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Disjointness preserving operators on C*-algebras 

By 

MANFRED WOLFF *) 

1. Introduction. In [1] the author characterized the so-called Lamperti operators on the 
Banach lattice C (X) of all continuous functions on the compact Hausdorff space X as 
a main tool in his theory of Lamperti operators on general Banach lattices. More 
precisely he proved the following result: 

1.1. Proposition. Let  T be a bounded linear operator on C (X ). Assume in addition that 
T has the disjointness preserving property 

(DE) i n f ( l f l , [ g D = O ~ i n f ( [ T f [ , l T g l ) = O  ( f , g ~ f ( X ) ) .  

Then there exists an element h e  C ( X )  and a mapping q~ : X  ~ X being continuous on 

{x : h (x) 4= 0} =: U such that ( T f )  (x) = h (x)f(q~ (x)) holds for  all f ~  C (X),  x E X.  

Thus an operator satisfying (DP) is a weighted composition operator, i.e. of the form 
T = h S where S is a lattice homomorphism of C (X) into the space C b (U) of all bounded 
continuous functions on U, In general S does not  map C (X) into C (X), as the following 
simple example on C([-I, 1]) shows: 

~xf(s in  (2 n/x)) : x 4:0  
r f ( x )  = (0  "x = 0 

Now in C ( X )  in f ( I fh  ]gl) = 0 is equivalent to f g  = 0. In fact in [3] the authors made 
already use of this fact in order to generalize the results to so-called disjointness preserv- 
ing operators on C (X)-moduls. 

Our  aim is to prove an analogue of 1.1 within the framework of arbitrary C*-algebras. 
As we will show we have to replace Cb (U) above by the multiplyer algebra of the principal 
ideal generated by T1 = h in the commutant  of h. We apply our characterization to 
uniformly continuous semigroups (T~)~ > o of such operators. 

Our  main results are to be found in Section 2, their proofs in Section 3, 

A c k n o w 1 e d g e m e n t .  I would like to thank my colleagues Prof. W. Kaup and 
Dr, M. Mathieu for valuable discussions about this subject. 

2. The main results. Let us start with the basic definition. 

2.1. D e f i n i t i o n .  Let ~ ' ,  9Y denote two C*-algebras. A bounded linear operator T 
from d to ~ is called disjointness preserving if the following two conditions are satisfied: 

*) This is part of a research project supported by the DAAD. 
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(1) T is symmetric, i.e. (T(x))* = T(x*) holds for all x in d .  
(2) a, b e d~a and a b = 0 always implies r(a) r(b) = O. 

Here sd~a = {x e d :  x* = x} is the selfadjoint part  o f d .  For  notions concerning C*-alge- 
bras and not mentioned here see e.g. [4, 7, 8]. 

2.2. E x a m p 1 e s. (1) Every *-homomorphism and more generelly every Jordan *-ho- 
momorph i sm is disjointness preserving. (2) Let h s ~  be in the center of B and let 
S : sd -* ~ be a Jordan  *-homomorphism.  Then T:  a ~ h S (a) is disjointness preserving. 

Our  main result says that  every disjointness preserving operator  looks almost  like the 
second example. More precisely let us denote by M '  the commutan t  of the subset M of 
a given C*-algebra ~. In addition let us denote by dd (~) the multiplier algebra of ~. Our  
main result then is the following: 

2.3. Theorem. Let d ,  ~ denote two C*-algebras and assume that ~r is unital. Let T be 
a disjointness preserving operator from d to ~ mapping I~ onto h. Then the following two 
assertions hold: 

(1) T ( d )  is contained in h {h}' = : ~ .  
(2) There exists a Jordan *-homomorphism S from d into d{ (cg) satisfying S 1~ = 1 ~  

such that T f  = h S ( f )  holds for all f e d .  

2.4. Corollary. Assume in addition to the hypotheses of 2.3 that also ~ is unital and that 
moreover T I ~  = h is invertible. Then T maps d into {h}' and there exists a Jordan 
*-homomorphism S from d into {h}' such that T f  = h S ( f )  for all f in d .  

Surprizingly the proof  of our main result shows that the following uniquenes result for 
*-homomorphisms holds also: 

2.5. Proposition. Let U, V be unital *-homomorphisms from the unital C*-algebra ~/ 
into the unital C*-algebra ~.  I f ab = 0 implies (U a) (Vb) = O for all a, b 6 ~ a  then U = V. 

Coming back to our considerations on disjointness preserving operators  let us now 
apply our results to the characterization of norm-cont inuous one-parameter  semi- 
groups of such operators. Let from now on d be a fixed unital C*-algebra. Assume first 
that d is commutat ive,  i.e. d ~ C(X)  where X is compact  and Hausdorff. Let 
T = (Tt) t => o be a norm-cont inuous semigroup of disjointness preserving operators  on d .  
Then it follows from Theorem 3.6 on p. 146 of [6] that (Ttf)  (x) = exp (th(x))f(x) holds 
where h -- (Tt 1x)'[~= o. 

In the non-commutat ive  case we get a much more interesting answer. In fact the result 
above will follow from our generalization. 

2.6. Theorem. Let T = (Tt) t >= o be a uniformly continuous semigroup of disjointnes pre- 
serving operators on the unital C*-algebra ~ .  Then there exists a uniquely determined 
element h in the center Z (d) ,  and also a uniquely determined uniformly continuous group 
S = (St)t~ R of *-automorphisms on ~ such that T t (a) = exp (t h)St(a) holds for all a ~ ~r 
t ~ + .  
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2.7. Corollary. Under the assumptions of the theorem Sttz(~) = iz(~) holds, or in other 
words Tt a = exp (t h). a for all a e Z (d).  

3. The proofs. Before we can give the proofs we have to establish several lemmas. 

3.1. Lemma.  Let X be a compact subset of the unit intervall [0, 1] and let T : C (X) ~ sJ 
be disjointness preserving, Let a < b ~ e < d < 1 be real numbers and set Y =  ]a, b ] 
c ~ X , Z =]c , d ]c ~X ,  Then T " ( I y ) T " ( l z )  = 0. 

Here T" denotes the bi-adjoint of T and the algebra of all bounded Borel functions on 
X is canonically identified with a subalgebra of the second dual C (X)" of C (X). 

( 0  x < a + 2 - ' - * ( b - a )  or x > b + 2  -n 
P r o o f ,  Set 5 . ( x ) = ~ l  a + 2 - ' * ( b - a ) < x < b  

(. linear and continuous elsewhere. 

In an analogous manner  ~ is defined on [00 1] for ]e, d] in place of ]a, b]. Now set 
% = e. Ix, f .  = ~ Ix- By Lebesgue's dominated convergence theorem (e.) ~ Ir, (f.) ~ lz  
with respect to the weak*-topology on C(X)". Moreover,  to every n there exists p(n) 
satisfying e.+pf. = 0 for all p > p(n). This implies 0 = T(e.+p)T(f.) by hypothesis. 
Hence 0 = T"(1 r)T(f .) ,  thus 0 = T" ( l r ) T "  (lz), since multiplication is separately con- 
tinuous for a(C(X)", C(X) ' )  and T" is cr(C(X)", C(X)') - a (d" ,  ,sd') continuous (here 
a (E, F) denotes the weak topology on E with respect to the dual pairing (E, F)). 

By the same methods we show the following lemma which is the basic tool for the proof  
of 2.5. 

3.2. Lemma.  Let X be as before, and let U, V: C(X) ~ d be unitat *-homomorphismso 
I f  ab = 0 implies (Ua) (Vb) = 0 for all a, be C(X)~, then U = V 

P r o o f. Similarly as above one shows U" (I y ) V " ( l z ) =  V " ( I r ) U " ( l z ) = 0  (we ad- 
here to the notat ion of 3.1), This implies U" ( l r ) V "  (1 x - IT) = 0, hence 

= ( t x )  v t r ~ =  (t~,) (1) U"( Iy )  V " ( l ~ ) V " ( l x ) =  U " ( I ~ ) V " ( I ~ ) =  U . . . . . . .  1 ~ V" . 

Now for every n ~ N consider the parti t ion (Xk,,)O -~ k ~ . -  * of X given by 

([0, 1/n]c~X if k = 0 

Xk , ,=~]k /n , ( k+ l ) / n ]c~X  if t < - k - n - l .  

For  each k, n let xk,, e Xk,~ be arbitrary, and let f e  C (X) be arbitrary. Then 

f =  lim ~ f(Xk,,)lx~,~, 
n~c~ k ~  0 

hence U f =  Vf  by (1). 
Now we can prove our first characterization of disjointness preserving operators:  

3.3. Lemma.  Leg J ,  ~ be unitat C*-atgebras and let T be a disjoinmess preserving 
operator from ~r to ~ satisfying T t  ~ --- 1~. Then T is a Jordan *-homomorphism. 
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P r o o f. Recall that the Jordan product on ds~ is defined by 

aob = (ab + ha)~2 = ((a + b) 2 - (a - b)2)/4, 

Thus we have only to show (Tf) 2 = r ( f  2) for all f satisfying 0 =<f_-< 1~. For such an f 
the C*-algebra generated by f and 1~ is isomorphic to C(X),  where the spectrum 
a ( f )  = X o f f  is a compact subset of [0, 1]. 

Using the partitions (Xk,,) of the proof of 3.2 we obtain 

T 9 = lim ~ g(Xk,n) T"( lx , , .  ) 
n ~  k = O  

for all g e C ( X ) .  
Lemma 1 implies T " ( l x ~ , . ) T ' ( l x , , . ) =  T"(lx~,.)6kl (6k/ Kronecker symbol). This 

gives T f  2 = (Tf)  2 by an easy calculation wheref  is identified with the identity x -~ x on 
X by the construction of X. 

3.4. P r o o f o f 2.5. As in the previous proof we choose f ~  ds.  between 0 and 1~, then 
we identify the algebra generated by f and l d  with C(X)  and apply 3.2. The remainder 
is clear. 

3.5. P r o o f o f 2.3. (I) As in the previous proofs we choose an arbitrary f e  d~, 
between 0 and 1~, and we identify the C*-algebra generated by f and l d  with C(X) ,  
where X = a ( f )  c [0, 11. 

Moreover we consider also the partitions (Xk,,) of X and arbitrary points Xk, . e Xk, . as 
in the proof of 3.2. 

From 
n 

1 = ~ lx~, .  
O 

we get 

h := T1~r = ~. T" lxk,. , 
O 

hence by 3.1 

t t  1 i t  l /  h. T ( x , , . )  = E T  ( lx . , . )  �9 T ( l x , . . )  = (T " ( l x , , . ) )  2 

and similarly T" (Ix,,.) h = (T" (ix,,,~)) 2 for all / and n. This implies that h commutes with 
all T"(lx,,.), hence with T f  (see the proof of 3.3). Since f was arbitrary this gives 
T ( d )  = {h}'. 

(II) For g = Ec~klxk,. we obtain by 3.1 

(T" (g))2 = E ~ (T" lx. . . )  2 = h T" (g2). 
k 

Now using f =  l im~f(Xk,n) lx~ we get 
n k , n  

(Tf) 2 = h T(f  2) 

which in turn implies T(~r ~ {h}'h {h}'. So assertion (1) follows. 
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(III) Set cr = h {h}', and for each n > l/El h I[ in N denote by p. the central projection in 
cr (given by the spectral decomposit ion of h) corresponding to the subset 
{~e~(h)  : I~1 >= ~-}. 

Then h, :=  p,h  is invertible in p, ~f" = :c~, and T. given by T, (x) = p, T(x) is disjoint- 
ness preserving satisfying T , I ~  = h,. Thus by 33 S,, defined by Snx = h2 ~ r~x, is a 
Jordan *-homomorphism from ar into ~ , .  Now P~, given by P~ y = Pn Y defines a sequence 
of contractions from ~ into cg,,, which converges strongly to the identity on ~gl But then 
(T~) converges strongly to T o n  sd. 

(IV) Let ~ be a free ultraftlter on N. Since bounded sets in W' are ~r (~", ~ ' )  - relatively 
compact,  by S x  = o-(cr cr ') - l iem(Snx ) there is defined a bounded linear operator  

S from sd into W'. S has the following properties: 

(1) S ( 4 ~  c %'..  
For  C"  is a (oK", oK') - closed by [81, 1.7.1. 

(2) s (L , )=  1~_ ~ .  
For  cg = hff  implies Iim p . x  = x for all x in ~ .  

n 

(3) r(x)  = hS(x)  for all x e d .  
For  h S. (x) = T, (x) by definition. So the assertion holds by step III.  

(4) S ( d )  c d [  (~), 
For  let z e ~  arbitrary. Then S (x )h z  = T ( x ) z e ~ ,  hence S ( x ) h ~  c_~  and (4) 
follows by [7], 3.12.1. 

(5) S is disjointness preserving. 
For  let a, b e ds ,  satisfy a b = 0. Then h2S (a)S (b)= T ( a ) T ( b ) =  0 by hypothesis. 
But since ~ = h ~ we obtain that y e d/[ (~) ~ h 2 y is injective. 

(V) The theorem follows by IV, (1)-(5) above. 

3.6. P r o o f o f 2.6 a n d 2.7. Since by hypothesis t ~ Tt is continuous with respect to 
the operator  norm there exists a bounded linear operator  A on d ,  such that T~ = exp (tA). 
So we may extend this mapping  to all of R.  

Now by 2.3 for every t > 0 there exists a Jordan *-homomorphism S t such that  
T~ = MtSt ,  where M~ denotes multiplication by ht = Tt 1. Since T t is bijective so is Mt (i. e. 
h t is invertible) as well as St. Since t--* Tt and t ~ M t are (obviously) eontinuously 
differentiable (with respect to the operator  norm), so is t ~ S~ = M ]  ~ Tt. In particular 
each S t lies in the connected component  of the identity hence each S~ is even a *-automor-  
phism (apply [2], 7.4.9 on p. 163 to the bi-adjoint of St). Finally (St)t=>0 is a semigroup. 

This follows easily from the following set of equations: 

(1) h,,+~ = T~+~(Id) = T~(T~I,  ) = h~S,(h~) 

(2) T,+~(a) = h,+~S,+~(a) -- h~S,(h~)S~+~(a) 

(3) T,, +,~ (a) = T,, (T,, (a)) = h,, S,, (h~ Sv (a)) = h,, S,, (h~) S,, S. (a). 
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The generator  B of (St) is a bounded  der ivat ion hence it vanishes on Z ( d )  by [8], 4.1.2). 
Moreover  h t e Z ( d )  (see above) and thus Z ( d )  is invariant  under T. (1) above shows 
that  (h0 is a cocycle with respect to Stlz(.~)= Iz(~). Hence h, = exp ( th )  where 
h = (hz)'lt: o = A1 d .  

3.7. F i n a 1 r e m a r k. The proof  of Theorem 2.3 (cf. step I I I  of 3.5) enables us in 
principal  to characterize those disjointness preserving operators  which are compact .  F o r  
if T1 d is invertible then S has to be compact  and since Jordan  *-homomorphisms are 
open onto their range S has to be of finite rank. Unfortunately it is cumbersome to 
characterize such an opera tor  in the non-commutat ive  case contrary  to the commutat ive  
case. So we are not  able to generalize the results of Kamowi tz  [5] in any reasonable 
manner.  
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