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It is shown that there exists a positive c so that for any large integer m, any graph with 
2m 2 edges contains a bipartite subgraph with at least m 2 - t -m/2+cv /~  edges. This is tight up to 
the constant c and settles a problem of ErdSs. It is also proved that any triangle-free graph with 
e > 1 edges contains a bipartite subgraph with at least ~ $de4/5 edges for some absolute positive 
constant d .  This is tight up to the constant c ~. 

1. I n t r o d u c t i o n  

For a graph G, let f(G) denote the maximum number of edges in a bipartite 
subgraph of G. For a positive integer e let f(e) denote the minimum value of f(G),  
as G ranges over all graphs with e edges. Thus, f(e) is the largest integer f such 
that  any graph with e edges contains a bipartite subgraph with at least f(e) edges. 
Edwards [4], [5] proved that for every e 

e - 1  + v / - ~ +  1 
(1) f(e) >_ -~ + 8 ' 

and noticed that  this is tight in infinitely many cases. In [7] Erd6s conjectured that  
the limsup of the difference 

tends to infinity as e tends to infinity, and offered 50 dollars for a proof or disproof. 
In the present paper we prove this is indeed the case, in the following more precise 
form. 
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Theorem 1.1. There exists a posi t ive constant  c and an integer no so that for every 
even integer n > n o ,  i r e = n 2 ~ 2  then 

e 
I(e) >_ + v'718 + ee 1/4. 

We also observe that this estimate is tight in the sense that there is a positive 
constant C so that 

(2) 
e 

f(e) _< ~ + ~ + Ce 1/4 

for every e. 
Erd6s and Lov~sz (see [6]) showed that if G is a triangle-#ee graph with e 

edges, then 

f(G) > e /2+~ (e 2/3 / l_oge ~1/3~ 
- \ loglog e ]  ] " 

(Here and in what follows all logarithms are in the natural basis 2.71828..) This 
has been improved by a logarithmic factor by Poljak and Tuza [14], and further 
improved by Shearer [16], who proved that if G is a triangle-free graph with e edges 
then 

e 
(3) f ( a )  > ~ + ~(e3/4). 

In the next theorem we improve the exponent 3/4 to 4/5 and show that this is 
tight. 

Theorem 1.2. There exists  a constant  c r > 0 such that for every triangle-free graph 
G with e > 1 edges 

e cte4/5 (4) f ( c )  > + 

This  is t ight up to the mult ipl icat ive constant  in the sense that there exists  a 
constant  C t > 0 so that  for every e there exists  a triangle-free graph G wi th  e edges 
sat is fying 

e Cle4/5 f ( G )  <_ -~ -4- . 

The proof of Theorem 1.1 is presented, together with some related remarks, in 
the next section. Theorem 1.2 is proved in Section 3 by combining the arguments of 
Shearer with some additional combinatorial ideas together with a simple eigenvalue 
technique and a known construction of triangle-free graphs with extremal spectral 
properties given in [1]. The final section contains some concluding remarks and 
open problems. 
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2. T h e  p r o o f  of  T h e o r e m  1.1 
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For any two disjoint subsets of vertices U and W in a graph G let e(U, W) 
denote the number of edges between U and W, and let e(U) denote the number 
of edges in the induced subgraph of G on U, For m _> r, let t (m,r )  denote the 
number of edges in the complete r-partite graph on m vertices with nearly equal 
color classes, that is 

l _ i < j < r  

We need (a special case of) the following simple lemma, proved by various re- 
searchers, including Locke. Since the proof is very short we reproduce it here, for 
completeness. 

Lemma 2.1. ([11, Corollary 1], see also [3], [10].) Let G= ( V,E)  be an m-colorable 
graph with e edges. Then G contains an r-colorable subgraph with at least e. 
t ( m , r ) / ( ~ )  edges. In particular, i f  V is 2s-colorable the,, f ( C )  >_ 2/--~_~ e = e/2 + 

e / ( 4 s - 2 ) .  

Proof. Fix a partition of V into m independent sets I/1,..., Vm, and let us partition 
these sets into r classes randomly, where the class number i contains precisely 
[ ( m + i - 1 ) / r j  sets 1/3.. For each fixed edge of G, the probability its ends lie in 

distinct classes is precisely t (m,r) / (r~)  and hence, by linearity of expectation, the 
expected number of edges in the r-partite subgraph of G whose color classes are 

r m the classes above is e. t (m,  ) / (2 ) ,  completing the proof. | 

Remark. A special case of the above lemma implies that any graph with e = 
(r2n) edges contains an r-partite subgraph with at least (~)n 2 edges. Indeed, the 
chromatic number of such a graph cannot exceed m --- rn, since in any proper 
coloring with a minimum number of colors there is an edge between any two distinct 
color classes, and the desired result follows. This (for r = 3) settles another problem 
mentioned in [7]. The same argument yields a short proof of (1). This has also 
been observed, independently, by Hofmeister and Lefmann [9]. A different short 
proof of (1) has recently been given in [8]. 

Proof of Theorem 1.1. To simplify the presentation, we make no at tempt to opti- 
mize the value of the constant c > 0 in our proof. Let n be a (large) even integer, 

and let G be a graph with e = n 2 / 2  edges. Fix a positive small c (e.g., e=0.01),  
and consider two possible cases. 

Case 1. G is 2s-colorable for some integer s, with 2s < n-ex/-n-/-1. 
In this case, by Lemma 2.1, 

e + e > e + n 2 ~ e + e ~ / ~ +  e21/4 
f(G) 5 4s--LZ-2 - 4n T  1/4' _> 
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implying the desired result. 

Case 2. The chromatic number of G is at least n - c v / n .  
Let n - k  be the chromatic number of G, where k is nonnegative (as G has 

less than (n~l) edges), and k < cv/-n. Let H be a vertex critical n - k  chromatic 

subgraph of G. Then the minimum degree in H is at least n - k - i > n - e V ~ -  1, 
and hence its number of vertices is at most n+2ex/-n. It follows that  in any proper 
coloring of H by n -  k colors there are at least n -  4cv/n color classes of size 1. 
Moreover, any two color classes are connected by an edge, implying that  H, and 
hence G, contains a clique on n - r  vertices, with 0 < r < 4ev/'ff. Let U denote the 
set of vertices of this clique, and let W denote the set of all the remaining vertices 
of G. Note that. 

ft 2 r(r + 1_______~) 
e(U) = (2r + 1)2 + 

2 2 ' 
and hence 

n /.2 _ r 
(5) e ( W ) + e ( U , W ) = e - e ( U ) - ( 2 r + l ) n 2  r ( r2  §  = r ( n - r ) + ~ + - - 2  

Since r < 4evfn and e is small, the number of edges incident with the members of 

W, which is e(W ) § e( U, W) = r(n - r) + n/2 + (r 2 - r) /2 differs from any integral 
multiple of n - r  by at least, say, n/4. (In particular, there are at least n/4 edges 
incident with the vertices in W.) 
If e(W)>__ n/32 then, by Edwards' result (1), we can partition W into two classes 

W1 and W2 so that e(W1, W2) >_ e ( W ) / 2 + e ( x / ~ + O ( 1 )  >_ e(W)/2+x/Z/16+O(1). 
Similarly, one can partition the set of vertices of the complete graph U into two 
classes U1, U2 so that  

e(U1, V2) > e(V)/2 + ~ + O(1) > e(C)/2 + ~/e/8 - cv~  + O(1). 

It follows that 

f (a)  > Max {e(U1 u W l ,  U 2 k.I W2) , e (V l  k.J W2, U2 kJ W l )  } 

> e(U)/2 + e(W)/2 + e(W, U)/2 "4- ~/e/8 - ex/'-n + x/~/16 -4- O(1) 

>_ e/2 + ~ + n(eV4), 

as needed. 
It remains to consider the case e(W)< n/32. In this case e(U, W ) = r ( n - r ) +  

n/2+(r2-r) /2-e(W) differs from an integral multiple of n - r  by at least n/5. Let 
vl,...Vn-r be the vertices in U, and let d i denote the number of edges from W to 
vi, where dl <d2 <~... <dn-r. Define 

U1 = {vl , . . . ,  VL(n_r)/2 ] }, U2 = {VL(n_r)/2J+l,..., v~_~}. 

We next show that  by the above assumption the number of edges from W to 
U2 exceeds e(U,W)/2 by at least n/lO, Let d denote the average value of the 
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numbers d i and note that this number differs from an integer by at least n 

d[(n_r)/2 j > -d then each vertex in U2 has at least d + 5 - ~  neighbors in W, 

and the desired estimate follows. Otherwise, each member of U1 has at most 

- ~ neighbors in W, and hence e(U1, W) <_ e(U, W ) / 2 -  n/lO implying that 

e(U2,W) >_e(U,W)/2+n/lO, as needed. 
Therefore, in this case 

f(G) > e(U1 u l/V, U2) > e(U1, U2) + e(U, I/V)/2 + e(W)/2 - e(W)/2 + n/lO 

>_ e/2 + V/77 g - ev/-n - n/64 + n/lO + O(1), 

showing that in this case f(G) is in fact much bigger than needed and completing 
the proof. II 

We close this section with the easy proof of (2). Write e in the form 

where the numbers ni are chosen one by one, each ni being the maximum possible 
integer for which 

An easy computation shows that the union of the k complete graphs Kni has e 

edges and does not contain a bipartite graph with more than e/2+ V / ~ + O ( e  U4) 
edges. 

3. Triangle-free graphs 

In [16] Shearer proved that if G= (~  E) is a triangle-free graph with n vertices 
and e edges, and if all,d2,... ,dn are the degrees of its vertices, then 

n 

e 1 Z V/-~i " 
(8) f(G) >> -~ + ~ i=1 

As a consequence he showed that under the same conditions 

(9) f(G) >_ -~ + e 3/4, 

and that if G is d-regular, then 

(10) f(G) > -~ + nv~. 
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Combining (8) with some additional ideas we next prove Theorem 1.2. We 
make no at tempt to optimize the absolute constants in our estimates. 

Proof  of Theorem 1.2. Let G = (V, E) be a triangle-free graph with I V i - -n  vertices 

and IEI =e edges. Define d =  Le2/Sj. We consider two possible cases depending on 
the existence of dense subgraphs in G. 

Case 1: G contains no subgraph with minimum degree at least d. In this case, as 
is well known, there exists a labeling vl , . . . ,Vn of the vertices of G so that  for every 
i, the number of neighbors vj of vi with j < i is strictly smMler than d. (To see 
this, let u be a vertex of minimum degree in G, define vn=u, delete it from G and 
repeat the process). Let d+(vi) denote the number of neighbors vj of v i with j < i  

and let d(vi) denote the total degree of vi. Then 

n 

_ o _ 

This, together with Shearer's result (8) implies (4), as needed. 

Case 2: There exists a subset W of m vertices of G so that the induced subgraph H 
of G on W has minimum degree at least d. We first prove that in this case H (and 

hence G) contains an induced subgraph Ht on a set W' of vertices of G, with at 

least rod~4 edges, which is r-colorable for r = [2m I To see this, let R be a random d �9 
subset of at most r vertices of H obtained by picking, with repetitions, r vertices 
of H, each chosen randomly with uniform probability. Let u be a fixed vertex of 
H. The probability that u does not have a neighbor in R is 

1 d ) < exp{-(d/m)r} < 1/4, 

where dR(u) denotes the degree of u in H. It follows that  for every fixed edge uv 
of H, the probability that  both u and v have neighbors in R is at least 1/2. Let W'  

be the set of all vertices of W that have a neighbor in R, and let H ' be the induced 
subgraph of G on W ~. By linearity of expectation the expected number of edges 
o f / / '  is at least e(W)/2 > rod~4. Hence there exists a set R of at most r vertices 

of H so that  the corresponding graph H '  has at least rod~4 edges. Fix such an R 

and define a proper coloring of H ' by IRI <_r colors, by coloring each vertex of H t 
by the index of its smallest neighbor in R. Since G (and hence H) is triangle-free 
this is a proper coloring, proving that  the subgraph H '  with the required properties 
indeed exists. 

By Lemma 2.1, there is a partition of W t into two disjoint subsets W1 and W2 
so that  

e(W1, W2) > e(wt) e(Wt) > e(W') ( d )  
- 2 + 2 r -  2" +gl md 
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e(w') 4 w ' )  
- ~ + ~t(d 2) - - - 7 - -  + ~(e4/5). 

We can now assign the remaining vertices of G, i.e., those in V - W t, one by one, 
either to W1 or to W2, where each vertex vi in its turn is being assigned to W1 
if it has more neighbors in W2 than in 1V1, and otherwise it is being assigned to 
W2. This ensures that at least half of the remaining edges of G lie in the bipartite 
subgraph obtained this way, and hence shows that  in this case, too 

f ( a )  > e -  4W' )  - 2 + ~ + ~(e4/5) = 7 + f~(e4/5)' 

This completes the proof of (4). 

It remains to show that (4) is tight, up to the constant c I. To this end, we need 
the following simple lemma which provides an upper bound for f(G), for a regular 
graph G, in terms of the eigenvalues of its adjacency matrix. 

Lemma 3.1. Let G = (V, E) be a d-regiUar graph with n vertices and e = nd/2 edges, 
and let A 1 ~ A 2 > . . .  > A n be the eigenvalues of (the adjacency matrix of) G. Then 

e _ Ann~4. f(G) <_ ( d -  An)n~4 = -~ 

(Note tha t  since the trace of the adjacency matrix of G is zero, An < 0.) 
Proof. Let A = (au,v)u,vEV be the adjacency matrix of G in which au,v = 1 if 
uv C E and au,v = 0 otherwise. It is easy and well known that  for every vector 

r 1 6 2  V), 

(11) (Ar r >_ An(C, r 

where (r denotes the inner product of r and g. To see this simply write r as a 
SL 

linear combination ~ cih i of the eigenvectors hi of A which form an orthonormal 
i=1 

basis and notice that 

n n 

(A*,*) = E cTAi ~- E c2An = An(*,*). 
i=1 i=1 

Let V = X U Y be an arbitrary partition of V into two disjoint subsets X and Y, 
where IX I = x n ,  tY[ = ( 1 - x ) n .  Define a vector r  (r : v � 9  V) by putting 
r  for each v � 9  and ~ ( v ) = - x  for each v E X .  Then 

(Ar 6 ) =  2 E r162 
uvEE 

= - ( r  - r  + d  2(v) = y)  + d ( r  r 
uv~E vEV 
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where e ( X , Y )  is the number of edges between X and Y. Therefore, by (11) 

-e(x,  Y) + d(r r _> r 

and since 

we conclude that 

(r162 = [Xl(1 - x) 2 + ( n -  [X[)x 2 = nx(1 - x) 

e(X, Y)  < (d - )~n)nX(1 - x). 

The desired result follows, as z ( 1 - x ) _  1/4. | 

The following result is proved in [1] by an explicit construction. For every 

integer k which is not divisible by 3 there exists a triangle-free dn--= 2 k-1 (2 k - l -  1)- 

regular graph Gn on n = 2 3k vertices, whose smallest eigenvalue is at least -9 .2  k -  

3.2 k / 2 - 1 / 4 .  By Lemma 3.1 this gives the following. 

Proposition 3.2. For every n = 2  3k, where k is not divisible by 3, there is a triangle- 

free regular graph Gn with n vertices and e= (~ +o(1) )n 5/a edges satisfying 

e ~ = -  22/5 o(1))e4/5, f(Gn)_< ~ + ( 1 + o ( 1 ) )  n 4/3 2 + ( 9  . e  + 

where the o(1) terms tend to 0 as n tends to in/~nity. 

By taking disjoint copies of appropriate graphs Gn as above (and by adding, 
if needed, a constant number of isolated edges) it is easy to deduce from Propo- 

sition 3.2 that  there exists some absolute positive constant C / so that  for every e 
there exists a triangle-free graph G with e edges satisfying 

e Cle4/5 f ( a )  <_ -~ + . 

This shows that the exponent 4/5 in (4) cannot be improved and completes the 
proof of Theorem 1.2. | 

Remark. In [12], [13] the authors construct, explicitly, for every prime p -= 
1 (mod 4), and for infinitely many values of n, a d = p + l  regular graph Gn on 

n vertices, whose smallest eigenvalue exceeds - 2 x / d - 1 ,  and whose girth exceeds 

2 lOgd_ ] n. Leinma 3.1 thus implies the following. 

Proposition 3.3. For every prime p -  1 ( rood 4), and for infinitely many vaIues of 
n, there is a d-regular graph Gn with n vertices, e = nd/2 edges, and girth at least 

2 lOgd_ 1 n satisfying 

f(a ) <_ +  vq- 1. 
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This shows that Shearer's estimate in (10) is tight, up to the constant factor 

multiplying the error term, even if the girth of G is much larger than 4. A similar 
result can be proved for all values of d by a probabilistic argument. We omit the 
detailed computation but note that the algebraic approach and the construction in 
[1] seem to be essential for the proof of Proposition 3.2, which does not seem to 
follow from probabilistic arguments. 

4. Conc lud ing  r e m a r k s  

The technique described in Section 2 can be easily applied to improve the lower 

bound for f(e) provided by [4], [5] for other values of e, and the choice of e=n2/2 
is just to simplify the presentation. It would be interesting to find the precise value 
of f(e) for every integer e. By the procedure described in the end of Section 2, 
if e is given by (6) where the numbers ni are chosen one by one, each being the 
maximal possible value satisfying (7), then 

k 

f(e) ~ ~--~Ln2/4]. 
i=1 

It is not difficult to see that this does not provide the precise value of f(e)  for every 
e, but it would be nice to decide for which values of e this is the correct value. 

The problem of determining precisely the minimum possible value of f(G) as 
G ranges over all triangle-free graphs with e edges seems more difficult, 

The proof of Theorem 1.1 as well as that  of Theorem 1.2 (including the 
proof of (8) given in [16]) are algorithmic in the sense that  they provide simple 
randomized polynomial time algorithms that enable one to find in any given input 
graph G a bipartite subgraph of the size guaranteed in the theorems. In both cases 
the algorithms can be derandomized by a standard application of the method of 
conditional probabilities (see, e.g., [15] or [2]), thus yielding efficient deterministic 
algorithms for the corresponding problems. Note that the problem of finding the 
precise value of f(G) for a given input graph G is the well studied M A X -  CUT 
problem, which is known to be NP-complete. 

Finally, the more general problem of finding large k-eolorable subgraphs in 
graphs has also been investigated extensively by various researchers (see, e.g., [11] 
and some of its references), and it is possible to apply our techniques here to this 
problem as well. Here, too, the problem of finding the best possible lower bounds 
precisely seems difficult. 

Note added in proof." Independently of our work (and before us), J. Shearer proved 
a slightly weaker version of the lower bound in Theorem 1.2. He showed that  for 
any e > 0, any triangle-free graph with e edges contains a bipartite subgraph with 

at least ~ + f~(e 4/5-e) edges, provided m > rno (e). 
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