU time has been used. The times given are the
average over multiple runs in an attempt to give two significant digits.

5.3.1 The Direct Method
We first time the direct method and those components that are common to both the direct and

fast methods. We deal with the collection of reduced evaluation problems using parities, as stated
in Section 2.3. These results appear in Table 2.6. The component operations are:

Reflect Using parities, reflect the even and odd parts of our function to regain the function itself.

Transpose Transpose the matrix in q~ x 0.

FFT0 Perform the N real FFTs of length 2N in the 0 variable.

Total (C) The total of the common elements: Reflect + Transpose + FFT0. Abbreviated as C.

Apply The time to apply the matrices in q~ for all m.

Apply+C The total cost for a transform using the direct method.

TABLE 2.6

Timing for Common Elements and the Direct Method, in Seconds

Common Direct

N Reflect Transpose FFT0 Total(C) Apply Apply+C

64 .00039 .00042 .0021 .0029 .0062 .0091

128 .0015 .0015 .0094 .012 .065 .077

256 .011 .035 .042 .088 .60 .69

512 .043 .19 .19 .42 *8.5 *8.9

N o t e : A * indicates an estimate by sampling in m.

R e m a r k 6. We expect times for the direct method to grow by a factor of 8 when we double N,
but they are growing faster than that. The number of operations is growing exactly by 8, so the
discrepancy should be in system dependent factors such as pipelining, cache size, and the nuances of
compiler optimization. We cannot hope to account for these factors, so instead we tried to structure
the direct and fast algorithms as much alike as possible, to provide a fair comparison.

5.3.2 The One-Dimensional Algorithm
For the values of N we have tested, the one-dimensional algorithm is performing best in coef-

ficient counts, so we use it for our performance testing. Again we consider the collection of reduced

A Fast Transform for Spherical Harmonics 183

evaluation problems using parities, as stated in Section 2.3. Preliminary timings demonstrated that
at N of size around 256, performing log 2 N FFTs takes far longer than applying the direct method.
We are forced to perform the equivalent of one FFT of length N for each scale we allow. As noted
in Table 2.4, at N this size, choosing a single partition for each m (and even/odd) hardly hurts the
compression rates. Since this greatly reduces the number of FFTs, it is a good trade off. As N
becomes larger, FFTs become relatively cheap, and it will be worthwhile to allow more partitions.
It is possible to modify the search algorithm in Section 5.1.3 to take the cost of additional FFTs into
account when choosing the partitions.

The times for the one-dimensional algorithm using a single partition per m and parity are
shown in Table 2.7. The component operations are:

AC: (Apply Compressed) Apply the matrix in compressed form for all m.

LCTs: Perform the local cosine transforms to return to normal coordinates.

Total: AC + LCTs. Abbreviated as F6 when E = 10 -6 and F12 when E = 10 -12. This takes the
place of the Apply step in Table 2.6.

F6+C, F12+C: The total cost for a transform using this method.

TABLE 2.7

Timing for the One-Dimensional Algorithm, in Seconds, Using a Single Partition per
m (and Parity)

Fast at ~ = 10 -6 Fast at ~ = 10 -12

N AC LCTs Total(F6) F6+C AC LCTs Total(F12) F12+C

64 .0058 .0036 .0093 .012 .0067 .0036 .011 .013

128 .042 .015 .057 .069 .055 .015 .070 .082

256 .28 .072 .35 .44 .37 .066 .43 .52

512 1.6 .28 1.9 2.3 *2.5 .28 *2.8 *3.2

N o t e : A * indicates an estimate by sampling in m.

To ease the comparison of the direct and fast methods, we give ratios of run-times in Table 2.8.

TABLE 2.8

Ratios of Run Times of the One-Dimensional Algorithm vs. the Direct Method

E = 10 -6 E = 10 -12

N Apply/F6 (Apply+C)/(F6+C) Apply/F12 (Apply+C)/(F12+C)

64 0.67 0.76 0.56 0.70

128 1.14 1.12 0.92 0.93

256 1.71 1.57 1.40 1.33

512 *4.47 *3.87 *3.04 *2.78

N o t e : A * indicates an estimate by sampling in m.

184 Martin J. Mohlenkamp

References

[1] Alpert, B. and Rokhlin, V. (1991). A fast algorithm for the evaluation of Legendre expansions, SIAM J. Sci. Stat. Comp.,
12(1), 158-179.

[2] Abramowitz, M. and Stegun, I.A. (1964). Handbook of Mathematical Functions, Vol. 55 of Applied Math Series,
National Bureau of Standards.

[3] Bradie, B., Coifman, R., and Grossmann, A. (1993). Fast numerical computations of oscillatory integrals related to
acoustic scattering, Appl. Comp. Harmon. Anal,, 1, 94-99.

[4] Beylkin, G., Coifman, R., and Rokhlin, V. (1991). Fast wavelet transforms and numerical algorithms, Comm. Pure
Appl. Math., 44, 141-183.

[5] Bennet, N.N. (1997). Signal Analysis of Chirps: Detection, Oscillatory Kernels, and Anisotropic Wavelets, Ph.D.
Thesis, Yale University, New Haven, CT.

[6] Bender, C.M. and Orzag, S.A. (1978). Advanced Mathematical Methods for Scientists and Engineers, International
series in pure and applied mathematics, McGraw-Hill, New York.

[7] Brown, T.M. (1985). Solar rotation as a function of depth and latitude, Nature, 317(17), 591-594.

[8] Coifman, R.R. and Meyer, Y. (1991). Remarques sur l'analyse de Fourier ~t fen&re, C.R. Acad~mie des Sciences,
312(1), 259-261.

[9] Duvall, Jr., T.L., Elowitz, M., and Hill, F. (1989). A test of a modified algorithm for computing spherical harmonic
coefficients using an fit, J. Comp. Phys., 80, 506-51 I.

[10] Driscoll, J.R. and Healy, Jr., D.M. (1994). Computing Fourier transforms and convolutions on the 2-sphere, Adv. in
Appl. Math., 15, 202-250.

[11] Dilts, G.A. (1985). Computation of spherical harmonic expansion coefficients via fit's, J. Comp. Phys., 57, 439-453.

[12] Erd61yi, A., Magnus, W., Oberhettinger, F., and Tricomi, EG. (1954). Tables oflntegral Transforms, Vol. 2 of Bateman
Manuscript Project, McGraw-Hill, New York.

[13] Flannery, B., Press, W., Teukolsky, S., and Vettering, W. (1992). Numerical Recipies in C, 2nd ed., Cambridge
University Press, Cambridge, UK.

[14] Hobson, E.W. (1931). The Theory of Spherical and Ellipsoidal Harmonics, Chelsea, New York.

[15] Landau, L.D. and Lifschitz, E.M. (1977). Quantum Mechanics (Non-Relativistic Theory), 3rd ed., Pergamon Press,
New York.

[16] Matviyenko, G. (1996). Optimized local trigonometric bases, Appl. Comp. Harmon. Anal,, 3(4), 301-323.

[17] Mohlenkamp, M.J. (1997). A Fast Transform for Spherical Harmonics, Ph.D. Thesis, Yale University, New Haven,
CT.

[18] Orszag, S.A. (1986). Fast eigenfunction transforms, Advances in Mathematics Supplementary Studies, 10.

[19] Stein, E. and Weiss, G. (1971). Fourier Analysis on Euclidean Spaces, Princeton University Press, Princeton, NJ.

[20] Szeg6, G. (1975). Orthogonal Polynomials, 4th ed., AMS, Providence, RI.

[21] Thiele, C.M. and Villemos, L.E (1996). A fast algorithm for adapted time-frequency tilings, Appl, Comp. Harmon.
Anal,, 3(2), 91-99.

[22] Wickerhauser, M.V. (1994). Adapted Wavelet Analysis from Theory to Software, Peters, A.K., Wellesley, MA.

Received June 2, 1997
Revision received March 23, 1998

Department of Mathematics, Yale University and
Department of Applied Mathematics, University of Colorado, Campus Box 526, Boulder, CO 80309-0526

e-mail: mjm@colorado.edu

