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A graph with at least 2k vertices is said to be k-linked if, for any choice Sl , . . .  , Sk, t l , . . .  ,t  k 
of 2k distinct vertices there are vertex disjoint paths P1, . . . ,  Pk with Pi joining s i to ti, 1 < i < k. 
Recently Robertson and Seymour [16] showed that  a graph G is k-linked provided its vertex 

connectivity t~(G) exceeds l O k l v / ~ k .  We show here tha t  ~(G)>_22k will do( 

1. I n t r o d u c t i o n  

According to Menger's theorem, if a graph is k-connected then, for any choice 
of 2k distinct vertices Sl , . . .  ,sk, t l , . . .  ,tk there are vertex disjoint paths P1,. . .  ,Pk 
joining {Sl , . . . ,Sk}  to {t l , . . . , tk}.  Menger's theorem gives no information as to 
which si is joined to which ti; the graph is said to be k-linked if it has at least 
2k vertices and for any choice of distinct Sl , . . .  , s k , t l , . . .  ,tic we can always specify 
that  Pi joins si to ti, 1 < i < k. Observe that any k-linked graph G has vertex 
connectivity n(G) at least 2k - 1, for if S is a set of 2k - 2 vertices separating a 
vertex Sl from a vertex tl ,  then with { s2 , . . . , sk , t 2 , . . . , t k}=S  the paths Pi cannot 
be chosen. 

We define the value of the function f (k)  to be the smallest value of the vertex 
connectivity n(G) of the graph G which ensures that G is k-linked. Of course, 
it is not immediately clear whether such a function does in fact exist. Indeed, 
Thomassen [20] showed that  there is no such function for the analogous digraph 
problem. However, Larman and Mani [12] and Jung [7] noticed that  if ~(G) > 2k 
and if G contains a topological complete graph of order 3k then G is k-linked. Here 
a topological complete graph of order p, or TKp,  comprises p vertices {Vl,...,Vp} 

and (~) pairwise vertex disjoint paths Pi,j, 1 < i < j ,p,  such that  Pi,j joins vi 
to vj. Mader [13] was the first to prove that G contains a TK3k if t~(G) is 

sufficiently large, which implies the existence of f (k) .  Later, in [15], he showed that  

if e(G)>>_ (3.2p-3-p)IG I then G contains a TKp,  and therefore f(k)<< 6 .23k -3 -6k .  
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The upper bound just cited for f(k) is a far cry from the known lower bound. 
It is immediate that  f(1) = 1, and for the rest of the paper we will assume k >_ 2. 
Jung [7] characterized 2-1inked graphs and established that  f (2) - -6 .  From this it 
follows that f(k) >_ 2k+2, since by joining two new vertices to every vertex of a graph 
which is not k-linked we obtain a graph which is not (k + 1)-linked. Thomassen 
[19] extended Jung's characterization (the same extension is stated without proof 
in Seymour [17]) and conjectured that f ( k ) =  2k+ 2, though later it was noticed 
that  the graph K3k_ 1 with k independent edges removed shows that  f ( k )>  3k -1 .  
Knowledge is much better of the analogous situation in which edge-disjoint rather 
than vertex-disjoint paths are required; Huck [6] proved an upper bound only one 
greater than the lower bound conjectured by Thomassen to be exact. 

Recently the upper bound on f(k) has been dramatically reduced. Koml6s 
and Szemer~di [9] made a delicate investigation of the expansion properties of 
graphs and thereby proved that, for each ~ > 14, there exists a constant c~ such 

that  if e(G) > c~p2(logp)~[G[ then G contains a topological /(p; by the argument 

above this gives a much reduced bound for f(k),  namely O(k2+~). In a different 

vein, Robertson and Seymour [16] proved that  there is a O(IGI 3) algorithm for 
determining whether a graph G is k-linked (for fixed k; the problem becomes NP- 
complete if k be allowed as an input parameter to the problem, as was shown by 
Karp [8]). In the course of their proof they show, essentially, that  the observation of 
Larman and Mani and of Jung remains true under the very much weaker condition 
that G have a complete minor of order 3k. As usual, given a graph H with 
V(H) = {Vl,...,Vh} , we say that H is a minor of G, denoted by G ~- H, if G 
contains disjoint subsets of vertices V1,..., Vh such that  G[V/] is connected for every 
i and G contains a V / -  Vj edge whenever vivj e E(H). Now Kostochka [11] and 

Thomason [18] determined, to within a constant factor, the number of edges in G 

needed to guarantee that G ~-Kp, and their result implies that  f ( k ) = 0  ( k v / l ' ~ ) .  

We prove here that  ~(G) > 22k is enough to ensure that  G be k-linked. The 
proof is similar to that  of Robertson and Seymour, except that  we require only that  
G have a dense minor, rather than a complete one. The reason this modification 
is a useful one is that  dense minors are considerably easier to come by; indeed, the 
number of edges needed is only linear in k, as shown by the next lemma~ and thus 
the logarithmic factor in the previous estimates for f(k) can be removed. In the 
lemma, the number/3 is a constant whose value slightly exceeds 0.37. As usual, 
5(H) is the minimal degree of H. 

I, emma 1. Let 0 < t3 < 1 be the root of the equation 1 =~(1+1og(2//3)) and let k >_ 3 
be an integer. Let G be a graph of size e(G) > klG [. Then G~- H, where H is some 
graph satisfying IH[ <_ k + 2 and 2fi(H) _ [H I + [/3k] - 1. 

This lemma was proved originally by Thomason [18]. The statement of the 
lemma was slightly different in [18] to that  given here. The lemma is restated, with 
proof, exactly as above by Bollob~s and Thomason [2], in the course of a proof 
of a conjecture of g a d e r  [13] and Erd6s and Hajnal [5]. Their conjecture states 
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tha t  there is a constant c, such that  every graph G with more than cp2= IGI edges 

contains TKp; in [2] it is shown that  256p2[GI edges is enough. The conjecture 

has also been proved by Koml6s and Szemer~di [101, following a refinement of 

their method mentioned above. Now it is easily verified that  a (P+l)-linked graph 
contains a TKp. Hence as a consequence of the present result about  k-linked 

graphs (and a theorem of Mader [14] that  a graph G with e(G) > 2klG I contains 
a k-connected subgraph) we obtain another proof of the conjecture, with a bet ter  
constant, though the proof is less straightforward than that  in [2]. 

2. L i n k i n g  a n d  d e n s e  m i n o r s  

In this section we shall show that  a graph is k-linked if it is well-connected 
and has a dense minor. We need first some terminology. Two subgraphs C and D 
in a graph G are said to meet if V(C)N V(D)~O. They are said to be adjacent if 
they do not meet but there is an edge between them, with one endvertex in C and 
the other in D. Given a subset S C_ V(G), an S-cut is a pair (A,B)  of subsets of 
V(G) such that  V(G) = A U B, S C_ A and G has no edge joining A -  13 to B - A. 
The order of the S-cut is IANBI, and the S-cut is said to avoid the subgraph C if 
ANV(C)  =9. 

Lemma 2. Let d> O, k >  2 and l ~ d + [3k/2J be integers. Let G be a graph 
containing vertex-disjoint non-empty connected subgraphs C], . . . ,  C l such that each 
Ci is adjacent to all but at most d other Cj's. Suppose that S =  { s l , . . . , s k }  is a 
set of k vertices such that there is no S-cut of order less than k which avoids d+ 1 
of the subgraphs C1,.. . ,  C/. Then G contains vertex-disjoint non-empty connected 
subgraphs D1,.. . ,Dm, where m = l -  [k/2J, such that for each i, 1 < i < k, the 
subgraph Di contains si and is adjacent to all but at most d of the subgraphs 
Dk+ l , . . . , Din. 

Proof. The lemma would follow more or less immediately from Menger's theorem 
if all the subgraphs Ci were single vertices. It  is therefore natural  to a t t empt  to 
prove the lemma in general by considering a counterexample which is minimal with 
respect to subcontraction (one of the standard proofs of Menger's theorem follows 
this route, see Dirac and Schuster [4]). However, in the familiar pa t tern  of proof by 
induction, we are forced to strengthen slightly the s tatement  of the lemma in order 
to make the induction step work. We therefore claim for the subgraphs Ci not that  
they are connected and each adjacent to all but at most d other Cj's, but that  

(*) each Ci is either connected or each of its components meets S; moreover each 
Ci is adjacent to all but at most d of those Cj's, j%i, which do not meet S. 

Let us suppose, then, that  the lemma as modified by (*) is false, and that  we 
have a graph G along with subgraphs C1 .. . .  , C l and a subset S forming a minimal 
counterexample. Notice that  no vertex v E G is isolated, for otherwise if v ~ S then 
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the graph G -  v is a smaller counterexample, and if v C S then there is an S-cut of 
order k - 1  avoiding l - k  > d +  1 of the Ci's, namely the S-cut (S ,V(G)-  {v)). 

Suppose that  (A,B) is an S-cut of order k avoiding d + l  of the Ci's. Let 

S' = A n B let G r -- G[B] - E(S') and let C~ = Ci N G t, 1 < i < I. Observe tha t  if 

(A, B) avoids Cj then i C a - C j ,  and that  there are at least d + 1 subgraphs Cj for 

which this holds. From this observation it follows, first of all, tha t  every other Ci 
is adjacent to at least one of these Cj's, and hence, in particular, C~ is non-empty, 

1 < i < I. Secondly, any component of a G~ not meeting S t is a component  of Ci, 
so each C~ is either connected or each of its components meets S t. As any Cj. not 

meeting S / is equal to Cj, it follows that  each Ci, and hence each C~, is adjacent to 

all but at most d of those Cj, jr which do not meet S t. Therefore the s ta tement  

( .)  holds true for the C~'s and S t. Furthermore there can be no S ' -cut  (At, B ') in 

G t of order less than k which avoids d + l  of the t, C~ s; for otherwise (AUX, B t) would 

be an S-cut in G of order tess than k avoiding d + 1 of the J' C~ s. Finally, notice 

that  the graph G[A] contains no S-cut (X t, B tt) of order less than k with S r C B",  

for otherwise (Att,BttUB) would be an S-cut in G of the forbidden kind. Thus, by 
Menger's theorem, there are disjoint paths P1,...,P k in G[A] with Pi joining si to 

P is some labelling of S t. where 

We now claim that  if (A,B) is an S-cut of order k avoiding d + l  of the Ci's 
then (A,B)= (S,V(G)) and E(S)=~. For otherwise G t would be smaller than G, 

and so, since G t, S t and the C~'s satisfy the hypotheses of the lemma as modified 

by (*), there would exist in G'  subgraphs D], . . . ,D~m satisfying the conclusions of 

the lemma. But then the subgraphs D1,...,Dm of G, defined by Di = D~ U Pi for 

1 < i < k and Di = D~ for i > k would show that  G is not in fact a counterexample 
to the lemma, contradicting our assumption. 

The remainder of the proof is straightforward. The claim just proved implies 
at once that  every edge e of G joins two of the Ci's, because otherwise the graph 
obtained by contracting e would be a counterexample (we already showed that  e 
cannot lie inside S, and no forbidden S-cuts can arise by contracting e). Since no 

vertex is isolated we can conclude that  V(G)= U v(C/ ) ,  and that  [Cil = 1 unless 
i----1 

v(coc_s. 
Let C = U{V(Ci): ]Ci[ > 2}, so C c_ S. There are tV(G)t -]C I subgraphs Ci 

with Icd= t and at mo~t LIcl/2j with lCii > 2. Hence l_< iV (G) i -  ICl + klCi/2j, 
so I v ( a ) l -  [cI > z -  [~/2J. we ~se r t  tha t  there is a set I of ICI independent 
edges, each edge having one end in C and one in V(G)-S.  Indeed, HaWs Theorem 
tells us that  if I does not exist then there is a subset X C C whose neighbour set 
YC_V(a)-s satisfies Igl<lxl, Let A = S U Y  and B=V(a)-X. Then (A,B) is 
an S-cut of order IsuYI- IXl <k, and the number of Ci's avoided by this S-cut is 
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at least 

I V ( G ) I  - I t " l  - 15:1 _> I v ( a ) l  - I X I  + 1 - k > l - L 3 k / 2 ;  + 1 > d +  1, 

contrary to our assumption. 
But now we can construct appropriate subgraphs D1,... ,Din, of G as follows: 

if si E C let Di be formed by the edge of I meeting si, if si ~ C let Di consist 
of the single vertex si, and let Dk+l, . . . ,Dm be subgraphs of order one formed 
by 7 n -  k of the vertices of V(G) - S not incident with edges of I. Note that  
IV(G) - S I - t l I  = IV(G) - C t - k > l -  ~3k/2J _> m -  k, so there are enough vertices to 
make this choice. Each of Dk+l,. . . ,  Dm is identical with one of the Ci's not meeting 
S, so each Di is adjacent to all but at most d of Dk+l, . . . ,Dm, contradicting the 
fact that  G is a counterexample to the (modified) lemma. II 

The condition in the statement of Lemma 2 concerning forbidden S-cuts is 
somewhat strained; in applications it is reasonable to replace it with the stronger 
but much more natural condition that the vertex connectivity of the graph be at 
least k. It is in this form that we present the next theorem. 

In order to state the theorem, we introduce a slight generalization of the 
definition of k-linked graphs. A graph G is said to be (k,n)-knit if 1 < n < k < [G I 
and, whenever S is a set of k vertices of G and $1,. . . ,  St is a partit ion of S into t > n 
non-empty parts, then G contains vertex-disjoint connected subgraphs F1,...,Ft 
such that Si C_ V(Fi) , 1 < i  <t .  Clearly, a (2k, k)-knit graph is k-linked. 

Theorem 3. Let G he a graph with vertex connectivity ~(G) > k such that G ~ H, 
where H is a graph with 2 5 ( H ) >  IHt+  Lsk/2j - 2 - n .  Then G is (k,n)-knit. In 
particular, i[ ~(G) > 2k and 25(H) > IHI + 4 k - 2  then G is k-linked. 

Proof. Let S = { s l , . . . , s k } ,  let l = l H I  and let d = l H J - l - 5 ( H ) .  T h e n l = l H l =  
2 d +  2 -  Ig l  + 25(H)  >_ 2 d +  Lhk/2J - n, so the conditions of Lemma 2 are satisfied, 
the subgraphs Ci being those subgraphs of G contracted in forming H. Therefore 
there are subgraphs D1, . . . ,Dm,  as described therein. Observe that,  for each pair 
Di, Dj with l _ < i < j _ < k ,  there are at least m - k - 2 d > l - [ 3 k / 2 J - 2 d > k - n  
subgraphs amongst Dk+l , . . .  ,Din that  are adjacent to both Di and Dj. 

Let $1 . . . .  ,St be a partition of S into t > n nonempty parts; we may assume 
that there are numbers r 1 - - 0 < r  2 < . . .  <rt+l --k such that  Si ={Sr :ri < r<_ri+l}, 
1 < i < t. Since for each r there are k - n  subgraphs among Dk+l, . . . ,Dn, that  
are adjacent to both Dr and Dr+l ,  we may further assume that the notation has 
been chosen so that Dk+ r is adjacent to Dr and Dr+l for the k - t  values of 
r E {j : 1 < j < k, j r  rt+l }. Then the subgraphs 

F i = U { D r  : r  i < r S r i+z}  U U { D k + r  : r  i < r < r i+l} 

are connected, vertex-disjoint, and Si C V(Fi), 1 < i <  t. Therefore G is (k,n)-knit, 
as claimed. | 

Theorem 3 implies, in particular, that if a(G) >_ 2k and G ~- K4k then G is k- 
linked. In this case, however, when d = 0, a more careful analysis is possible, and 
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Robertson and Seymour [16] thereby showed that  G ~-K3k will do, as mentioned 
earlier. 

We remark that the method we used to join D1,. . . ,  Dk in order to produce the 
subgraphs F1,. . . ,  F~ was quite profligate in its use of subgraphs from Dk+l,.. .  , Din. 
The construction could be made much more efficient by making use of the fact that  
each Dj with j > k is adjacent to many Di's. However no amount of effort spent 

on these refinements would reduce the lower bound for 26(H) by more than k. 

3. H i g h l y  l inked  g r aphs  a n d  s u b g r a p h s  

The possibility of applying Theorem 3 when H is not complete bears fruit 
when we make use of Lemma 1, which shows that  such minors H will arise in 
graphs of only moderate average degree. We can thence show that  quite a small 
value of vertex connectivity suffices to guarantee that  a graph be k-linked. For each 
of the sufficient conditions given below for a graph to be k-linked there is a similar 
condition for it to be (k,n)-knit, though we shall not give these other conditions 
explicitly. 

Theorem 4. Let G be a graph with vertex connectivity n( G) > 22k. Then G is 
k-linked. 

Proof. Since ~(G) >_ 22k, and so e(G) 7_ 11k[G[, it follows from Lemma 1 that  G 
has a minor H with 26(H) _> ]H I § [llj3k] - 1. Since • exceeds 0.37 in value, we 
have 26(H) >_ IH[ + 4 k -  1. It now follows immediately from Theorem 3 that  G is 
k-linked. | 

Mader [14] proved that a graph G of size greater than ( 2 k -  3)(IG I - k - 1) 
contains a k-connected subgraph. In particular if e(G) > 44k[G I then G contains a 
22k-connected subgraph. In view of this, Theorem 4 has the following immediate 
consequence. 

Coronary 5. If G is a graph with e( G) >_ 44k[G] then G contains a k-linked subgraph. 

We are now able to give a bound on the size of a graph ensuring that  it will 
contain a topological Ifp. In fact, we give a more general result concerning the 
existence of a topological H. 

Theorem 6. Let H be a graph with vertices vl, . . . ,VIH ]. Let G be a graph with 

n( G) _>22e(H)+ ]H[ and let Ul,...,U[H [ be distinct vertices of G. Then G contains 

e(H) pairwise vertex disjoint paths Pi,j with Pi,j joining ui to uj whenever vivj C 
E(H). 

Proof. Let U =  {ul,...,U]H]}. Since 5(G-E[U])> 2e(g) ,  in the graph 6 - U  we 

may select disjoint subsets YI,..., Y[H[ of vertices such that  ]1~[ =dH(vi) and every 

vertex of 1~ is joined to ui, 1 < i < [H I. Now a ( G -  U) > 22e(H) and so by Theorem 
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4 the graph G - U  is e(H)-linked. Therefore it is possible to find e(H) vertex 
disjoint paths linking the sets Y1,...,Y~HI so as to form the paths Pi,j claimed in 

the theorem. II 

A special case of Theorem 6 can be considered to be an extension of a theorem 
of Dirac. In 1960 Dirac [3] proved that  any k _> 2 vertices of a k-connected graph 
are contained in some cycle. Theorem 6 implies that  if our graph is 23k-connected 
then we may specify the order in which our vertices appear on the cycle. It  would 
be of interest to determine the smallest constant that  would do instead of 23. 

The next corollary follows at once from Theorem 6 and Mader 's  theorem [14]. 

Corollary 7. If  e;( G) > l l p  2 or i re (G)  > 22p21GI then G D T Kp. 

This corollary improves upon a recent result in [2] where it was shown that  

G D TKp provided e(G) >>_ 256p21GI. 
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